Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 16;67(Pt 12):o3333. doi: 10.1107/S1600536811047933

(2E)-1-(2,5-Dimethyl­thio­phen-3-yl)-3-(3-nitro­phen­yl)prop-2-en-1-one

Abdullah M Asiri a,b, Abdulrahman O Al-Youbi a, Salman A Khan a, M Nawaz Tahir c,*
PMCID: PMC3238980  PMID: 22199829

Abstract

In the title compound, C15H13NO3S, the benzene ring and the five-membered heterocyclic ring are oriented at a dihedral angle of 12.00 (6)°. In the crystal, C—H⋯O inter­actions generate two types of cyclic motifs, R 2 2(14) and R 2 2(26), connecting the mol­ecules into tapes extending along [101]. In addition, there are π–π stacking inter­actions between the benzene and thio­phene rings with centroid-centroid distances of 3.7263 (14) and 3.7487 (14) Å.

Related literature

For the synthesis of similar compounds, see: Asiri & Khan (2010, 2011); Kalirajan et al. (2009); Patil et al. (2009); Sarojini et al. (2006). For related structures and background references, see: Asiri et al. (2010a ,b ). For graph-set notation, see: Bernstein et al. (1995).graphic file with name e-67-o3333-scheme1.jpg

Experimental

Crystal data

  • C15H13NO3S

  • M r = 287.32

  • Monoclinic, Inline graphic

  • a = 7.3802 (5) Å

  • b = 13.7973 (9) Å

  • c = 13.4638 (8) Å

  • β = 96.997 (3)°

  • V = 1360.77 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 296 K

  • 0.25 × 0.22 × 0.20 mm

Data collection

  • Bruker KAPPA APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.945, T max = 0.955

  • 10732 measured reflections

  • 2466 independent reflections

  • 1493 reflections with I > 2σ(I)

  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.117

  • S = 1.03

  • 2466 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) text, I. DOI: 10.1107/S1600536811047933/gk2432sup1.cif

e-67-o3333-sup1.cif (22.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811047933/gk2432Isup2.hkl

e-67-o3333-Isup2.hkl (118.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811047933/gk2432Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O3i 0.93 2.46 3.373 (3) 168
C15—H15B⋯O2ii 0.96 2.59 3.339 (4) 135

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors would like to thank the Chemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia, for providing research facilities.

supplementary crystallographic information

Comment

Claisen–Schmidt reaction is one of the most important reactions for the formation of α, β-unsaturated ketone by condensation between acetophenone and benzaldehyde (Asiri & Khan, 2010). The reaction is catalysed by bases, acids (Patil et al., 2009). It is widely used in the synthesis of important intermediates (Asiri & Khan, 2011) or end-products, pharmaceuticals (Kalirajan et al., 2009). It is also used in the field of matrial sciences such as photoelectronics, photophotonics, photodynamic therapy, electrochemical sensing, optical limiting, langmuir film and photoinitiated polymerization (Sarojini et al., 2006). The title compound (I), (Fig. 1) has been synthesized as a pharmaceutical intermediate. Similar structures to (I) have been published earlier (Asiri et al., 2010a,b and refereces therein).

In (I), the group A (C1—C6), the central propenone B (C7—C9/O3) and the group C (C10—C15/S1) are planar with r. m. s. deviation of 0.003, 0.012 and 0.008 Å, respectively. The dihedral angles between A/B, A/C and B/C are 9.88 (14), 12.00 (6) and 16.09 (12)°, respectively. The nitro group D (O1/N1/O2) is oriented at a dihedral angle of 8.4 (3)° with relation to the benzene ring A. The title compound consists of dimers due to intermolecular H-bonds of C—H···O type, where O-atom is of carbonyl and H-atom is of the nitrophenyl group. This H-bondings form a R22(14) (Fig. 2) ring motif (Bernstein et al., 1995). The same type of H-bonding between methyl and nitro groups consolidate the molecules in the form of one-dimensional polymers with R22(26) ring motifs and extending along the [1 0 1] direction. Moreover there are π···π stacking interactions between the benzene and thiophene rings with centroid-centroid distances of 3.7263 (14)–3.7487 (14) Å.

Experimental

A solution of 3-acetyl-2,5-dimethythiophene (0.38 g, 2.5 mmol) and 3-nitro-benzaldehyde (0.37 g, 2.5 mmol) in ethanolic solution of NaOH (3.0 g in 10 ml of methanol) was stirred for 16 h at room temperature. The solution was poured into ice cold water of pH=2 (pH adjusted by HCl). The solid separated was filtered and crystallized from methanol:chloroform to affoard light yellow prisms of (I).

Yield: 78%; m.p. 403–404 K.

IR (KBr) νmax cm-1: 3012 (Ar—H), 2926 (C—H), 1628 (C═O), 1568 (C═C).

1H NMR (DMSO-d6) (δ/p.p.m.): 8.47 (d, J = 1.8 Hz), 8.23 (d, J = 1.2 Hz), 7.73 (d, C═CH, J = 15.6 Hz), 7.40 (d, CH═C, J = 15.6 Hz), 7.89(d, J=7.2 Hz), 7.61 (d, J = 7.8 Hz), 7.27 (s, Ar—H), 2.72 (s, CH3), 2.39 (s, CH3).

Refinement

The H atoms were positioned geometrically (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.5 for methyl and x = 1.2 for aryl H-atoms.

Figures

Fig. 1.

Fig. 1.

View of the title molecule with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

The partial packing (PLATON; Spek, 2009) showing the [1 0 1] tapes via R22(14) and R22(26) hydrogen-bond motifs.

Crystal data

C15H13NO3S F(000) = 600
Mr = 287.32 Dx = 1.402 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1493 reflections
a = 7.3802 (5) Å θ = 2.1–25.3°
b = 13.7973 (9) Å µ = 0.24 mm1
c = 13.4638 (8) Å T = 296 K
β = 96.997 (3)° Prism, yellow
V = 1360.77 (15) Å3 0.25 × 0.22 × 0.20 mm
Z = 4

Data collection

Bruker KAPPA APEXII CCD diffractometer 2466 independent reflections
Radiation source: fine-focus sealed tube 1493 reflections with I > 2σ(I)
graphite Rint = 0.051
Detector resolution: 8.10 pixels mm-1 θmax = 25.3°, θmin = 2.1°
ω scans h = −8→8
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −13→16
Tmin = 0.945, Tmax = 0.955 l = −16→16
10732 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0498P)2 + 0.0228P] where P = (Fo2 + 2Fc2)/3
2466 reflections (Δ/σ)max < 0.001
183 parameters Δρmax = 0.17 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.21173 (10) 0.46796 (5) 0.18440 (5) 0.0520 (3)
O1 0.4422 (3) −0.10573 (18) 0.51656 (15) 0.0876 (10)
O2 0.5017 (3) −0.25617 (17) 0.49723 (15) 0.0892 (10)
O3 0.0404 (3) 0.17111 (14) 0.06130 (14) 0.0744 (8)
N1 0.4392 (3) −0.1786 (2) 0.46575 (18) 0.0607 (10)
C1 0.2331 (3) −0.07879 (19) 0.22025 (18) 0.0413 (9)
C2 0.3105 (3) −0.08450 (19) 0.32014 (17) 0.0431 (9)
C3 0.3587 (3) −0.17332 (19) 0.36030 (18) 0.0444 (9)
C4 0.3343 (4) −0.2574 (2) 0.3066 (2) 0.0577 (11)
C5 0.2586 (4) −0.2528 (2) 0.2088 (2) 0.0618 (11)
C6 0.2074 (4) −0.1642 (2) 0.1663 (2) 0.0530 (10)
C7 0.1775 (3) 0.01281 (19) 0.17143 (19) 0.0457 (10)
C8 0.2028 (4) 0.10257 (19) 0.20395 (18) 0.0490 (10)
C9 0.1319 (4) 0.1860 (2) 0.14180 (18) 0.0491 (10)
C10 0.1748 (3) 0.28475 (18) 0.17826 (18) 0.0419 (9)
C11 0.1514 (3) 0.36459 (18) 0.11758 (18) 0.0438 (9)
C12 0.0882 (4) 0.3718 (2) 0.00750 (18) 0.0616 (11)
C13 0.2414 (3) 0.31061 (19) 0.27906 (17) 0.0439 (9)
C14 0.2659 (3) 0.40587 (19) 0.29503 (17) 0.0433 (9)
C15 0.3299 (4) 0.4582 (2) 0.39024 (19) 0.0597 (11)
H2 0.32910 −0.02870 0.35879 0.0517*
H4 0.36845 −0.31670 0.33608 0.0691*
H5 0.24165 −0.30911 0.17094 0.0742*
H6 0.15459 −0.16188 0.10004 0.0636*
H7 0.11464 0.00698 0.10753 0.0548*
H8 0.26607 0.11362 0.26696 0.0588*
H12A −0.04283 0.37068 −0.00322 0.0925*
H12B 0.13538 0.31800 −0.02658 0.0925*
H12C 0.13152 0.43128 −0.01806 0.0925*
H13 0.26568 0.26483 0.32962 0.0527*
H15A 0.45201 0.48132 0.38808 0.0894*
H15B 0.32800 0.41479 0.44581 0.0894*
H15C 0.25052 0.51215 0.39790 0.0894*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0670 (5) 0.0373 (4) 0.0511 (4) 0.0052 (4) 0.0043 (3) 0.0067 (3)
O1 0.132 (2) 0.0787 (18) 0.0482 (13) 0.0074 (15) −0.0048 (13) −0.0029 (13)
O2 0.120 (2) 0.0730 (16) 0.0699 (16) 0.0207 (15) −0.0078 (14) 0.0294 (13)
O3 0.1077 (17) 0.0512 (13) 0.0544 (12) −0.0006 (12) −0.0302 (12) 0.0031 (10)
N1 0.0710 (17) 0.0627 (19) 0.0483 (16) 0.0049 (15) 0.0073 (12) 0.0161 (15)
C1 0.0439 (16) 0.0344 (15) 0.0453 (15) −0.0035 (13) 0.0037 (12) 0.0001 (13)
C2 0.0515 (17) 0.0361 (16) 0.0420 (15) 0.0013 (13) 0.0067 (12) −0.0021 (13)
C3 0.0471 (17) 0.0411 (17) 0.0445 (15) −0.0004 (14) 0.0036 (12) 0.0072 (14)
C4 0.067 (2) 0.0354 (17) 0.069 (2) 0.0034 (15) 0.0018 (16) 0.0096 (16)
C5 0.079 (2) 0.0352 (17) 0.068 (2) −0.0013 (16) −0.0044 (17) −0.0073 (15)
C6 0.0605 (19) 0.0453 (18) 0.0500 (16) −0.0025 (15) −0.0066 (14) −0.0031 (15)
C7 0.0500 (17) 0.0423 (18) 0.0429 (16) −0.0023 (14) −0.0016 (12) 0.0036 (13)
C8 0.0639 (19) 0.0420 (18) 0.0384 (15) 0.0004 (14) −0.0047 (13) 0.0029 (13)
C9 0.0582 (18) 0.0476 (18) 0.0396 (15) 0.0023 (14) −0.0015 (14) 0.0062 (14)
C10 0.0518 (17) 0.0342 (16) 0.0382 (14) 0.0054 (12) −0.0003 (12) 0.0064 (12)
C11 0.0500 (17) 0.0415 (16) 0.0396 (14) 0.0085 (13) 0.0038 (12) 0.0040 (13)
C12 0.084 (2) 0.0536 (19) 0.0449 (16) 0.0124 (16) −0.0011 (15) 0.0121 (14)
C13 0.0527 (17) 0.0402 (17) 0.0376 (15) 0.0000 (13) 0.0006 (12) 0.0106 (12)
C14 0.0451 (16) 0.0408 (17) 0.0432 (15) 0.0011 (13) 0.0023 (12) 0.0023 (13)
C15 0.073 (2) 0.0519 (19) 0.0524 (17) −0.0011 (16) 0.0008 (15) −0.0062 (14)

Geometric parameters (Å, °)

S1—C11 1.716 (3) C10—C13 1.431 (3)
S1—C14 1.723 (2) C11—C12 1.502 (3)
O1—N1 1.215 (4) C13—C14 1.341 (4)
O2—N1 1.221 (4) C14—C15 1.497 (4)
O3—C9 1.223 (3) C2—H2 0.9300
N1—C3 1.473 (3) C4—H4 0.9300
C1—C2 1.398 (3) C5—H5 0.9300
C1—C6 1.385 (4) C6—H6 0.9300
C1—C7 1.460 (4) C7—H7 0.9300
C2—C3 1.369 (4) C8—H8 0.9300
C3—C4 1.367 (4) C12—H12A 0.9600
C4—C5 1.368 (4) C12—H12B 0.9600
C5—C6 1.383 (4) C12—H12C 0.9600
C7—C8 1.319 (4) C13—H13 0.9300
C8—C9 1.481 (4) C15—H15A 0.9600
C9—C10 1.470 (4) C15—H15B 0.9600
C10—C11 1.370 (3) C15—H15C 0.9600
C11—S1—C14 93.33 (12) C13—C14—C15 129.3 (2)
O1—N1—O2 123.4 (2) C1—C2—H2 120.00
O1—N1—C3 118.7 (2) C3—C2—H2 120.00
O2—N1—C3 118.0 (2) C3—C4—H4 121.00
C2—C1—C6 118.1 (2) C5—C4—H4 121.00
C2—C1—C7 122.8 (2) C4—C5—H5 120.00
C6—C1—C7 119.2 (2) C6—C5—H5 120.00
C1—C2—C3 119.1 (2) C1—C6—H6 119.00
N1—C3—C2 118.7 (2) C5—C6—H6 119.00
N1—C3—C4 118.7 (2) C1—C7—H7 115.00
C2—C3—C4 122.7 (2) C8—C7—H7 115.00
C3—C4—C5 118.8 (3) C7—C8—H8 119.00
C4—C5—C6 119.9 (3) C9—C8—H8 119.00
C1—C6—C5 121.5 (2) C11—C12—H12A 109.00
C1—C7—C8 130.0 (2) C11—C12—H12B 109.00
C7—C8—C9 121.1 (2) C11—C12—H12C 109.00
O3—C9—C8 119.3 (2) H12A—C12—H12B 109.00
O3—C9—C10 121.7 (2) H12A—C12—H12C 109.00
C8—C9—C10 119.0 (2) H12B—C12—H12C 109.00
C9—C10—C11 122.7 (2) C10—C13—H13 123.00
C9—C10—C13 125.7 (2) C14—C13—H13 123.00
C11—C10—C13 111.7 (2) C14—C15—H15A 110.00
S1—C11—C10 110.48 (18) C14—C15—H15B 109.00
S1—C11—C12 119.47 (19) C14—C15—H15C 109.00
C10—C11—C12 130.0 (2) H15A—C15—H15B 110.00
C10—C13—C14 114.9 (2) H15A—C15—H15C 109.00
S1—C14—C13 109.66 (18) H15B—C15—H15C 109.00
S1—C14—C15 121.10 (19)
C14—S1—C11—C10 −0.85 (19) C3—C4—C5—C6 −0.4 (4)
C14—S1—C11—C12 −179.6 (2) C4—C5—C6—C1 0.9 (4)
C11—S1—C14—C13 1.22 (19) C1—C7—C8—C9 −179.2 (2)
C11—S1—C14—C15 −178.9 (2) C7—C8—C9—O3 3.8 (4)
O1—N1—C3—C2 7.8 (3) C7—C8—C9—C10 −175.7 (2)
O1—N1—C3—C4 −171.9 (2) O3—C9—C10—C11 −14.6 (4)
O2—N1—C3—C2 −171.3 (2) O3—C9—C10—C13 164.2 (3)
O2—N1—C3—C4 9.0 (3) C8—C9—C10—C11 164.9 (2)
C6—C1—C2—C3 0.5 (3) C8—C9—C10—C13 −16.3 (4)
C7—C1—C2—C3 179.9 (2) C9—C10—C11—S1 179.2 (2)
C2—C1—C6—C5 −0.9 (4) C9—C10—C11—C12 −2.3 (4)
C7—C1—C6—C5 179.6 (2) C13—C10—C11—S1 0.3 (2)
C2—C1—C7—C8 7.4 (4) C13—C10—C11—C12 178.8 (2)
C6—C1—C7—C8 −173.2 (3) C9—C10—C13—C14 −178.2 (2)
C1—C2—C3—N1 −179.7 (2) C11—C10—C13—C14 0.7 (3)
C1—C2—C3—C4 0.0 (4) C10—C13—C14—S1 −1.3 (3)
N1—C3—C4—C5 179.6 (2) C10—C13—C14—C15 178.9 (2)
C2—C3—C4—C5 0.0 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C6—H6···O3i 0.93 2.46 3.373 (3) 168
C15—H15B···O2ii 0.96 2.59 3.339 (4) 135

Symmetry codes: (i) −x, −y, −z; (ii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2432).

References

  1. Asiri, A. M. & Khan, S. A. (2010). Molbank, M687.
  2. Asiri, A. M. & Khan, S. A. (2011). Molecules, 16, 523–531. [DOI] [PMC free article] [PubMed]
  3. Asiri, A. M., Khan, S. A. & Tahir, M. N. (2010a). Acta Cryst. E66, o2358. [DOI] [PMC free article] [PubMed]
  4. Asiri, A. M., Khan, S. A. & Tahir, M. N. (2010b). Acta Cryst. E66, o2404. [DOI] [PMC free article] [PubMed]
  5. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  6. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  8. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  9. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  10. Kalirajan, R., Sivakumar, S. U., Jubie, S., Gowramma, B. & Suresh, B. (2009). Intl J. ChemTech Res 1, 27–34.
  11. Patil, C. B., Mahajan, S. K. & Katti, S. A. (2009). J. Pharm. Sci. Res. 1, 11–22.
  12. Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. K. G. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54–59.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) text, I. DOI: 10.1107/S1600536811047933/gk2432sup1.cif

e-67-o3333-sup1.cif (22.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811047933/gk2432Isup2.hkl

e-67-o3333-Isup2.hkl (118.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811047933/gk2432Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES