Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 16;67(Pt 12):o3327–o3328. doi: 10.1107/S1600536811047660

(E)-1-(4,4′′-Difluoro-5′-meth­oxy-1,1′:3′,1′′-terphenyl-4′-yl)-3-(6-meth­oxy­naphthalen-2-yl)prop-2-en-1-one

Hoong-Kun Fun a,*,, Madhukar Hemamalini a, S Samshuddin b, B Narayana b, B K Sarojini c
PMCID: PMC3238976  PMID: 22199825

Abstract

In the title compound, C33H24F2O3, the central benzene ring makes dihedral angles of 44.71 (10), 47.80 (10) and 63.68 (9)° with the two fluoro-substituted benzene rings and the naphthalene ring system, respectively. In the crystal, mol­ecules are connected via inter­molecular C—H⋯F and C—H⋯O hydrogen bonds. Furthermore, the crystal structure is stabilized by weak C—H⋯π and π–π inter­actions [centroid–centroid distance = 3.6816 (13) Å].

Related literature

For applications of chalcones, see: Dhar (1981); Dimmock et al. (1999); Satyanarayana et al. (2004); Sarojini et al. (2006); Liu (2006); Astruc (2002). For related structures, see: Samshuddin, Narayana et al. (2011); Samshuddin, Butcher et al. (2011); Fun et al. (2010a,b ); Jasinski et al. (2010a,b ); Baktır et al. (2011a,b ).graphic file with name e-67-o3327-scheme1.jpg

Experimental

Crystal data

  • C33H24F2O3

  • M r = 506.52

  • Monoclinic, Inline graphic

  • a = 6.9524 (5) Å

  • b = 33.024 (2) Å

  • c = 11.6030 (9) Å

  • β = 107.267 (1)°

  • V = 2544.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.36 × 0.16 × 0.08 mm

Data collection

  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.967, T max = 0.993

  • 53824 measured reflections

  • 7441 independent reflections

  • 4312 reflections with I > 2σ(I)

  • R int = 0.056

Refinement

  • R[F 2 > 2σ(F 2)] = 0.065

  • wR(F 2) = 0.180

  • S = 1.02

  • 7441 reflections

  • 345 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811047660/is5005sup1.cif

e-67-o3327-sup1.cif (25.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811047660/is5005Isup2.hkl

e-67-o3327-Isup2.hkl (356.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811047660/is5005Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1, Cg3 and Cg4 are the centroids of the C1–C3/C8–C10, C14–C19 and C20–C25 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C28—H28A⋯O2i 0.93 2.53 3.363 (3) 148
C32—H32C⋯F1ii 0.96 2.40 3.275 (4) 152
C33—H33A⋯F2iii 0.96 2.48 3.404 (3) 162
C32—H32ACg1iv 0.96 2.82 3.767 (4) 168
C24—H24ACg3v 0.93 2.83 3.461 (3) 126
C33—H33BCg3vi 0.96 2.91 3.556 (3) 126
C7—H7ACg4iii 0.93 2.85 3.548 (3) 133

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship. BN thanks the UGC for financial assistance under an SAP and BSR one-time grant for the purchase of chemicals. SS thanks Mangalore University for research facilities.

supplementary crystallographic information

Comment

Chalcones are highly reactive substances of varied nature. They have been reported to possess many interesting pharmacological properties (Dhar, 1981) including anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic, antitumor and anticancer activities (Dimmock et al., 1999; Satyanarayana et al., 2004). Chalcones also find application as organic nonlinear optical materials (NLO) for their SHG conversion efficiency (Sarojini et al., 2006). The basic skeleton of chalcones which possess α,β-unsaturated carbonyl group is a useful synthone for the synthesis of various biodynamic cyclic derivatives such as pyrazoline, benzodiazepine, 2,4,6-triarylpyridine, isoxazoline and cyclohexenone derivatives. Polysubstituted aromatics are key structures of great efficacy in synthetic, medicinal and natural product chemistry. In recent years, it has been reported that some terphenyls exhibit considerable biological activities, e.g., potent anticoagulant, immunosuppressants, anti-thrombotic, neuroprotective, specific 5-lipoxygenase inhibitory and cytotoxic activities (Liu, 2006). Due to their promising biological activities and important properties, terphenyls have generated increasing research interests. As such, the synthesis of polysubstituted aromatics has been a fascinating area in organic chemistry (Astruc, 2002).

In view of the pharmacological importance of terphenyls and chalcones, and in continuation of our work on synthesis of various derivatives of 4,4'-difluorochalcone (Samshuddin, Narayana et al., 2011; Samshuddin, Butcher et al., 2011; Fun et al., 2010a,b; Jasinski et al., 2010a,b; Baktır et al., 2011a,b), the title compound (I) is prepared and its crystal structure is reported. The precursor of the title compound was prepared from 4,4'-difluorochalcone using several steps.

The asymmetric unit of the title compound as shown in Fig. 1. The naphthalene (C1–C10) ring system is approximately planar with a maximum deviation of 0.055 (2) Å for atom C10. The central benzene (C14–C19) ring makes dihedral angles of 44.71 (10), 47.80 (10) and 63.68 (9)° with the attached two fluoro-substituted benzene (C20–C25 and C26–C31) rings and the naphthalene (C1–C10) ring system, respectively.

In the crystal structure, (Fig. 2), the molecules are connected via intermolecular C—H···F and C—H···O hydrogen bonds. Furthermore, the crystal structure is stabilized by a weak π–π interaction between the benzene (C26–C31) rings [Cg···Cg(-x, -y, 2 - z) = 3.6816 (13) Å] and C—H···π (Table 1) interactions, involving the centroids of the C1–C3/C8–C10 (Cg1), C14–C19 (Cg3) and C20–C25 (Cg4) rings.

Experimental

To a mixture of 1-(4,4''-difluoro-5'-methoxy-1,1':3',1''-terphenyl-4'-yl) ethanone (0.338 g, 0.001 mol) and 6-methoxy-2-naphthaldehyde (0.188 g, 0.001 mol) in 30 ml ethanol, 0.5 ml of 10% sodium hydroxide solution was added and stirred at 5–10 °C for 3 hours. The precipitate formed was collected by filtration and purified by recrystallization from ethanol. Single crystals were grown from DMF by slow evaporation method and the yield of the compound was 84% (m.p. 479K).

Refinement

All hydrogen atoms were positioned geometrically (C—H = 0.93 or 0.96 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). A rotating group model was applied to the methyl groups.

Figures

Fig. 1.

Fig. 1.

An ORTEP view of the title compound, showing 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing diagram of the title compound. H atoms are not involving the hydrogen bond interactions are omitted for clarity.

Crystal data

C33H24F2O3 F(000) = 1056
Mr = 506.52 Dx = 1.322 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 7590 reflections
a = 6.9524 (5) Å θ = 2.5–26.5°
b = 33.024 (2) Å µ = 0.09 mm1
c = 11.6030 (9) Å T = 296 K
β = 107.267 (1)° Plate, yellow
V = 2544.0 (3) Å3 0.36 × 0.16 × 0.08 mm
Z = 4

Data collection

Bruker APEXII DUO CCD area-detector diffractometer 7441 independent reflections
Radiation source: fine-focus sealed tube 4312 reflections with I > 2σ(I)
graphite Rint = 0.056
φ and ω scans θmax = 30.1°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −9→9
Tmin = 0.967, Tmax = 0.993 k = −46→46
53824 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0622P)2 + 1.2079P] where P = (Fo2 + 2Fc2)/3
7441 reflections (Δ/σ)max = 0.001
345 parameters Δρmax = 0.28 e Å3
0 restraints Δρmin = −0.18 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 −0.8506 (3) 0.20150 (6) 0.53664 (18) 0.1044 (6)
F2 0.3881 (2) −0.01095 (5) 1.20226 (11) 0.0746 (4)
O1 0.0952 (3) 0.04503 (5) 0.43318 (13) 0.0590 (4)
O2 −0.4053 (3) 0.08801 (6) 0.33233 (14) 0.0719 (5)
O3 0.1800 (3) 0.25775 (6) −0.26009 (18) 0.0868 (6)
C1 0.1517 (4) 0.15151 (8) 0.1660 (2) 0.0595 (6)
H1A 0.2255 0.1415 0.2409 0.071*
C2 0.2463 (4) 0.17487 (8) 0.1012 (2) 0.0616 (6)
H2A 0.3830 0.1805 0.1328 0.074*
C3 0.1381 (4) 0.19040 (7) −0.0126 (2) 0.0555 (5)
C4 0.2299 (4) 0.21664 (7) −0.0797 (2) 0.0623 (6)
H4A 0.3652 0.2236 −0.0495 0.075*
C5 0.1152 (4) 0.23119 (8) −0.1890 (2) 0.0649 (7)
C6 −0.0870 (5) 0.22052 (8) −0.2378 (2) 0.0725 (7)
H6A −0.1610 0.2305 −0.3127 0.087*
C7 −0.1757 (4) 0.19549 (8) −0.1758 (2) 0.0660 (7)
H7A −0.3102 0.1883 −0.2090 0.079*
C8 −0.0662 (4) 0.18022 (7) −0.06174 (19) 0.0515 (5)
C9 −0.1600 (4) 0.15587 (7) 0.00749 (19) 0.0555 (5)
H9A −0.2949 0.1489 −0.0249 0.067*
C10 −0.0563 (4) 0.14246 (7) 0.12064 (18) 0.0521 (5)
C11 −0.1675 (4) 0.12159 (7) 0.19354 (19) 0.0538 (5)
H11A −0.2986 0.1135 0.1536 0.065*
C12 −0.0997 (4) 0.11319 (7) 0.30973 (19) 0.0537 (5)
H12A 0.0334 0.1194 0.3510 0.064*
C13 −0.2262 (3) 0.09428 (7) 0.37715 (18) 0.0488 (5)
C14 −0.1234 (3) 0.08339 (6) 0.50667 (16) 0.0416 (4)
C15 0.0403 (3) 0.05689 (6) 0.53151 (16) 0.0433 (4)
C16 0.1302 (3) 0.04262 (6) 0.64713 (17) 0.0436 (4)
H16A 0.2366 0.0244 0.6615 0.052*
C17 0.0615 (3) 0.05552 (6) 0.74161 (16) 0.0403 (4)
C18 −0.0957 (3) 0.08305 (6) 0.71871 (17) 0.0424 (4)
H18A −0.1376 0.0926 0.7827 0.051*
C19 −0.1932 (3) 0.09687 (6) 0.60211 (17) 0.0405 (4)
C20 −0.3657 (3) 0.12534 (6) 0.58344 (17) 0.0441 (4)
C21 −0.3847 (4) 0.15999 (7) 0.5133 (2) 0.0554 (6)
H21A −0.2871 0.1660 0.4758 0.066*
C22 −0.5472 (4) 0.18581 (8) 0.4985 (2) 0.0678 (7)
H22A −0.5595 0.2090 0.4514 0.081*
C23 −0.6886 (4) 0.17661 (9) 0.5542 (2) 0.0660 (7)
C24 −0.6756 (3) 0.14343 (8) 0.6256 (2) 0.0608 (6)
H24A −0.7733 0.1382 0.6637 0.073*
C25 −0.5132 (3) 0.11777 (7) 0.63984 (19) 0.0498 (5)
H25A −0.5020 0.0949 0.6882 0.060*
C26 0.1510 (3) 0.03850 (6) 0.86460 (16) 0.0418 (4)
C27 0.2048 (3) 0.06306 (7) 0.96664 (18) 0.0496 (5)
H27A 0.1866 0.0909 0.9582 0.060*
C28 0.2850 (3) 0.04658 (8) 1.08059 (18) 0.0548 (6)
H28A 0.3216 0.0630 1.1487 0.066*
C29 0.3089 (3) 0.00566 (8) 1.09028 (18) 0.0520 (5)
C30 0.2575 (3) −0.01981 (7) 0.9932 (2) 0.0526 (5)
H30A 0.2748 −0.0477 1.0030 0.063*
C31 0.1792 (3) −0.00303 (7) 0.88003 (18) 0.0479 (5)
H31A 0.1447 −0.0198 0.8127 0.058*
C32 0.3839 (5) 0.26621 (11) −0.2300 (3) 0.0988 (11)
H32A 0.4117 0.2808 −0.2948 0.148*
H32B 0.4587 0.2413 −0.2164 0.148*
H32C 0.4226 0.2823 −0.1580 0.148*
C33 0.2823 (4) 0.02460 (8) 0.4521 (2) 0.0634 (6)
H33A 0.3081 0.0207 0.3761 0.095*
H33B 0.2765 −0.0012 0.4890 0.095*
H33C 0.3883 0.0406 0.5042 0.095*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0836 (12) 0.1138 (15) 0.1051 (14) 0.0507 (11) 0.0118 (10) −0.0035 (11)
F2 0.0776 (10) 0.1075 (12) 0.0390 (7) 0.0182 (8) 0.0177 (6) 0.0204 (7)
O1 0.0732 (11) 0.0692 (10) 0.0393 (8) 0.0146 (8) 0.0242 (7) −0.0037 (7)
O2 0.0602 (11) 0.1037 (14) 0.0438 (9) −0.0166 (10) 0.0028 (8) −0.0040 (9)
O3 0.0988 (16) 0.0832 (14) 0.0796 (13) −0.0171 (12) 0.0282 (12) 0.0173 (11)
C1 0.0659 (15) 0.0654 (15) 0.0455 (12) 0.0092 (12) 0.0137 (11) 0.0029 (11)
C2 0.0569 (14) 0.0661 (15) 0.0601 (14) 0.0036 (12) 0.0150 (11) −0.0029 (12)
C3 0.0653 (15) 0.0515 (12) 0.0513 (12) 0.0012 (11) 0.0196 (11) −0.0072 (10)
C4 0.0676 (16) 0.0565 (14) 0.0654 (15) −0.0064 (12) 0.0239 (12) −0.0037 (12)
C5 0.0828 (18) 0.0569 (14) 0.0574 (14) −0.0104 (13) 0.0246 (13) −0.0021 (11)
C6 0.090 (2) 0.0680 (16) 0.0529 (14) −0.0142 (15) 0.0108 (13) 0.0043 (12)
C7 0.0745 (17) 0.0665 (16) 0.0499 (13) −0.0104 (13) 0.0073 (12) −0.0013 (11)
C8 0.0647 (14) 0.0466 (11) 0.0427 (11) −0.0016 (10) 0.0153 (10) −0.0052 (9)
C9 0.0635 (14) 0.0567 (13) 0.0449 (11) −0.0021 (11) 0.0139 (10) −0.0034 (10)
C10 0.0687 (15) 0.0493 (12) 0.0399 (10) 0.0042 (11) 0.0185 (10) −0.0038 (9)
C11 0.0653 (14) 0.0545 (13) 0.0414 (11) 0.0004 (11) 0.0154 (10) −0.0033 (9)
C12 0.0654 (14) 0.0557 (13) 0.0393 (10) −0.0033 (11) 0.0145 (10) −0.0004 (9)
C13 0.0547 (13) 0.0538 (12) 0.0348 (10) −0.0040 (10) 0.0086 (9) −0.0044 (8)
C14 0.0445 (11) 0.0459 (11) 0.0334 (9) −0.0073 (9) 0.0103 (8) −0.0031 (8)
C15 0.0491 (12) 0.0479 (11) 0.0358 (9) −0.0054 (9) 0.0172 (8) −0.0057 (8)
C16 0.0415 (10) 0.0472 (11) 0.0435 (10) −0.0009 (9) 0.0146 (8) −0.0022 (8)
C17 0.0419 (10) 0.0450 (10) 0.0345 (9) −0.0040 (8) 0.0121 (8) −0.0020 (8)
C18 0.0456 (11) 0.0495 (11) 0.0343 (9) −0.0035 (9) 0.0152 (8) −0.0046 (8)
C19 0.0399 (10) 0.0448 (10) 0.0368 (9) −0.0057 (8) 0.0114 (8) −0.0031 (8)
C20 0.0434 (11) 0.0460 (11) 0.0390 (10) −0.0036 (9) 0.0063 (8) −0.0057 (8)
C21 0.0622 (14) 0.0557 (13) 0.0473 (12) 0.0010 (11) 0.0147 (10) 0.0038 (10)
C22 0.0798 (18) 0.0586 (15) 0.0572 (14) 0.0153 (13) 0.0081 (13) 0.0072 (11)
C23 0.0544 (14) 0.0714 (17) 0.0633 (15) 0.0186 (12) 0.0038 (12) −0.0123 (13)
C24 0.0444 (13) 0.0715 (16) 0.0651 (15) −0.0015 (11) 0.0141 (11) −0.0153 (12)
C25 0.0463 (12) 0.0528 (12) 0.0500 (12) −0.0052 (10) 0.0135 (9) −0.0048 (9)
C26 0.0376 (10) 0.0529 (12) 0.0358 (9) −0.0002 (9) 0.0124 (8) −0.0006 (8)
C27 0.0533 (12) 0.0537 (12) 0.0412 (10) −0.0007 (10) 0.0130 (9) −0.0045 (9)
C28 0.0538 (13) 0.0751 (16) 0.0341 (10) −0.0004 (11) 0.0109 (9) −0.0076 (10)
C29 0.0442 (12) 0.0783 (16) 0.0361 (10) 0.0092 (11) 0.0158 (9) 0.0100 (10)
C30 0.0503 (13) 0.0584 (13) 0.0522 (12) 0.0073 (10) 0.0201 (10) 0.0082 (10)
C31 0.0486 (12) 0.0543 (12) 0.0425 (10) 0.0014 (10) 0.0160 (9) −0.0025 (9)
C32 0.089 (2) 0.095 (2) 0.117 (3) −0.0174 (19) 0.037 (2) 0.020 (2)
C33 0.0670 (16) 0.0695 (16) 0.0648 (14) 0.0023 (13) 0.0368 (13) −0.0119 (12)

Geometric parameters (Å, °)

F1—C23 1.360 (3) C16—C17 1.386 (3)
F2—C29 1.367 (2) C16—H16A 0.9300
O1—C15 1.363 (2) C17—C18 1.385 (3)
O1—C33 1.423 (3) C17—C26 1.487 (3)
O2—C13 1.216 (3) C18—C19 1.398 (3)
O3—C5 1.369 (3) C18—H18A 0.9300
O3—C32 1.384 (4) C19—C20 1.489 (3)
C1—C2 1.373 (3) C20—C21 1.387 (3)
C1—C10 1.416 (3) C20—C25 1.393 (3)
C1—H1A 0.9300 C21—C22 1.385 (3)
C2—C3 1.408 (3) C21—H21A 0.9300
C2—H2A 0.9300 C22—C23 1.362 (4)
C3—C8 1.406 (3) C22—H22A 0.9300
C3—C4 1.435 (3) C23—C24 1.360 (4)
C4—C5 1.369 (4) C24—C25 1.382 (3)
C4—H4A 0.9300 C24—H24A 0.9300
C5—C6 1.396 (4) C25—H25A 0.9300
C6—C7 1.358 (4) C26—C31 1.389 (3)
C6—H6A 0.9300 C26—C27 1.392 (3)
C7—C8 1.409 (3) C27—C28 1.385 (3)
C7—H7A 0.9300 C27—H27A 0.9300
C8—C9 1.424 (3) C28—C29 1.362 (3)
C9—C10 1.370 (3) C28—H28A 0.9300
C9—H9A 0.9300 C29—C30 1.366 (3)
C10—C11 1.476 (3) C30—C31 1.379 (3)
C11—C12 1.319 (3) C30—H30A 0.9300
C11—H11A 0.9300 C31—H31A 0.9300
C12—C13 1.478 (3) C32—H32A 0.9600
C12—H12A 0.9300 C32—H32B 0.9600
C13—C14 1.504 (3) C32—H32C 0.9600
C14—C15 1.396 (3) C33—H33A 0.9600
C14—C19 1.407 (3) C33—H33B 0.9600
C15—C16 1.384 (3) C33—H33C 0.9600
C15—O1—C33 118.47 (17) C17—C18—H18A 119.1
C5—O3—C32 118.2 (2) C19—C18—H18A 119.1
C2—C1—C10 121.2 (2) C18—C19—C14 118.51 (18)
C2—C1—H1A 119.4 C18—C19—C20 119.03 (17)
C10—C1—H1A 119.4 C14—C19—C20 122.46 (17)
C1—C2—C3 120.6 (2) C21—C20—C25 117.9 (2)
C1—C2—H2A 119.7 C21—C20—C19 122.60 (19)
C3—C2—H2A 119.7 C25—C20—C19 119.46 (19)
C8—C3—C2 119.2 (2) C22—C21—C20 120.9 (2)
C8—C3—C4 118.9 (2) C22—C21—H21A 119.6
C2—C3—C4 121.9 (2) C20—C21—H21A 119.6
C5—C4—C3 118.9 (2) C23—C22—C21 118.8 (2)
C5—C4—H4A 120.5 C23—C22—H22A 120.6
C3—C4—H4A 120.5 C21—C22—H22A 120.6
O3—C5—C4 125.3 (3) F1—C23—C24 118.7 (3)
O3—C5—C6 112.9 (2) F1—C23—C22 118.5 (3)
C4—C5—C6 121.8 (2) C24—C23—C22 122.8 (2)
C7—C6—C5 120.0 (2) C23—C24—C25 118.1 (2)
C7—C6—H6A 120.0 C23—C24—H24A 121.0
C5—C6—H6A 120.0 C25—C24—H24A 121.0
C6—C7—C8 120.8 (3) C24—C25—C20 121.5 (2)
C6—C7—H7A 119.6 C24—C25—H25A 119.2
C8—C7—H7A 119.6 C20—C25—H25A 119.2
C3—C8—C7 119.6 (2) C31—C26—C27 118.27 (18)
C3—C8—C9 118.9 (2) C31—C26—C17 119.97 (17)
C7—C8—C9 121.4 (2) C27—C26—C17 121.75 (19)
C10—C9—C8 121.6 (2) C28—C27—C26 120.9 (2)
C10—C9—H9A 119.2 C28—C27—H27A 119.5
C8—C9—H9A 119.2 C26—C27—H27A 119.5
C9—C10—C1 118.5 (2) C29—C28—C27 118.2 (2)
C9—C10—C11 118.9 (2) C29—C28—H28A 120.9
C1—C10—C11 122.5 (2) C27—C28—H28A 120.9
C12—C11—C10 126.5 (2) C28—C29—C30 123.2 (2)
C12—C11—H11A 116.7 C28—C29—F2 118.8 (2)
C10—C11—H11A 116.7 C30—C29—F2 118.0 (2)
C11—C12—C13 122.8 (2) C29—C30—C31 118.0 (2)
C11—C12—H12A 118.6 C29—C30—H30A 121.0
C13—C12—H12A 118.6 C31—C30—H30A 121.0
O2—C13—C12 122.69 (19) C30—C31—C26 121.3 (2)
O2—C13—C14 120.62 (19) C30—C31—H31A 119.3
C12—C13—C14 116.68 (19) C26—C31—H31A 119.3
C15—C14—C19 119.10 (17) O3—C32—H32A 109.5
C15—C14—C13 118.22 (17) O3—C32—H32B 109.5
C19—C14—C13 122.57 (19) H32A—C32—H32B 109.5
O1—C15—C16 123.75 (19) O3—C32—H32C 109.5
O1—C15—C14 114.88 (17) H32A—C32—H32C 109.5
C16—C15—C14 121.29 (18) H32B—C32—H32C 109.5
C15—C16—C17 119.99 (19) O1—C33—H33A 109.5
C15—C16—H16A 120.0 O1—C33—H33B 109.5
C17—C16—H16A 120.0 H33A—C33—H33B 109.5
C18—C17—C16 119.15 (17) O1—C33—H33C 109.5
C18—C17—C26 120.89 (17) H33A—C33—H33C 109.5
C16—C17—C26 119.90 (18) H33B—C33—H33C 109.5
C17—C18—C19 121.88 (18)
C10—C1—C2—C3 −0.1 (4) C14—C15—C16—C17 −1.8 (3)
C1—C2—C3—C8 −2.8 (4) C15—C16—C17—C18 −0.7 (3)
C1—C2—C3—C4 176.7 (2) C15—C16—C17—C26 176.75 (18)
C8—C3—C4—C5 0.5 (3) C16—C17—C18—C19 2.9 (3)
C2—C3—C4—C5 −178.9 (2) C26—C17—C18—C19 −174.56 (18)
C32—O3—C5—C4 10.3 (4) C17—C18—C19—C14 −2.4 (3)
C32—O3—C5—C6 −171.2 (3) C17—C18—C19—C20 177.87 (18)
C3—C4—C5—O3 177.0 (2) C15—C14—C19—C18 −0.1 (3)
C3—C4—C5—C6 −1.4 (4) C13—C14—C19—C18 175.87 (18)
O3—C5—C6—C7 −177.7 (2) C15—C14—C19—C20 179.54 (18)
C4—C5—C6—C7 0.9 (4) C13—C14—C19—C20 −4.4 (3)
C5—C6—C7—C8 0.4 (4) C18—C19—C20—C21 133.8 (2)
C2—C3—C8—C7 −179.8 (2) C14—C19—C20—C21 −45.9 (3)
C4—C3—C8—C7 0.7 (3) C18—C19—C20—C25 −44.9 (3)
C2—C3—C8—C9 2.7 (3) C14—C19—C20—C25 135.4 (2)
C4—C3—C8—C9 −176.8 (2) C25—C20—C21—C22 −1.0 (3)
C6—C7—C8—C3 −1.2 (4) C19—C20—C21—C22 −179.8 (2)
C6—C7—C8—C9 176.3 (2) C20—C21—C22—C23 0.1 (4)
C3—C8—C9—C10 0.4 (3) C21—C22—C23—F1 −178.2 (2)
C7—C8—C9—C10 −177.1 (2) C21—C22—C23—C24 1.1 (4)
C8—C9—C10—C1 −3.4 (3) F1—C23—C24—C25 178.1 (2)
C8—C9—C10—C11 172.7 (2) C22—C23—C24—C25 −1.2 (4)
C2—C1—C10—C9 3.2 (3) C23—C24—C25—C20 0.1 (3)
C2—C1—C10—C11 −172.7 (2) C21—C20—C25—C24 1.0 (3)
C9—C10—C11—C12 −167.3 (2) C19—C20—C25—C24 179.72 (19)
C1—C10—C11—C12 8.5 (4) C18—C17—C26—C31 131.2 (2)
C10—C11—C12—C13 176.3 (2) C16—C17—C26—C31 −46.3 (3)
C11—C12—C13—O2 −5.7 (4) C18—C17—C26—C27 −47.6 (3)
C11—C12—C13—C14 175.1 (2) C16—C17—C26—C27 135.0 (2)
O2—C13—C14—C15 122.6 (2) C31—C26—C27—C28 0.2 (3)
C12—C13—C14—C15 −58.2 (3) C17—C26—C27—C28 179.0 (2)
O2—C13—C14—C19 −53.4 (3) C26—C27—C28—C29 −0.4 (3)
C12—C13—C14—C19 125.8 (2) C27—C28—C29—C30 0.0 (3)
C33—O1—C15—C16 −15.3 (3) C27—C28—C29—F2 179.95 (19)
C33—O1—C15—C14 167.99 (19) C28—C29—C30—C31 0.5 (3)
C19—C14—C15—O1 179.04 (17) F2—C29—C30—C31 −179.43 (19)
C13—C14—C15—O1 2.8 (3) C29—C30—C31—C26 −0.7 (3)
C19—C14—C15—C16 2.3 (3) C27—C26—C31—C30 0.3 (3)
C13—C14—C15—C16 −173.92 (19) C17—C26—C31—C30 −178.50 (19)
O1—C15—C16—C17 −178.33 (19)

Hydrogen-bond geometry (Å, °)

Cg1, Cg3 and Cg4 are the centroids of the C1–C3/C8–C10, C14–C19 and C20–C25 rings, respectively.
D—H···A D—H H···A D···A D—H···A
C28—H28A···O2i 0.93 2.53 3.363 (3) 148.
C32—H32C···F1ii 0.96 2.40 3.275 (4) 152.
C33—H33A···F2iii 0.96 2.48 3.404 (3) 162.
C32—H32A···Cg1iv 0.96 2.82 3.767 (4) 168.
C24—H24A···Cg3v 0.93 2.83 3.461 (3) 126.
C33—H33B···Cg3vi 0.96 2.91 3.556 (3) 126.
C7—H7A···Cg4iii 0.93 2.85 3.548 (3) 133.

Symmetry codes: (i) x+1, y, z+1; (ii) x+3/2, −y+1/2, z−1/2; (iii) x, y, z−1; (iv) x−1/2, −y−1/2, z−3/2; (v) x−1, y, z; (vi) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5005).

References

  1. Astruc, D. (2002). In Modern Arene Chemistry Weinheim: Wiley.
  2. Baktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011a). Acta Cryst. E67, o1262–o1263. [DOI] [PMC free article] [PubMed]
  3. Baktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011b). Acta Cryst. E67, o1292–o1293. [DOI] [PMC free article] [PubMed]
  4. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Dhar, D. N. (1981). In The Chemistry of Chalcones and Related Compounds New York: Wiley.
  6. Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149. [PubMed]
  7. Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o582–o583. [DOI] [PMC free article] [PubMed]
  8. Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o864–o865. [DOI] [PMC free article] [PubMed]
  9. Jasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o1948–o1949. [DOI] [PMC free article] [PubMed]
  10. Jasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o2018. [DOI] [PMC free article] [PubMed]
  11. Liu, J. K. (2006). Chem. Rev. 106, 2209–2223. [DOI] [PubMed]
  12. Samshuddin, S., Butcher, R. J., Akkurt, M., Narayana, B., Yathirajan, H. S. & Sarojini, B. K. (2011). Acta Cryst. E67, o1954–o1955. [DOI] [PMC free article] [PubMed]
  13. Samshuddin, S., Narayana, B., Shetty, D. N. & Raghavendra, R. (2011). Der. Pharm. Chem., 3, 232–240.
  14. Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54–59.
  15. Satyanarayana, M., Tiwari, P., Tripathi, B. K., Sriwastava, A. K. & Pratap, R. (2004). Bioorg. Med. Chem. 12, 883–887. [DOI] [PubMed]
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811047660/is5005sup1.cif

e-67-o3327-sup1.cif (25.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811047660/is5005Isup2.hkl

e-67-o3327-Isup2.hkl (356.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811047660/is5005Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES