Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 16;67(Pt 12):o3317. doi: 10.1107/S1600536811047817

N-(4-Chloro-2-methyl­phen­yl)maleamic acid

K Shakuntala a, Viktor Vrábel b, B Thimme Gowda a,*, Jozef Kožíšek b
PMCID: PMC3238967  PMID: 22199816

Abstract

In the mol­ecular structure of the title compound, C11H10ClNO3, the conformation of the N—H bond in the amide segment is syn to the ortho-methyl group in the phenyl ring. The C=O and O—H bonds of the acid group are in the relatively rare anti position with respect to each other. This is an obvious consequence of the hydrogen bond donated to the amide carbonyl group. The central oxobutenoic acid core C(=O)—C=C—C—OH is twisted by 31.65 (6)° out of the plane of the 4-chloro-2-methyl­phenyl ring. An intra­molecular O—H⋯O hydrogen bond occurs. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into infinite chains running along the a axis.

Related literature

For studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Gowda et al. (2000, 2010); Prasad et al. (2002), on N-(ar­yl)-methane­sulfonamides, see: Jayalakshmi & Gowda (2004), on N-(ar­yl)-aryl­sulfonamides, see: Shetty & Gowda (2005) and on N-chloro­aryl­sulfonamides, see: Gowda & Kumar (2003). For modes of inter­linking carb­oxy­lic acids by hydrogen bonds, see: Leiserowitz (1976)graphic file with name e-67-o3317-scheme1.jpg

Experimental

Crystal data

  • C11H10ClNO3

  • M r = 239.65

  • Orthorhombic, Inline graphic

  • a = 12.1310 (11) Å

  • b = 7.3990 (7) Å

  • c = 25.466 (2) Å

  • V = 2285.7 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 295 K

  • 0.45 × 0.35 × 0.25 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) T min = 0.865, T max = 0.918

  • 17740 measured reflections

  • 1819 independent reflections

  • 1642 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.089

  • S = 1.02

  • 1819 reflections

  • 154 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811047817/bq2317sup1.cif

e-67-o3317-sup1.cif (16.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811047817/bq2317Isup2.hkl

e-67-o3317-Isup2.hkl (89.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811047817/bq2317Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.86 (1) 2.10 (1) 2.9556 (19) 174 (2)
O2—H2A⋯O1 0.92 (1) 1.57 (1) 2.4797 (17) 171 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

VV and JK thank the VEGA Grant Agency of the Slovak Ministry of Education (1/0679/11) and the Research and Development Agency of Slovakia (APVV-0202–10) for support and the Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer. VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of an RFSMS research fellowship.

supplementary crystallographic information

Comment

The amide moiety is the constituent of many biologically significant compounds. As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Gowda et al., 2000, 2010), N-(aryl)-methanesulfonamides (Jayalakshmi & Gowda, 2004), N-(aryl)-arylsulfonamides (Shetty & Gowda, 2005) and N-chloroarylsulfoamides (Gowda & Kumar, 2003), in the present work, the crystal structure of N-(4-chloro-2-methylphenyl)-maleamic acid (I) has been determined (Fig.1).

The conformations of the N—H and the C=O bonds in the amide segment are anti to each other. But the conformation of the N—H bond is syn to the ortho-methyl group in the phenyl ring. In the maleamic acid moiety, the amide C=O bond is anti to the adjacent C—H bond, while the carboxyl C=O bond is syn to the adjacent C—H bond. The observed rare anti conformation of the C=O and O—H bonds of the acid group is similar to that observed in N-(2-methylphenyl)-maleamic acid (Gowda et al., 2010). This is an obvious consequence of the hydrogen bond donated to the amide carbonyl group. The central oxobutenoic acid core C(=O)—C=C—C—OH is twisted by 31.65 (6)° out of the plane of the 4-chloro-2-methylphenyl ring. The C2–C3 bond length of 1.333 (2)Å clearly indicates the double bond character.

The various modes of interlinking carboxylic acids by hydrogen bonds is described elsewhere (Leiserowitz, 1976).

In (I), both the intramolecular O–H···O and intermolecular N–H···O hydrogen bonds have been observed. The packing of molecules linked by N—H···O hydrogen bonds into infinite chains running along the a-axis is shown in Fig. 2.

Experimental

The solution of maleic anhydride (0.025 mol) in toluene (25 ml) was treated dropwise with the solution of 4-chloro-2-methylaniline (0.025 mol) also in toluene (20 ml) with constant stirring. The resulting mixture was stirred for about 30 min. and set aside for an additional 30 min. at room temperature for the completion of reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 4-chloro-2-methylaniline. The resultant solid N-(4-chloro-2-methylphenyl)-maleamic acid was filtered under suction and washed thoroughly with water to remove the unreacted maleic anhydride and maleic acid. It was recrystallized to constant melting point from ethanol. The purity of the compound was checked by elemental analysis and characterized by its infrared spectra.

The plate like colorless single crystals of the title compound used in X-ray diffraction studies were grown in an ethanol solution by slow evaporation (0.5 g in about 30 ml of ethanol) at room temperature.

Refinement

All hydrogen atoms were placed in calculated positions with C–H distances of 0.93Å (C-aromatic) and 0.96Å (C-methyl), and constrained to ride on their parent atoms. Amide and O—H atoms were seen in difference map and were refined with the N—H and O—H distances restrained to 0.86 (1)Å and 0.92 (1) Å, respectively. The Uiso(H) values were set at 1.2 Ueq (C-aromatic, N) or 1.5Ueq (C-methyl).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing the atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Packing view of the title compound. Molecular chains along a-axis are generated by N–H···O hydrogen bonds which are shown as dashed lines. H atoms not involved in H-bonding have been omitted.

Crystal data

C11H10ClNO3 Dx = 1.393 Mg m3
Mr = 239.65 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbca Cell parameters from 1819 reflections
a = 12.1310 (11) Å θ = 3.6–24.4°
b = 7.3990 (7) Å µ = 0.33 mm1
c = 25.466 (2) Å T = 295 K
V = 2285.7 (3) Å3 Plate, colourless
Z = 8 0.45 × 0.35 × 0.25 mm
F(000) = 992

Data collection

Oxford Diffraction Xcalibur diffractometer 1819 independent reflections
Radiation source: fine-focus sealed tube 1642 reflections with I > 2σ(I)
graphite Rint = 0.025
Detector resolution: 0 pixels mm-1 θmax = 24.4°, θmin = 3.6°
ω scans with κ offsets h = −14→13
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) k = −8→8
Tmin = 0.865, Tmax = 0.918 l = −29→28
17740 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0445P)2 + 0.9459P] where P = (Fo2 + 2Fc2)/3
1819 reflections (Δ/σ)max < 0.001
154 parameters Δρmax = 0.19 e Å3
2 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.29051 (13) 0.3610 (2) 0.08033 (7) 0.0428 (4)
C2 0.31769 (14) 0.3019 (3) 0.02624 (7) 0.0485 (5)
H2 0.3925 0.2917 0.0188 0.058*
C3 0.25011 (15) 0.2612 (3) −0.01329 (6) 0.0505 (5)
H3 0.2860 0.2317 −0.0444 0.061*
C4 0.12845 (15) 0.2543 (3) −0.01670 (7) 0.0496 (5)
C5 0.37645 (12) 0.4444 (2) 0.16488 (6) 0.0368 (4)
C6 0.46315 (13) 0.5525 (2) 0.18298 (6) 0.0383 (4)
C7 0.46319 (14) 0.6020 (2) 0.23578 (6) 0.0431 (4)
H7 0.5205 0.6723 0.2489 0.052*
C8 0.37918 (14) 0.5481 (2) 0.26889 (6) 0.0410 (4)
C9 0.29334 (14) 0.4439 (2) 0.25077 (7) 0.0449 (4)
H9 0.2366 0.4097 0.2732 0.054*
C10 0.29265 (14) 0.3907 (2) 0.19860 (7) 0.0429 (4)
H10 0.2357 0.3185 0.1861 0.051*
C11 0.55428 (15) 0.6166 (3) 0.14712 (7) 0.0517 (5)
H11A 0.5937 0.5141 0.1336 0.078*
H11B 0.6039 0.6927 0.1664 0.078*
H11C 0.5231 0.6837 0.1185 0.078*
N1 0.37789 (11) 0.38698 (19) 0.11129 (5) 0.0406 (4)
H1 0.4407 (8) 0.369 (2) 0.0965 (6) 0.046 (5)*
O1 0.19506 (10) 0.3884 (2) 0.09562 (5) 0.0656 (4)
O2 0.06813 (10) 0.2998 (3) 0.02376 (5) 0.0746 (5)
H2A 0.1092 (19) 0.340 (3) 0.0519 (7) 0.098 (8)*
O3 0.08638 (11) 0.2036 (2) −0.05732 (5) 0.0700 (4)
Cl1 0.38181 (4) 0.61481 (7) 0.334722 (17) 0.0585 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0340 (9) 0.0542 (10) 0.0401 (9) −0.0017 (8) −0.0029 (7) −0.0048 (8)
C2 0.0339 (9) 0.0681 (12) 0.0436 (10) −0.0021 (8) 0.0016 (7) −0.0083 (9)
C3 0.0436 (9) 0.0720 (12) 0.0359 (9) −0.0057 (9) 0.0018 (8) −0.0065 (9)
C4 0.0438 (10) 0.0691 (12) 0.0358 (10) −0.0091 (9) −0.0067 (8) 0.0037 (9)
C5 0.0355 (8) 0.0380 (8) 0.0370 (9) 0.0011 (7) −0.0049 (7) −0.0031 (7)
C6 0.0355 (8) 0.0360 (8) 0.0434 (9) −0.0009 (7) −0.0029 (7) −0.0012 (7)
C7 0.0441 (10) 0.0389 (9) 0.0463 (10) −0.0041 (8) −0.0090 (8) −0.0061 (7)
C8 0.0509 (10) 0.0366 (8) 0.0356 (9) 0.0025 (8) −0.0047 (7) −0.0026 (7)
C9 0.0473 (10) 0.0460 (9) 0.0415 (9) −0.0040 (8) 0.0030 (7) 0.0015 (8)
C10 0.0410 (9) 0.0452 (9) 0.0425 (9) −0.0094 (8) −0.0028 (7) −0.0027 (7)
C11 0.0440 (10) 0.0592 (11) 0.0519 (11) −0.0133 (9) 0.0002 (8) −0.0048 (9)
N1 0.0321 (8) 0.0517 (9) 0.0380 (8) −0.0033 (6) −0.0008 (6) −0.0070 (6)
O1 0.0350 (7) 0.1178 (13) 0.0441 (7) 0.0058 (7) −0.0029 (5) −0.0196 (7)
O2 0.0374 (7) 0.1425 (15) 0.0439 (8) −0.0093 (8) −0.0041 (6) −0.0140 (9)
O3 0.0527 (8) 0.1129 (12) 0.0444 (7) −0.0126 (8) −0.0140 (6) −0.0092 (8)
Cl1 0.0767 (4) 0.0599 (3) 0.0388 (3) −0.0056 (2) −0.0028 (2) −0.00955 (19)

Geometric parameters (Å, °)

C1—O1 1.238 (2) C6—C11 1.510 (2)
C1—O1 1.238 (2) C7—C8 1.382 (2)
C1—N1 1.335 (2) C7—H7 0.9300
C1—C2 1.482 (2) C8—C9 1.375 (2)
C2—C3 1.333 (2) C8—Cl1 1.7478 (16)
C2—H2 0.9300 C9—C10 1.386 (2)
C3—C4 1.479 (3) C9—H9 0.9300
C3—H3 0.9300 C10—H10 0.9300
C4—O3 1.213 (2) C11—H11A 0.9600
C4—O2 1.308 (2) C11—H11B 0.9600
C5—C10 1.389 (2) C11—H11C 0.9600
C5—C6 1.400 (2) N1—H1 0.861 (5)
C5—N1 1.429 (2) O1—O1 0.000 (5)
C6—C7 1.394 (2) O2—H2A 0.920 (5)
O1—C1—O1 0.00 (12) C8—C7—H7 119.6
O1—C1—N1 122.22 (16) C6—C7—H7 119.6
O1—C1—N1 122.22 (16) C9—C8—C7 121.03 (15)
O1—C1—C2 123.26 (15) C9—C8—Cl1 119.60 (13)
O1—C1—C2 123.26 (15) C7—C8—Cl1 119.37 (13)
N1—C1—C2 114.50 (14) C8—C9—C10 119.05 (16)
C3—C2—C1 129.17 (16) C8—C9—H9 120.5
C3—C2—H2 115.4 C10—C9—H9 120.5
C1—C2—H2 115.4 C9—C10—C5 120.47 (15)
C2—C3—C4 131.75 (17) C9—C10—H10 119.8
C2—C3—H3 114.1 C5—C10—H10 119.8
C4—C3—H3 114.1 C6—C11—H11A 109.5
O3—C4—O2 121.08 (16) C6—C11—H11B 109.5
O3—C4—C3 118.71 (17) H11A—C11—H11B 109.5
O2—C4—C3 120.21 (15) C6—C11—H11C 109.5
C10—C5—C6 120.67 (15) H11A—C11—H11C 109.5
C10—C5—N1 120.95 (14) H11B—C11—H11C 109.5
C6—C5—N1 118.36 (14) C1—N1—C5 126.65 (14)
C7—C6—C5 117.92 (15) C1—N1—H1 114.9 (12)
C7—C6—C11 120.05 (15) C5—N1—H1 118.4 (12)
C5—C6—C11 122.03 (15) O1—O1—C1 0(10)
C8—C7—C6 120.85 (15) C4—O2—H2A 113.1 (17)
O1—C1—C2—C3 −3.2 (3) C6—C7—C8—Cl1 −179.45 (13)
O1—C1—C2—C3 −3.2 (3) C7—C8—C9—C10 0.9 (3)
N1—C1—C2—C3 178.4 (2) Cl1—C8—C9—C10 −179.48 (13)
C1—C2—C3—C4 −2.4 (4) C8—C9—C10—C5 −1.1 (3)
C2—C3—C4—O3 −176.3 (2) C6—C5—C10—C9 0.2 (3)
C2—C3—C4—O2 2.7 (4) N1—C5—C10—C9 178.60 (15)
C10—C5—C6—C7 0.8 (2) O1—C1—N1—C5 1.3 (3)
N1—C5—C6—C7 −177.59 (14) O1—C1—N1—C5 1.3 (3)
C10—C5—C6—C11 −178.68 (16) C2—C1—N1—C5 179.73 (16)
N1—C5—C6—C11 2.9 (2) C10—C5—N1—C1 34.9 (3)
C5—C6—C7—C8 −1.0 (2) C6—C5—N1—C1 −146.67 (17)
C11—C6—C7—C8 178.52 (16) N1—C1—O1—O1 0.00 (10)
C6—C7—C8—C9 0.1 (3) C2—C1—O1—O1 0.00 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O3i 0.86 (1) 2.10 (1) 2.9556 (19) 174.(2)
O2—H2A···O1 0.92 (1) 1.57 (1) 2.4797 (17) 171 (3)

Symmetry codes: (i) x+1/2, −y+1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2317).

References

  1. Brandenburg, K. (2002). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  3. Gowda, B. T. & Kumar, B. H. A. (2003). Oxid. Commun. A, 26, 403–425.
  4. Gowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 791–800.
  5. Gowda, B. T., Tokarčík, M., Shakuntala, K., Kožíšek, J. & Fuess, H. (2010). Acta Cryst. E66, o1554. [DOI] [PMC free article] [PubMed]
  6. Jayalakshmi, K. L. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 491–500.
  7. Leiserowitz, L. (1976). Acta Cryst. B32, 775–802.
  8. Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  9. Prasad, S. M., Sinha, R. B. P., Mandal, D. K. & Rani, A. (2002). Acta Cryst. E58, o1296–o1297.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Shetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113–120.
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811047817/bq2317sup1.cif

e-67-o3317-sup1.cif (16.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811047817/bq2317Isup2.hkl

e-67-o3317-Isup2.hkl (89.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811047817/bq2317Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES