Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 16;67(Pt 12):o3335. doi: 10.1107/S1600536811047891

Morpholinium hydrogen chloranilate methanol monosolvate

Kazuma Gotoh a, Yuki Tahara a, Hiroyuki Ishida a,*
PMCID: PMC3238982  PMID: 22199831

Abstract

In the crystal structure of the title compound, C4H10NO+·C6HCl2O4 ·CH4O, the components are held together by bifurcated O—H⋯(O,O), O—H⋯(O,Cl) and N—H⋯(O,O) hydrogen bonds into a centrosymmetric 2+2+2 aggregate. The aggregates are further connected by another bifurcated N—H⋯(O, O) hydrogen bond, forming a double-tape structure along the b axis. A weak C—H⋯O inter­action is observed between the tapes.

Related literature

For a related structure, see: Ishida & Kashino (1999). For 35Cl nuclear quadrupole resonance studies on proton-transfer in chloranilic acid–organic base systems, see: Ikeda et al. (2005); Asaji, Hoshino et al. (2010); Asaji, Seliger et al. (2010).graphic file with name e-67-o3335-scheme1.jpg

Experimental

Crystal data

  • C4H10NO+·C6HCl2O4 ·CH4O

  • M r = 328.15

  • Triclinic, Inline graphic

  • a = 9.11845 (17) Å

  • b = 9.39881 (17) Å

  • c = 9.96935 (18) Å

  • α = 107.8089 (7)°

  • β = 107.5510 (7)°

  • γ = 110.2398 (7)°

  • V = 679.25 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 170 K

  • 0.45 × 0.41 × 0.30 mm

Data collection

  • Rigaku R-AXIS RAPID II diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999) T min = 0.817, T max = 0.860

  • 17817 measured reflections

  • 3928 independent reflections

  • 3636 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.077

  • S = 1.08

  • 3928 reflections

  • 197 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) General, I. DOI: 10.1107/S1600536811047891/lh5377sup1.cif

e-67-o3335-sup1.cif (23KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811047891/lh5377Isup2.hkl

e-67-o3335-Isup2.hkl (192.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811047891/lh5377Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3 0.878 (18) 2.391 (18) 3.0069 (12) 127.5 (16)
N1—H1A⋯O3i 0.878 (18) 2.180 (19) 2.9255 (13) 142.5 (16)
N1—H1B⋯O1ii 0.852 (19) 2.170 (19) 2.9207 (14) 146.9 (17)
N1—H1B⋯O4ii 0.852 (19) 2.233 (19) 2.9277 (14) 138.7 (16)
O2—H2⋯O3 0.82 (2) 2.26 (2) 2.6605 (12) 110.6 (16)
O2—H2⋯O6 0.82 (2) 1.79 (2) 2.5564 (13) 153.4 (19)
O6—H6⋯Cl2i 0.742 (19) 2.761 (19) 3.3342 (9) 136.0 (18)
O6—H6⋯O3i 0.742 (19) 2.119 (19) 2.7812 (12) 149 (2)
C8—H8A⋯O2iii 0.99 2.51 3.4115 (15) 152

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research (C) (No. 22550013) from the Japan Society for the Promotion of Science.

supplementary crystallographic information

Comment

The title compound was accidentally obtained in the preparation of morpholinium hydrogen chloranilate (Ishida & Kashino, 1999), C4H10NO+.C6HCl2O4-, which is an interesting model compound for investigating proton transfer in the hydrogen bond systems (Ikeda et al., 2005; Asaji, Hoshino et al., 2010; Asaji, Seliger et al., 2010).

In the title compound, the three components (Fig. 1) are held together by bifurcated O—H···(O, O), O—H···(O, Cl) and N—H···(O, O) hydrogen bonds [O2—H2···(O3, O6), O6—H6···(O3i, Cl2i) and N1—H1A···(O3, O3i); symmetry code in Table 1] into a centrosymmetric 2 + 2+2 aggregate (Fig. 2). The aggregates are connected by another N—H···(O, O) hydrogen bond between the cation and the anion [N1—H1B···(O1ii, O4ii), symmetry code in Table 1], forming a double-tape structure along the b axis (Fig. 3). The tapes are further linked a weak C—H···O interaction, forming a three-dimensional network.

Experimental

Single crystals were obtained by slow evaporation from a methanol solution (50 ml) of chloranilic acid (0.102 g) and morpholine (0.044 g) at room temperature.

Refinement

C-bound H atoms were positioned geometrically (C—H = 0.98 or 0.99 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The O– and N-bound H atoms were found in a difference Fourier map and refined freely. The refined distances are O—H = 0.82 (2) and 0.742 (19) Å, and N—H = 0.852 (19) and 0.878 (18) Å.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with the atom-labeling. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level. The dashed lines indicate the O—H···O and N—H···O hydrogen bonds.

Fig. 2.

Fig. 2.

A view of the centrosymmetric 2 + 2+2 aggregate of the title compound. The O—H···(O, O), O—H···(O, Cl) and N—H···(O, O) hydrogen bonds are indicated by dashed lines. H atoms not involved in the hydrogen bonds have been omitted. [Symmetry code: (i) -x + 1, -y + 1, -z + 1.]

Fig. 3.

Fig. 3.

A partial packing view of the title compound, showing the double-tape structure. H atoms not involved in the hydrogen bonds have been omitted. [Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 1, -y, -z + 1; (iii) x, y + 1, z.]

Crystal data

C4H10NO+·C6HCl2O4·CH4O Z = 2
Mr = 328.15 F(000) = 340.00
Triclinic, P1 Dx = 1.604 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71075 Å
a = 9.11845 (17) Å Cell parameters from 16546 reflections
b = 9.39881 (17) Å θ = 3.6–30.1°
c = 9.96935 (18) Å µ = 0.50 mm1
α = 107.8089 (7)° T = 170 K
β = 107.5510 (7)° Block, brown
γ = 110.2398 (7)° 0.45 × 0.41 × 0.30 mm
V = 679.25 (2) Å3

Data collection

Rigaku R-AXIS RAPID II diffractometer 3636 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1 Rint = 0.025
ω scans θmax = 30.0°
Absorption correction: numerical (NUMABS; Higashi, 1999) h = −12→12
Tmin = 0.817, Tmax = 0.860 k = −13→13
17817 measured reflections l = −14→14
3928 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077 H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0459P)2 + 0.1482P] where P = (Fo2 + 2Fc2)/3
3928 reflections (Δ/σ)max = 0.001
197 parameters Δρmax = 0.51 e Å3
0 restraints Δρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 1.01275 (3) 0.30381 (3) 0.86968 (3) 0.02809 (7)
Cl2 0.20309 (3) 0.06793 (3) 0.53010 (3) 0.02191 (7)
O1 0.71379 (10) 0.00021 (10) 0.82390 (9) 0.02629 (15)
O2 0.84595 (9) 0.45763 (9) 0.70404 (9) 0.02291 (14)
O3 0.50528 (8) 0.35907 (8) 0.55923 (8) 0.01801 (13)
O4 0.37147 (9) −0.10742 (9) 0.67309 (9) 0.02464 (15)
O5 0.58600 (10) 0.31839 (10) −0.00604 (8) 0.02641 (15)
O6 0.80802 (9) 0.70163 (9) 0.66544 (10) 0.02655 (16)
N1 0.52494 (12) 0.35047 (11) 0.26136 (10) 0.02167 (16)
C1 0.67022 (12) 0.08381 (11) 0.76387 (10) 0.01785 (16)
C2 0.79228 (11) 0.23463 (11) 0.77003 (11) 0.01801 (16)
C3 0.73479 (11) 0.32094 (10) 0.70050 (10) 0.01635 (15)
C4 0.54246 (11) 0.26734 (10) 0.61815 (9) 0.01450 (15)
C5 0.42266 (11) 0.12427 (11) 0.61394 (10) 0.01582 (15)
C6 0.47242 (11) 0.02420 (11) 0.67825 (10) 0.01687 (16)
C7 0.70652 (13) 0.42900 (12) 0.27855 (11) 0.02421 (18)
H7A 0.7887 0.4300 0.3706 0.029*
H7B 0.7451 0.5482 0.2962 0.029*
C8 0.70673 (13) 0.32531 (13) 0.12851 (12) 0.02324 (18)
H8A 0.8263 0.3774 0.1376 0.028*
H8B 0.6745 0.2081 0.1150 0.028*
C9 0.41236 (13) 0.23401 (14) −0.02607 (12) 0.0271 (2)
H9A 0.3830 0.1173 −0.0391 0.033*
H9B 0.3285 0.2242 −0.1231 0.033*
C10 0.39445 (13) 0.33079 (14) 0.11517 (12) 0.02451 (19)
H10A 0.4149 0.4445 0.1240 0.029*
H10B 0.2742 0.2678 0.1012 0.029*
C11 0.98148 (13) 0.84290 (14) 0.75821 (14) 0.0311 (2)
H11A 1.0434 0.8324 0.8508 0.047*
H11B 0.9754 0.9493 0.7933 0.047*
H11C 1.0448 0.8441 0.6943 0.047*
H1A 0.520 (2) 0.414 (2) 0.3435 (19) 0.036 (4)*
H1B 0.4968 (19) 0.252 (2) 0.2566 (17) 0.032 (4)*
H2 0.801 (2) 0.512 (2) 0.675 (2) 0.052 (5)*
H6 0.750 (2) 0.718 (2) 0.609 (2) 0.041 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.01597 (11) 0.02532 (12) 0.03726 (14) 0.00939 (9) 0.00314 (9) 0.01727 (10)
Cl2 0.01479 (10) 0.02700 (12) 0.02709 (12) 0.01005 (8) 0.00953 (8) 0.01609 (9)
O1 0.0255 (3) 0.0270 (3) 0.0347 (4) 0.0155 (3) 0.0119 (3) 0.0222 (3)
O2 0.0153 (3) 0.0180 (3) 0.0339 (4) 0.0068 (2) 0.0065 (3) 0.0162 (3)
O3 0.0178 (3) 0.0170 (3) 0.0206 (3) 0.0095 (2) 0.0066 (2) 0.0109 (2)
O4 0.0229 (3) 0.0235 (3) 0.0338 (4) 0.0104 (3) 0.0144 (3) 0.0198 (3)
O5 0.0241 (3) 0.0382 (4) 0.0223 (3) 0.0151 (3) 0.0135 (3) 0.0172 (3)
O6 0.0189 (3) 0.0227 (3) 0.0357 (4) 0.0082 (3) 0.0056 (3) 0.0194 (3)
N1 0.0300 (4) 0.0218 (4) 0.0196 (4) 0.0145 (3) 0.0139 (3) 0.0120 (3)
C1 0.0194 (4) 0.0179 (4) 0.0189 (4) 0.0104 (3) 0.0084 (3) 0.0103 (3)
C2 0.0146 (3) 0.0170 (4) 0.0213 (4) 0.0081 (3) 0.0051 (3) 0.0098 (3)
C3 0.0149 (3) 0.0146 (3) 0.0176 (4) 0.0069 (3) 0.0054 (3) 0.0073 (3)
C4 0.0151 (3) 0.0144 (3) 0.0138 (3) 0.0080 (3) 0.0058 (3) 0.0061 (3)
C5 0.0136 (3) 0.0175 (4) 0.0174 (4) 0.0079 (3) 0.0068 (3) 0.0091 (3)
C6 0.0189 (4) 0.0177 (4) 0.0178 (4) 0.0099 (3) 0.0098 (3) 0.0097 (3)
C7 0.0239 (4) 0.0213 (4) 0.0209 (4) 0.0078 (3) 0.0067 (3) 0.0091 (3)
C8 0.0207 (4) 0.0261 (4) 0.0258 (4) 0.0119 (3) 0.0115 (4) 0.0137 (4)
C9 0.0212 (4) 0.0362 (5) 0.0194 (4) 0.0123 (4) 0.0092 (4) 0.0096 (4)
C10 0.0269 (4) 0.0327 (5) 0.0238 (4) 0.0191 (4) 0.0145 (4) 0.0159 (4)
C11 0.0194 (4) 0.0250 (5) 0.0430 (6) 0.0080 (4) 0.0068 (4) 0.0192 (4)

Geometric parameters (Å, °)

Cl1—C2 1.7168 (9) C2—C3 1.3536 (11)
Cl2—C5 1.7246 (8) C3—C4 1.5069 (11)
O1—C1 1.2221 (11) C4—C5 1.3874 (11)
O2—C3 1.3148 (10) C5—C6 1.4107 (11)
O2—H2 0.825 (19) C7—C8 1.5161 (13)
O3—C4 1.2630 (10) C7—H7A 0.9900
O4—C6 1.2349 (11) C7—H7B 0.9900
O5—C9 1.4211 (12) C8—H8A 0.9900
O5—C8 1.4219 (12) C8—H8B 0.9900
O6—C11 1.4260 (12) C9—C10 1.5148 (13)
O6—H6 0.740 (17) C9—H9A 0.9900
N1—C10 1.4870 (12) C9—H9B 0.9900
N1—C7 1.4904 (13) C10—H10A 0.9900
N1—H1A 0.876 (16) C10—H10B 0.9900
N1—H1B 0.853 (16) C11—H11A 0.9800
C1—C2 1.4373 (12) C11—H11B 0.9800
C1—C6 1.5413 (12) C11—H11C 0.9800
C3—O2—H2 113.5 (13) C8—C7—H7A 110.0
C9—O5—C8 109.92 (7) N1—C7—H7B 110.0
C11—O6—H6 111.7 (13) C8—C7—H7B 110.0
C10—N1—C7 111.68 (7) H7A—C7—H7B 108.4
C10—N1—H1A 109.0 (10) O5—C8—C7 110.97 (8)
C7—N1—H1A 109.8 (10) O5—C8—H8A 109.4
C10—N1—H1B 108.2 (10) C7—C8—H8A 109.4
C7—N1—H1B 109.5 (10) O5—C8—H8B 109.4
H1A—N1—H1B 108.6 (14) C7—C8—H8B 109.4
O1—C1—C2 123.92 (8) H8A—C8—H8B 108.0
O1—C1—C6 117.69 (8) O5—C9—C10 110.93 (8)
C2—C1—C6 118.39 (7) O5—C9—H9A 109.5
C3—C2—C1 120.81 (8) C10—C9—H9A 109.5
C3—C2—Cl1 120.88 (7) O5—C9—H9B 109.5
C1—C2—Cl1 118.31 (6) C10—C9—H9B 109.5
O2—C3—C2 120.97 (8) H9A—C9—H9B 108.0
O2—C3—C4 117.02 (7) N1—C10—C9 109.27 (8)
C2—C3—C4 122.00 (8) N1—C10—H10A 109.8
O3—C4—C5 125.78 (8) C9—C10—H10A 109.8
O3—C4—C3 116.12 (7) N1—C10—H10B 109.8
C5—C4—C3 118.10 (7) C9—C10—H10B 109.8
C4—C5—C6 123.01 (8) H10A—C10—H10B 108.3
C4—C5—Cl2 118.77 (6) O6—C11—H11A 109.5
C6—C5—Cl2 118.20 (6) O6—C11—H11B 109.5
O4—C6—C5 125.85 (8) H11A—C11—H11B 109.5
O4—C6—C1 116.53 (8) O6—C11—H11C 109.5
C5—C6—C1 117.61 (7) H11A—C11—H11C 109.5
N1—C7—C8 108.60 (8) H11B—C11—H11C 109.5
N1—C7—H7A 110.0
O1—C1—C2—C3 179.84 (9) C3—C4—C5—Cl2 176.39 (6)
C6—C1—C2—C3 −0.87 (13) C4—C5—C6—O4 −177.30 (9)
O1—C1—C2—Cl1 −0.89 (13) Cl2—C5—C6—O4 4.08 (13)
C6—C1—C2—Cl1 178.40 (6) C4—C5—C6—C1 3.11 (12)
C1—C2—C3—O2 −179.07 (8) Cl2—C5—C6—C1 −175.50 (6)
Cl1—C2—C3—O2 1.68 (13) O1—C1—C6—O4 −1.84 (12)
C1—C2—C3—C4 1.85 (13) C2—C1—C6—O4 178.82 (8)
Cl1—C2—C3—C4 −177.40 (6) O1—C1—C6—C5 177.79 (8)
O2—C3—C4—O3 0.18 (11) C2—C1—C6—C5 −1.55 (12)
C2—C3—C4—O3 179.29 (8) C10—N1—C7—C8 −53.98 (10)
O2—C3—C4—C5 −179.49 (8) C9—O5—C8—C7 −62.82 (10)
C2—C3—C4—C5 −0.38 (12) N1—C7—C8—O5 58.10 (10)
O3—C4—C5—C6 178.14 (8) C8—O5—C9—C10 62.10 (11)
C3—C4—C5—C6 −2.22 (12) C7—N1—C10—C9 53.70 (11)
O3—C4—C5—Cl2 −3.25 (12) O5—C9—C10—N1 −57.15 (11)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O3 0.878 (18) 2.391 (18) 3.0069 (12) 127.5 (16)
N1—H1A···O3i 0.878 (18) 2.180 (19) 2.9255 (13) 142.5 (16)
N1—H1B···O1ii 0.852 (19) 2.170 (19) 2.9207 (14) 146.9 (17)
N1—H1B···O4ii 0.852 (19) 2.233 (19) 2.9277 (14) 138.7 (16)
O2—H2···O3 0.82 (2) 2.26 (2) 2.6605 (12) 110.6 (16)
O2—H2···O6 0.82 (2) 1.79 (2) 2.5564 (13) 153.4 (19)
O6—H6···Cl2i 0.742 (19) 2.761 (19) 3.3342 (9) 136.0 (18)
O6—H6···O3i 0.742 (19) 2.119 (19) 2.7812 (12) 149 (2)
C8—H8A···O2iii 0.99 2.51 3.4115 (15) 152

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y, −z+1; (iii) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5377).

References

  1. Asaji, T., Hoshino, M., Ishida, H., Konnai, A., Shinoda, Y., Seliger, J. & Žagar, V. (2010). Hyperfine Interact. 198, 85–91.
  2. Asaji, T., Seliger, J., Žagar, V. & Ishida, H. (2010). Magn. Reson. Chem. 48, 531–536. [DOI] [PubMed]
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
  5. Ikeda, R., Takahashi, S., Nihei, T., Ishihara, H. & Ishida, H. (2005). Bull. Chem. Soc. Jpn, 78, 1241–1245.
  6. Ishida, H. & Kashino, S. (1999). Acta Cryst. C55, 1923–1926.
  7. Rigaku/MSC (2004). PROCESS-AUTO and CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) General, I. DOI: 10.1107/S1600536811047891/lh5377sup1.cif

e-67-o3335-sup1.cif (23KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811047891/lh5377Isup2.hkl

e-67-o3335-Isup2.hkl (192.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811047891/lh5377Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES