Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 16;67(Pt 12):o3313–o3314. doi: 10.1107/S1600536811047738

Benzyl 2-{[2,8-bis­(trifluoro­meth­yl)quinolin-4-yl](hy­droxy)meth­yl}piperidine-1-carboxyl­ate

Marcus V N de Souza a, Raoni S B Gonçalves a, James L Wardell b,, Solange M S V Wardell c, Edward R T Tiekink d,*
PMCID: PMC3238965  PMID: 22199814

Abstract

The title mol­ecule, C25H22F6N2O3, adopts an open conformation whereby the quinoline and carboxyl­ate ester groups are orientated in opposite directions but to the same side of the piperidine ring so that the mol­ecule has an approximate U-shape. The piperidine ring adopts a distorted boat conformation. In the crystal, inversion dimers linked by pairs of O—H⋯O hydrogen bonds generate R 2 2(14) loops.

Related literature

For background to the anti-mycobacterial activity of mefloquine, see: Gonçalves et al. (2010); Mao et al. (2007); Maguire et al. (2006). For the synthesis, see: Grellepois et al. (2005). For related structures, see: Gonçalves et al. (2011a ,b ); Wardell et al. (2010, 2011a ,b ); Pitaluga et al. (2010). For ring conformations, see: Cremer & Pople (1975).graphic file with name e-67-o3313-scheme1.jpg

Experimental

Crystal data

  • C25H22F6N2O3

  • M r = 512.45

  • Monoclinic, Inline graphic

  • a = 12.7793 (5) Å

  • b = 13.9970 (7) Å

  • c = 13.2188 (9) Å

  • β = 109.999 (8)°

  • V = 2221.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 100 K

  • 0.15 × 0.11 × 0.04 mm

Data collection

  • Rigaku Saturn724+ diffractometer

  • Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2011) T min = 0.757, T max = 1.000

  • 10271 measured reflections

  • 5060 independent reflections

  • 4132 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.107

  • S = 1.00

  • 5060 reflections

  • 328 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811047738/hb6498sup1.cif

e-67-o3313-sup1.cif (24.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811047738/hb6498Isup2.hkl

e-67-o3313-Isup2.hkl (242.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811047738/hb6498Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯O3i 0.84 (1) 1.90 (1) 2.7294 (14) 172 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES and FAPEMIG (Brazil).

supplementary crystallographic information

Comment

For some decades, in combination with other drugs, mefloquine has been used in the prevention and treatment of malaria (Maguire et al., 2006). The activity of mefloquine has been investigated against other diseases more recently, for example, as anti-viral and anti-tubercular agents (Mao et al., 2007). In continuation of on-going structural and biological studies on mefloquine derivatives (Gonçalves et al., 2010, 2011a, 2011b; Wardell, et al., 2010; 2011a; 2011b; Pitaluga et al., 2010), we now report the crystal and molecular structure of the title compound, (I).

In the molecule of (I), Fig. 1, the hydroxyl group lies to one side of the plane through the quinolinyl residue and the substituted piperidine ring to other with the carboxylate ester directed away from the rest of the molecule. The residues lie to the same side of the piperidine ring so that the molecule has a U-shape. The piperidine ring has a distorted boat conformation with ring puckering parameters: q2 = 0.7644 (16) Å; q3 = -0.0283 (16) Å; QT = 0.7649 (16) Å; and θ = 92.12 (12) ° (Cremer & Pople, 1975). Mefloquine used as a reagent was a racemate. The sum of the angles at the trisubstituted N2 is 356° indicating a very near planar geometry, and hence an achiral centre. The configurations of the C12 and C13 in the illustrated molecule, Fig. 1, are R, S and R, respectively. The crystal structure contains an equal amount of the opposite enantiomer.

The most prominent intermolecular interactions in the crystal structure are O—H···O hydrogen bonds that lead to the formation of centrosymmetric dimeric aggregates via 14-membered {···HOC2NCO}2 synthons, Fig. 1 and Table 1.

Experimental

Benzyl 2-[[2,8-bis(trifluoromethyl)-4-quinolinyl](hydroxy)methyl]tetrahydro-1(2H)-pyridine carboxylate was prepared similarly to tert-butyl 2-[[2,8-bis(trifluoromethyl)-4-quinolinyl](hydroxy)methyl]tetrahydro-1(2H)-pyridine carboxylate, following a published procedure (Grellepois et al., 2005), from benzyl chloroformate and mefloquine in the presence of Et3N. Colourless plates of (I) were grown from an EtOH solution; M.pt. 445–447 K. MS 535.3 [M + Na].

Refinement

The C-bound H atoms were geometrically placed (C—H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The O—H H atom was located in a difference map and refined with O—H = 0.84±0.01 Å with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

Centrosymmetric aggregate mediated by O—H···O hydrogen bonds (orange dashed lines) in the crystal structure of (I).

Crystal data

C25H22F6N2O3 F(000) = 1056
Mr = 512.45 Dx = 1.532 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 8584 reflections
a = 12.7793 (5) Å θ = 3.1–27.5°
b = 13.9970 (7) Å µ = 0.13 mm1
c = 13.2188 (9) Å T = 100 K
β = 109.999 (8)° Plate, colourless
V = 2221.9 (2) Å3 0.15 × 0.11 × 0.04 mm
Z = 4

Data collection

Rigaku Saturn724+ diffractometer 5060 independent reflections
Radiation source: Rotating Anode 4132 reflections with I > 2σ(I)
Confocal Rint = 0.026
Detector resolution: 28.5714 pixels mm-1 θmax = 27.5°, θmin = 3.1°
profile data from ω–scans h = −15→16
Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2011) k = −15→18
Tmin = 0.757, Tmax = 1.000 l = −14→17
10271 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0549P)2 + 0.9076P] where P = (Fo2 + 2Fc2)/3
5060 reflections (Δ/σ)max < 0.001
328 parameters Δρmax = 0.34 e Å3
1 restraint Δρmin = −0.32 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.06301 (8) 0.63866 (8) 0.42728 (8) 0.0347 (3)
F2 0.08200 (10) 0.59309 (10) 0.27995 (8) 0.0472 (3)
F3 0.00983 (8) 0.49890 (9) 0.36550 (11) 0.0490 (3)
F4 0.24269 (7) 0.32103 (7) 0.22775 (7) 0.0244 (2)
F5 0.40411 (8) 0.31616 (7) 0.21097 (7) 0.0268 (2)
F6 0.32339 (7) 0.45128 (7) 0.20711 (7) 0.0223 (2)
O1 0.34838 (8) 0.58357 (7) 0.75929 (8) 0.0177 (2)
H1o 0.3897 (13) 0.6035 (13) 0.8197 (10) 0.026*
O2 0.54803 (8) 0.32514 (8) 0.88013 (8) 0.0172 (2)
O3 0.53313 (8) 0.33958 (7) 1.04525 (8) 0.0167 (2)
N1 0.24628 (9) 0.47056 (9) 0.38278 (9) 0.0148 (2)
N2 0.40608 (9) 0.40943 (8) 0.89798 (9) 0.0132 (2)
C1 0.20188 (11) 0.52274 (10) 0.44060 (11) 0.0157 (3)
C2 0.24724 (11) 0.53657 (10) 0.55218 (11) 0.0153 (3)
H2 0.2115 0.5773 0.5879 0.018*
C3 0.34448 (11) 0.49011 (10) 0.60906 (11) 0.0135 (3)
C4 0.39716 (11) 0.43306 (10) 0.55111 (11) 0.0131 (3)
C5 0.49874 (11) 0.38293 (10) 0.60028 (11) 0.0156 (3)
H5 0.5336 0.3848 0.6763 0.019*
C6 0.54664 (12) 0.33218 (11) 0.53960 (12) 0.0184 (3)
H6 0.6149 0.2997 0.5737 0.022*
C7 0.49589 (12) 0.32732 (10) 0.42648 (12) 0.0178 (3)
H7 0.5305 0.2920 0.3852 0.021*
C8 0.39727 (11) 0.37307 (10) 0.37610 (11) 0.0148 (3)
C9 0.34484 (11) 0.42711 (10) 0.43713 (11) 0.0132 (3)
C10 0.08955 (13) 0.56455 (12) 0.37809 (12) 0.0234 (3)
C11 0.34203 (12) 0.36577 (11) 0.25637 (12) 0.0188 (3)
C12 0.38962 (11) 0.49779 (10) 0.73029 (11) 0.0136 (3)
H12 0.4728 0.5004 0.7553 0.016*
C13 0.35295 (11) 0.40908 (10) 0.77995 (11) 0.0130 (3)
H13 0.3785 0.3507 0.7515 0.016*
C14 0.33521 (11) 0.43906 (11) 0.95997 (11) 0.0162 (3)
H14A 0.3039 0.5032 0.9361 0.019*
H14B 0.3805 0.4427 1.0374 0.019*
C15 0.24059 (12) 0.36724 (12) 0.94326 (12) 0.0207 (3)
H15A 0.1786 0.3981 0.9598 0.025*
H15B 0.2674 0.3127 0.9931 0.025*
C16 0.19855 (12) 0.33083 (11) 0.82632 (12) 0.0200 (3)
H16A 0.2337 0.2685 0.8226 0.024*
H16B 0.1169 0.3212 0.8024 0.024*
C17 0.22634 (11) 0.40230 (10) 0.75142 (12) 0.0159 (3)
H17A 0.1959 0.4659 0.7589 0.019*
H17B 0.1916 0.3814 0.6757 0.019*
C18 0.49755 (11) 0.35697 (10) 0.94887 (11) 0.0132 (3)
C19 0.63991 (11) 0.25860 (11) 0.92685 (12) 0.0184 (3)
H19A 0.6503 0.2196 0.8686 0.022*
H19B 0.6203 0.2148 0.9764 0.022*
C20 0.74791 (12) 0.30819 (10) 0.98754 (12) 0.0171 (3)
C21 0.80837 (13) 0.35436 (11) 0.93193 (13) 0.0226 (3)
H21 0.7803 0.3564 0.8555 0.027*
C22 0.90963 (13) 0.39735 (12) 0.98804 (15) 0.0272 (4)
H22 0.9506 0.4285 0.9498 0.033*
C23 0.95114 (13) 0.39495 (12) 1.09955 (15) 0.0285 (4)
H23 1.0207 0.4240 1.1376 0.034*
C24 0.89110 (13) 0.35018 (11) 1.15538 (14) 0.0250 (3)
H24 0.9191 0.3489 1.2318 0.030*
C25 0.78982 (12) 0.30711 (11) 1.09960 (12) 0.0198 (3)
H25 0.7487 0.2766 1.1383 0.024*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0323 (5) 0.0394 (6) 0.0246 (5) 0.0208 (5) −0.0003 (4) −0.0068 (5)
F2 0.0495 (7) 0.0708 (9) 0.0172 (5) 0.0375 (6) 0.0061 (5) 0.0128 (5)
F3 0.0158 (5) 0.0440 (7) 0.0709 (9) 0.0006 (4) −0.0062 (5) −0.0050 (6)
F4 0.0241 (4) 0.0307 (5) 0.0174 (5) −0.0109 (4) 0.0059 (4) −0.0066 (4)
F5 0.0312 (5) 0.0347 (5) 0.0181 (5) 0.0039 (4) 0.0130 (4) −0.0075 (4)
F6 0.0283 (5) 0.0250 (5) 0.0139 (4) −0.0012 (4) 0.0079 (4) 0.0029 (4)
O1 0.0231 (5) 0.0152 (5) 0.0116 (5) 0.0010 (4) 0.0020 (4) −0.0035 (4)
O2 0.0150 (5) 0.0235 (5) 0.0129 (5) 0.0064 (4) 0.0045 (4) −0.0003 (4)
O3 0.0198 (5) 0.0188 (5) 0.0097 (5) 0.0005 (4) 0.0025 (4) 0.0007 (4)
N1 0.0155 (5) 0.0164 (6) 0.0118 (6) −0.0008 (4) 0.0040 (4) 0.0003 (5)
N2 0.0146 (5) 0.0171 (6) 0.0077 (5) 0.0022 (4) 0.0038 (4) −0.0003 (4)
C1 0.0152 (6) 0.0168 (7) 0.0136 (7) −0.0004 (5) 0.0031 (5) 0.0007 (5)
C2 0.0162 (6) 0.0167 (7) 0.0130 (7) 0.0004 (5) 0.0049 (5) −0.0013 (5)
C3 0.0148 (6) 0.0139 (7) 0.0117 (7) −0.0034 (5) 0.0043 (5) −0.0001 (5)
C4 0.0145 (6) 0.0133 (6) 0.0119 (6) −0.0017 (5) 0.0052 (5) 0.0007 (5)
C5 0.0155 (6) 0.0172 (7) 0.0126 (7) −0.0006 (5) 0.0030 (5) 0.0026 (5)
C6 0.0156 (6) 0.0181 (7) 0.0215 (8) 0.0023 (5) 0.0062 (6) 0.0019 (6)
C7 0.0204 (7) 0.0160 (7) 0.0204 (8) 0.0000 (6) 0.0111 (6) −0.0014 (6)
C8 0.0172 (6) 0.0142 (6) 0.0139 (7) −0.0040 (5) 0.0064 (5) −0.0021 (5)
C9 0.0144 (6) 0.0127 (6) 0.0129 (7) −0.0025 (5) 0.0052 (5) −0.0002 (5)
C10 0.0222 (7) 0.0291 (8) 0.0149 (7) 0.0065 (6) 0.0012 (6) −0.0028 (6)
C11 0.0207 (7) 0.0223 (8) 0.0156 (7) −0.0029 (6) 0.0090 (6) −0.0037 (6)
C12 0.0135 (6) 0.0155 (7) 0.0105 (7) −0.0001 (5) 0.0027 (5) −0.0003 (5)
C13 0.0140 (6) 0.0148 (6) 0.0093 (6) 0.0000 (5) 0.0028 (5) −0.0010 (5)
C14 0.0183 (6) 0.0189 (7) 0.0135 (7) 0.0029 (5) 0.0082 (5) −0.0010 (5)
C15 0.0205 (7) 0.0251 (8) 0.0199 (8) 0.0012 (6) 0.0112 (6) 0.0025 (6)
C16 0.0173 (7) 0.0222 (8) 0.0201 (8) −0.0037 (6) 0.0059 (6) 0.0029 (6)
C17 0.0133 (6) 0.0187 (7) 0.0144 (7) −0.0003 (5) 0.0032 (5) 0.0014 (5)
C18 0.0155 (6) 0.0131 (6) 0.0109 (7) −0.0017 (5) 0.0044 (5) −0.0012 (5)
C19 0.0181 (7) 0.0172 (7) 0.0179 (7) 0.0052 (6) 0.0037 (5) −0.0020 (6)
C20 0.0164 (6) 0.0132 (7) 0.0200 (8) 0.0056 (5) 0.0040 (5) −0.0013 (6)
C21 0.0261 (8) 0.0201 (8) 0.0214 (8) 0.0027 (6) 0.0080 (6) −0.0016 (6)
C22 0.0260 (8) 0.0214 (8) 0.0367 (10) −0.0043 (6) 0.0140 (7) −0.0027 (7)
C23 0.0211 (7) 0.0214 (8) 0.0376 (10) −0.0011 (6) 0.0031 (7) −0.0067 (7)
C24 0.0252 (8) 0.0205 (8) 0.0217 (8) 0.0053 (6) −0.0017 (6) −0.0021 (6)
C25 0.0204 (7) 0.0179 (7) 0.0187 (8) 0.0051 (6) 0.0034 (6) 0.0019 (6)

Geometric parameters (Å, °)

F1—C10 1.3284 (19) C8—C11 1.500 (2)
F2—C10 1.3289 (19) C12—C13 1.5500 (19)
F3—C10 1.339 (2) C12—H12 1.0000
F4—C11 1.3485 (17) C13—C17 1.5335 (18)
F5—C11 1.3407 (16) C13—H13 1.0000
F6—C11 1.3443 (18) C14—C15 1.529 (2)
O1—C12 1.4159 (17) C14—H14A 0.9900
O1—H1O 0.840 (9) C14—H14B 0.9900
O2—C18 1.3570 (16) C15—C16 1.539 (2)
O2—C19 1.4600 (16) C15—H15A 0.9900
O3—C18 1.2218 (17) C15—H15B 0.9900
N1—C1 1.3176 (18) C16—C17 1.532 (2)
N1—C9 1.3615 (17) C16—H16A 0.9900
N2—C18 1.3492 (17) C16—H16B 0.9900
N2—C13 1.4733 (17) C17—H17A 0.9900
N2—C14 1.4736 (16) C17—H17B 0.9900
C1—C2 1.402 (2) C19—C20 1.508 (2)
C1—C10 1.508 (2) C19—H19A 0.9900
C2—C3 1.3760 (19) C19—H19B 0.9900
C2—H2 0.9500 C20—C21 1.394 (2)
C3—C4 1.4250 (19) C20—C25 1.392 (2)
C3—C12 1.5100 (19) C21—C22 1.389 (2)
C4—C5 1.4223 (19) C21—H21 0.9500
C4—C9 1.4266 (19) C22—C23 1.386 (3)
C5—C6 1.363 (2) C22—H22 0.9500
C5—H5 0.9500 C23—C24 1.383 (2)
C6—C7 1.413 (2) C23—H23 0.9500
C6—H6 0.9500 C24—C25 1.389 (2)
C7—C8 1.367 (2) C24—H24 0.9500
C7—H7 0.9500 C25—H25 0.9500
C8—C9 1.4288 (19)
C12—O1—H1O 111.6 (13) N2—C13—H13 108.1
C18—O2—C19 115.08 (11) C17—C13—H13 108.1
C1—N1—C9 116.48 (12) C12—C13—H13 108.1
C18—N2—C13 122.22 (11) N2—C14—C15 109.92 (11)
C18—N2—C14 117.92 (11) N2—C14—H14A 109.7
C13—N2—C14 116.21 (11) C15—C14—H14A 109.7
N1—C1—C2 125.58 (13) N2—C14—H14B 109.7
N1—C1—C10 114.54 (12) C15—C14—H14B 109.7
C2—C1—C10 119.77 (12) H14A—C14—H14B 108.2
C3—C2—C1 118.75 (13) C14—C15—C16 110.48 (11)
C3—C2—H2 120.6 C14—C15—H15A 109.6
C1—C2—H2 120.6 C16—C15—H15A 109.6
C2—C3—C4 118.39 (12) C14—C15—H15B 109.6
C2—C3—C12 119.48 (12) C16—C15—H15B 109.6
C4—C3—C12 122.08 (12) H15A—C15—H15B 108.1
C3—C4—C5 123.78 (13) C17—C16—C15 110.75 (12)
C3—C4—C9 117.62 (12) C17—C16—H16A 109.5
C5—C4—C9 118.60 (12) C15—C16—H16A 109.5
C6—C5—C4 120.76 (13) C17—C16—H16B 109.5
C6—C5—H5 119.6 C15—C16—H16B 109.5
C4—C5—H5 119.6 H16A—C16—H16B 108.1
C5—C6—C7 120.77 (13) C16—C17—C13 109.86 (11)
C5—C6—H6 119.6 C16—C17—H17A 109.7
C7—C6—H6 119.6 C13—C17—H17A 109.7
C8—C7—C6 120.40 (13) C16—C17—H17B 109.7
C8—C7—H7 119.8 C13—C17—H17B 109.7
C6—C7—H7 119.8 H17A—C17—H17B 108.2
C7—C8—C9 120.34 (13) O3—C18—N2 125.34 (12)
C7—C8—C11 120.33 (13) O3—C18—O2 122.70 (12)
C9—C8—C11 119.31 (12) N2—C18—O2 111.96 (11)
N1—C9—C4 123.10 (12) O2—C19—C20 112.88 (12)
N1—C9—C8 117.80 (12) O2—C19—H19A 109.0
C4—C9—C8 119.10 (12) C20—C19—H19A 109.0
F2—C10—F1 107.32 (14) O2—C19—H19B 109.0
F2—C10—F3 106.66 (14) C20—C19—H19B 109.0
F1—C10—F3 106.61 (13) H19A—C19—H19B 107.8
F2—C10—C1 112.90 (13) C21—C20—C25 119.02 (14)
F1—C10—C1 112.91 (12) C21—C20—C19 120.30 (14)
F3—C10—C1 110.05 (13) C25—C20—C19 120.68 (13)
F5—C11—F6 106.16 (11) C22—C21—C20 120.15 (15)
F5—C11—F4 106.16 (12) C22—C21—H21 119.9
F6—C11—F4 106.48 (12) C20—C21—H21 119.9
F5—C11—C8 111.76 (12) C23—C22—C21 120.35 (15)
F6—C11—C8 113.08 (12) C23—C22—H22 119.8
F4—C11—C8 112.69 (11) C21—C22—H22 119.8
O1—C12—C3 107.77 (11) C24—C23—C22 119.87 (15)
O1—C12—C13 111.73 (11) C24—C23—H23 120.1
C3—C12—C13 109.35 (11) C22—C23—H23 120.1
O1—C12—H12 109.3 C23—C24—C25 119.97 (15)
C3—C12—H12 109.3 C23—C24—H24 120.0
C13—C12—H12 109.3 C25—C24—H24 120.0
N2—C13—C17 109.02 (10) C24—C25—C20 120.64 (14)
N2—C13—C12 110.44 (11) C24—C25—H25 119.7
C17—C13—C12 113.07 (11) C20—C25—H25 119.7
C9—N1—C1—C2 −0.3 (2) C9—C8—C11—F4 −63.18 (18)
C9—N1—C1—C10 −176.49 (12) C2—C3—C12—O1 −24.67 (16)
N1—C1—C2—C3 −2.3 (2) C4—C3—C12—O1 157.75 (12)
C10—C1—C2—C3 173.71 (13) C2—C3—C12—C13 96.96 (15)
C1—C2—C3—C4 2.6 (2) C4—C3—C12—C13 −80.62 (15)
C1—C2—C3—C12 −175.10 (12) C18—N2—C13—C17 136.12 (13)
C2—C3—C4—C5 178.88 (13) C14—N2—C13—C17 −21.86 (16)
C12—C3—C4—C5 −3.5 (2) C18—N2—C13—C12 −99.08 (14)
C2—C3—C4—C9 −0.51 (19) C14—N2—C13—C12 102.94 (13)
C12—C3—C4—C9 177.10 (12) O1—C12—C13—N2 −67.05 (13)
C3—C4—C5—C6 −177.76 (13) C3—C12—C13—N2 173.73 (10)
C9—C4—C5—C6 1.6 (2) O1—C12—C13—C17 55.41 (15)
C4—C5—C6—C7 −0.7 (2) C3—C12—C13—C17 −63.81 (14)
C5—C6—C7—C8 −0.4 (2) C18—N2—C14—C15 −94.29 (15)
C6—C7—C8—C9 0.6 (2) C13—N2—C14—C15 64.67 (15)
C6—C7—C8—C11 −178.42 (13) N2—C14—C15—C16 −37.26 (16)
C1—N1—C9—C4 2.5 (2) C14—C15—C16—C17 −23.02 (16)
C1—N1—C9—C8 −177.60 (12) C15—C16—C17—C13 65.54 (15)
C3—C4—C9—N1 −2.2 (2) N2—C13—C17—C16 −41.29 (15)
C5—C4—C9—N1 178.41 (12) C12—C13—C17—C16 −164.53 (12)
C3—C4—C9—C8 177.97 (12) C13—N2—C18—O3 −165.29 (13)
C5—C4—C9—C8 −1.45 (19) C14—N2—C18—O3 −7.7 (2)
C7—C8—C9—N1 −179.50 (13) C13—N2—C18—O2 15.20 (18)
C11—C8—C9—N1 −0.48 (19) C14—N2—C18—O2 172.82 (11)
C7—C8—C9—C4 0.4 (2) C19—O2—C18—O3 7.38 (19)
C11—C8—C9—C4 179.39 (12) C19—O2—C18—N2 −173.10 (11)
N1—C1—C10—F2 −38.11 (19) C18—O2—C19—C20 −82.15 (15)
C2—C1—C10—F2 145.43 (15) O2—C19—C20—C21 −75.11 (16)
N1—C1—C10—F1 −160.08 (13) O2—C19—C20—C25 106.09 (15)
C2—C1—C10—F1 23.5 (2) C25—C20—C21—C22 0.9 (2)
N1—C1—C10—F3 80.93 (17) C19—C20—C21—C22 −177.93 (14)
C2—C1—C10—F3 −95.52 (16) C20—C21—C22—C23 −0.2 (2)
C7—C8—C11—F5 −3.62 (19) C21—C22—C23—C24 −0.5 (2)
C9—C8—C11—F5 177.36 (12) C22—C23—C24—C25 0.5 (2)
C7—C8—C11—F6 −123.34 (14) C23—C24—C25—C20 0.2 (2)
C9—C8—C11—F6 57.64 (16) C21—C20—C25—C24 −0.9 (2)
C7—C8—C11—F4 115.84 (14) C19—C20—C25—C24 177.91 (13)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1o···O3i 0.84 (1) 1.90 (1) 2.7294 (14) 172.(2)

Symmetry codes: (i) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6498).

References

  1. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Gonçalves, R. S. B., Souza, M. V. N. de, Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2011a). Acta Cryst. E67, o3315–o3316. [DOI] [PMC free article] [PubMed]
  5. Gonçalves, R. S. B., Kaiser, C. R., Souza, M. V. N. de, Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2011b). Acta Cryst. E67, o1656–o1657. [DOI] [PMC free article] [PubMed]
  6. Gonçalves, R. S. B., Kaiser, C. R., Lourenço, M. C. S., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & da Silva, A. D. (2010). Eur. J. Med. Chem. 45, 6095–6100. [DOI] [PubMed]
  7. Grellepois, F., Grellier, P., Bonnet-Delpon, D. & Bégué, J. P. (2005). ChemBioChem, 6, 648–652. [DOI] [PubMed]
  8. Maguire, J. D., Krisin, Marwoto, H., Richie, T. L., Fryauff, D. J. & Baird, J. K. (2006). Clin. Infect. Dis. 42, 1067–1072. [DOI] [PubMed]
  9. Mao, J., Wang, Y., Wan, B., Kozikowski, A. P. S. G. & Franzblau, S. G. (2007). ChemMedChem, 2, 1624–1630. [DOI] [PubMed]
  10. Pitaluga, A. Jr, Prado, L. D., Seiceira, R., Wardell, J. L. & Wardell, S. M. S. V. (2010). Int. J. Pharm. 398, 50–60. [DOI] [PubMed]
  11. Rigaku (2011). CrystalClear-SM Expert Rigaku Corporation, Tokyo, Japan.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Wardell, J. L., de Souza, M. V. N., Wardell, S. M. S. V. & Lourenço, M. C. S. (2011a). J. Mol. Struct. 990, 67–74.
  14. Wardell, S. M. S. V., Wardell, J. L., Skakle, J. M. S. & Tiekink, E. R. T. (2011b). Z. Kristallogr. 226, 68–77.
  15. Wardell, J. L., Wardell, S. M. S. V., Tiekink, E. R. T. & Lima, G. M. de (2010). Acta Cryst. E66, m336–m337. [DOI] [PMC free article] [PubMed]
  16. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811047738/hb6498sup1.cif

e-67-o3313-sup1.cif (24.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811047738/hb6498Isup2.hkl

e-67-o3313-Isup2.hkl (242.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811047738/hb6498Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES