Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 16;67(Pt 12):o3322. doi: 10.1107/S1600536811047520

(E)-Methyl 2-[(4-bromo-2-formyl­phen­oxy)meth­yl]-3-phenyl­acrylate

T Anuradha a, G Sivakumar b, P R Seshadri a,*, M Bakthadoss b
PMCID: PMC3238972  PMID: 22199821

Abstract

The C=C double bond in the title compound, C18H15BrO4, adopts an E configuration. The two rings are almost orthogonal to each other, making a dihedral angle of 82.8 (1)°. An intra­molecular C—H⋯O hydrogen bond occurs. The crystal structure is stabilized by inter­molecular C—H⋯O hydrogen bonds.

Related literature

For background to the synthesis, see: Bakthadoss et al. (2009). For related phenyl acrylate compounds, see: Wang & Kong (2006); Wang et al. (2011). For the biological properties of cinnamate, see: Sharma (2011).graphic file with name e-67-o3322-scheme1.jpg

Experimental

Crystal data

  • C18H15BrO4

  • M r = 375.21

  • Monoclinic, Inline graphic

  • a = 8.2798 (2) Å

  • b = 22.1975 (5) Å

  • c = 9.2537 (2) Å

  • β = 99.857 (2)°

  • V = 1675.64 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.47 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART APEXII area–detector diffractometer

  • 16035 measured reflections

  • 4185 independent reflections

  • 2619 reflections with I > 2σ(I)

  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.116

  • S = 0.99

  • 4185 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.53 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811047520/bt5689sup1.cif

e-67-o3322-sup1.cif (16.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811047520/bt5689Isup2.hkl

e-67-o3322-Isup2.hkl (200.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811047520/bt5689Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O3 0.93 2.50 3.290 (3) 143
C2—H2⋯O1i 0.93 2.58 3.383 (4) 145
C13—H13⋯O1ii 0.93 2.55 3.291 (3) 137
C14—H14⋯O4iii 0.93 2.39 3.302 (4) 167

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

BB thanks the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection.

supplementary crystallographic information

Comment

The title compound is used as precursor to obtain the desired tetra cyclic chromenopyran pyrimidinedione compounds via a tandem Knoevenagel intra-molecular hetero-Diels-Alder reaction (Bakthadoss et al., 2009). Cinnamic acid and its derivatives including esters and carboxylic functional derivatives are used as important components in flavours, perfumes, synthetic indigo and pharmaceuticals. Cinnamate can act as optical filters or deactivate substrate molecules that have been excited by light for the protection polymers and organic substances. They are used as cosmetic grades and as sunscreen agents to reduce skin damage by blocking UV—A, B (Sharma, 2011). In view of this medicinal importance, the crystal structure determination of the title compound was carried out and the results are presented here.

The molecule adopts an E configuration about the C7 ═ C8 double bond. The dihedral angle between the best planes through the bromo-formylphenoxy group (C11—C18/O3/O4/Br) and phenylacrylate group (C1—C10/O1/O2) is 82.8 (1)°. The formyl group (C18/H18/04) is axial to the plane of the benzene ring to which it is attached as evidenced by the torsion angle C18—O4— C17— C12 of -7.9 (1)°.

From the bond length and bond angle analysis of the compound, the conformation of phenylacrylate group are comparable with corresponding values for the structure of ((E) – methyl 3-(3,4– dihydroxyphenyl)acrylate (Wang et al., 2011).

The crystal packing is stabilized by intramolecular and intermolecular C—H···O hydrogen bonding interaction (Table 1).

Experimental

A solution of 5-bromo-2-hydroxybenzaldehyde (1.0 mmol, 0.201 g) and potassium carbonate (2.0 mmol, 0.2293 g) in acetonitrile solvent (5 ml) was stirred for 15 minute at room temperature. To this solution, (Z)-methyl2-(bromomethyl)-3-phenylacrylate (1.2 mmol, 0.25 g) was added dropwise. After the completion of the reaction, as indicated by TLC, acetonitrile was evaporated. EtOAc (15 ml) and water (15 ml) were added to the crude mass. The organic layer was dried over anhydrous sodium sulfate. Removal of solvent led to the crude product, which was purified through pad of silica gel (100–200mesh) using ethylacetate and hexanes(1:9) as solvents. The pure title compound was obtained as a colourless solid (0.31 g, 83% yield). Recrystallization was carried out using ethylacetate as solvent.

Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.97 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Packing of the molecule down b axis

Crystal data

C18H15BrO4 F(000) = 760
Mr = 375.21 Dx = 1.487 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 4185 reflections
a = 8.2798 (2) Å θ = 1.8–28.5°
b = 22.1975 (5) Å µ = 2.47 mm1
c = 9.2537 (2) Å T = 293 K
β = 99.857 (2)° Block, colourless
V = 1675.64 (7) Å3 0.20 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker SMART APEXII area–detector diffractometer 2619 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.033
graphite θmax = 28.5°, θmin = 1.8°
ω and φ scans h = −10→11
16035 measured reflections k = −29→28
4185 independent reflections l = −12→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116 H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0511P)2 + 0.7565P] where P = (Fo2 + 2Fc2)/3
4185 reflections (Δ/σ)max = 0.003
209 parameters Δρmax = 0.68 e Å3
0 restraints Δρmin = −0.53 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.0256 (5) 0.60472 (17) 0.2844 (4) 0.0795 (10)
H1 −0.0073 0.5836 0.2019 0.095*
C2 −0.0193 (4) 0.66597 (16) 0.2866 (3) 0.0742 (9)
H2 −0.0004 0.6868 0.2038 0.089*
C3 −0.0407 (4) 0.69756 (13) 0.4103 (3) 0.0626 (7)
H3 −0.0367 0.7394 0.4098 0.075*
C4 −0.0678 (3) 0.66781 (12) 0.5351 (3) 0.0528 (6)
C5 −0.0808 (5) 0.60533 (13) 0.5282 (3) 0.0779 (10)
H5 −0.1045 0.5841 0.6087 0.093*
C6 −0.0590 (5) 0.57457 (16) 0.4040 (4) 0.0914 (12)
H6 −0.0671 0.5328 0.4017 0.110*
C7 −0.0852 (4) 0.69664 (11) 0.6740 (3) 0.0541 (7)
H7 −0.1372 0.6730 0.7353 0.065*
C8 −0.0393 (3) 0.75109 (11) 0.7281 (3) 0.0488 (6)
C9 −0.0742 (4) 0.76453 (12) 0.8777 (3) 0.0549 (7)
C10 −0.0620 (6) 0.83736 (17) 1.0636 (3) 0.0921 (12)
H10A −0.1780 0.8396 1.0627 0.138*
H10B −0.0132 0.8760 1.0891 0.138*
H10C −0.0145 0.8080 1.1343 0.138*
C11 0.0460 (3) 0.79772 (11) 0.6525 (3) 0.0478 (6)
H11A 0.1082 0.8246 0.7238 0.057*
H11B 0.1208 0.7788 0.5964 0.057*
C12 −0.0297 (3) 0.87741 (10) 0.4790 (2) 0.0408 (5)
C13 0.1324 (3) 0.88866 (11) 0.4670 (3) 0.0473 (6)
H13 0.2153 0.8639 0.5147 0.057*
C14 0.1704 (3) 0.93657 (11) 0.3844 (3) 0.0506 (6)
H14 0.2791 0.9442 0.3769 0.061*
C15 0.0484 (4) 0.97320 (10) 0.3130 (3) 0.0493 (6)
C16 −0.1114 (3) 0.96307 (11) 0.3251 (3) 0.0494 (6)
H16 −0.1930 0.9884 0.2774 0.059*
C17 −0.1526 (3) 0.91524 (10) 0.4083 (3) 0.0435 (5)
C18 −0.3232 (4) 0.90698 (15) 0.4253 (3) 0.0644 (8)
H18 −0.3488 0.8737 0.4782 0.077*
O1 −0.1327 (3) 0.73006 (10) 0.9529 (2) 0.0864 (8)
O2 −0.0325 (3) 0.82006 (9) 0.9198 (2) 0.0700 (6)
O3 −0.0789 (2) 0.83086 (7) 0.55632 (19) 0.0498 (4)
O4 −0.4327 (3) 0.94054 (12) 0.3751 (3) 0.0897 (7)
Br1 0.10355 (5) 1.038580 (15) 0.19991 (4) 0.08254 (17)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.093 (3) 0.084 (2) 0.0561 (19) 0.0222 (19) −0.0031 (16) −0.0179 (17)
C2 0.090 (2) 0.083 (2) 0.0484 (17) 0.0013 (19) 0.0090 (15) 0.0005 (15)
C3 0.083 (2) 0.0534 (16) 0.0505 (15) −0.0011 (14) 0.0078 (14) −0.0005 (12)
C4 0.0624 (17) 0.0469 (14) 0.0469 (14) −0.0033 (12) 0.0034 (12) 0.0009 (11)
C5 0.125 (3) 0.0500 (17) 0.0551 (18) −0.0120 (17) 0.0043 (17) −0.0015 (14)
C6 0.143 (4) 0.056 (2) 0.066 (2) 0.012 (2) −0.010 (2) −0.0116 (16)
C7 0.0684 (19) 0.0458 (14) 0.0495 (14) −0.0071 (12) 0.0141 (12) 0.0047 (11)
C8 0.0566 (16) 0.0437 (13) 0.0476 (13) −0.0035 (11) 0.0126 (11) 0.0045 (11)
C9 0.0700 (19) 0.0470 (15) 0.0491 (15) −0.0082 (13) 0.0141 (13) 0.0016 (12)
C10 0.147 (4) 0.075 (2) 0.0601 (19) −0.021 (2) 0.035 (2) −0.0209 (17)
C11 0.0503 (16) 0.0440 (13) 0.0501 (14) −0.0012 (11) 0.0114 (11) 0.0056 (11)
C12 0.0467 (15) 0.0335 (11) 0.0447 (13) −0.0030 (10) 0.0150 (10) −0.0039 (9)
C13 0.0451 (16) 0.0412 (13) 0.0571 (15) 0.0036 (11) 0.0128 (11) 0.0012 (11)
C14 0.0508 (16) 0.0453 (13) 0.0597 (16) −0.0075 (12) 0.0210 (12) −0.0054 (12)
C15 0.0695 (19) 0.0361 (12) 0.0449 (13) −0.0085 (12) 0.0172 (12) −0.0047 (10)
C16 0.0603 (18) 0.0421 (13) 0.0450 (14) 0.0045 (12) 0.0066 (11) −0.0011 (11)
C17 0.0449 (15) 0.0411 (12) 0.0446 (13) −0.0008 (10) 0.0083 (10) −0.0050 (10)
C18 0.0521 (19) 0.0700 (19) 0.0709 (19) −0.0001 (15) 0.0103 (14) 0.0036 (15)
O1 0.142 (2) 0.0641 (13) 0.0643 (13) −0.0322 (13) 0.0482 (14) −0.0047 (10)
O2 0.1062 (17) 0.0520 (11) 0.0564 (11) −0.0188 (11) 0.0268 (11) −0.0088 (9)
O3 0.0457 (10) 0.0423 (9) 0.0627 (11) −0.0029 (7) 0.0129 (8) 0.0106 (8)
O4 0.0473 (13) 0.1048 (18) 0.115 (2) 0.0144 (13) 0.0078 (12) 0.0127 (16)
Br1 0.1225 (4) 0.0595 (2) 0.0689 (2) −0.02273 (18) 0.0257 (2) 0.01451 (15)

Geometric parameters (Å, °)

C1—C2 1.361 (5) C10—H10B 0.9600
C1—C6 1.361 (5) C10—H10C 0.9600
C1—H1 0.9300 C11—O3 1.445 (3)
C2—C3 1.380 (4) C11—H11A 0.9700
C2—H2 0.9300 C11—H11B 0.9700
C3—C4 1.381 (4) C12—O3 1.359 (3)
C3—H3 0.9300 C12—C13 1.389 (3)
C4—C5 1.392 (4) C12—C17 1.393 (3)
C4—C7 1.466 (4) C13—C14 1.377 (3)
C5—C6 1.375 (5) C13—H13 0.9300
C5—H5 0.9300 C14—C15 1.374 (4)
C6—H6 0.9300 C14—H14 0.9300
C7—C8 1.338 (4) C15—C16 1.366 (4)
C7—H7 0.9300 C15—Br1 1.890 (2)
C8—C9 1.492 (4) C16—C17 1.388 (3)
C8—C11 1.493 (3) C16—H16 0.9300
C9—O1 1.192 (3) C17—C18 1.459 (4)
C9—O2 1.321 (3) C18—O4 1.204 (4)
C10—O2 1.446 (3) C18—H18 0.9300
C10—H10A 0.9600
C2—C1—C6 119.4 (3) H10A—C10—H10C 109.5
C2—C1—H1 120.3 H10B—C10—H10C 109.5
C6—C1—H1 120.3 O3—C11—C8 107.2 (2)
C1—C2—C3 120.7 (3) O3—C11—H11A 110.3
C1—C2—H2 119.7 C8—C11—H11A 110.3
C3—C2—H2 119.7 O3—C11—H11B 110.3
C2—C3—C4 120.9 (3) C8—C11—H11B 110.3
C2—C3—H3 119.6 H11A—C11—H11B 108.5
C4—C3—H3 119.6 O3—C12—C13 124.1 (2)
C3—C4—C5 117.4 (3) O3—C12—C17 116.4 (2)
C3—C4—C7 125.4 (2) C13—C12—C17 119.5 (2)
C5—C4—C7 117.2 (2) C14—C13—C12 119.9 (2)
C6—C5—C4 120.9 (3) C14—C13—H13 120.0
C6—C5—H5 119.6 C12—C13—H13 120.0
C4—C5—H5 119.6 C15—C14—C13 120.3 (2)
C1—C6—C5 120.6 (3) C15—C14—H14 119.8
C1—C6—H6 119.7 C13—C14—H14 119.9
C5—C6—H6 119.7 C16—C15—C14 120.4 (2)
C8—C7—C4 131.1 (2) C16—C15—Br1 120.1 (2)
C8—C7—H7 114.4 C14—C15—Br1 119.5 (2)
C4—C7—H7 114.4 C15—C16—C17 120.3 (2)
C7—C8—C9 116.1 (2) C15—C16—H16 119.8
C7—C8—C11 125.3 (2) C17—C16—H16 119.8
C9—C8—C11 118.6 (2) C16—C17—C12 119.5 (2)
O1—C9—O2 122.6 (2) C16—C17—C18 119.4 (2)
O1—C9—C8 125.2 (2) C12—C17—C18 121.1 (2)
O2—C9—C8 112.2 (2) O4—C18—C17 124.1 (3)
O2—C10—H10A 109.5 O4—C18—H18 118.0
O2—C10—H10B 109.5 C17—C18—H18 118.0
H10A—C10—H10B 109.5 C9—O2—C10 116.2 (2)
O2—C10—H10C 109.5 C12—O3—C11 117.67 (18)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3···O3 0.93 2.50 3.290 (3) 143.
C7—H7···O1 0.93 2.37 2.777 (3) 106.
C11—H11A···O2 0.97 2.32 2.708 (3) 103.
C18—H18···O3 0.93 2.42 2.752 (4) 101.
C2—H2···O1i 0.93 2.58 3.383 (4) 145.
C13—H13···O1ii 0.93 2.55 3.291 (3) 137.
C14—H14···O4iii 0.93 2.39 3.302 (4) 167.

Symmetry codes: (i) x, y, z−1; (ii) x+1/2, −y+3/2, z−1/2; (iii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5689).

References

  1. Bakthadoss, M., Sivakumar, G. & Kannan, D. (2009). Org. Lett. 11, 4466–4469. [DOI] [PubMed]
  2. Bruker (2008). APEX2 and SAINT Bruker AXS Ins., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Sharma, P. (2011). J. Chem. Pharm. Res. 3, 403-423.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  7. Wang, X.-B. & Kong, L.-Y. (2006). Acta Cryst. E62, o4558–o4559.
  8. Wang, L., Meng, F.-Y., Lin, C.-W., Chen, H.-Y. & Luo, X. (2011). Acta Cryst. E67, o354. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811047520/bt5689sup1.cif

e-67-o3322-sup1.cif (16.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811047520/bt5689Isup2.hkl

e-67-o3322-Isup2.hkl (200.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811047520/bt5689Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES