Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 16;67(Pt 12):o3338. doi: 10.1107/S1600536811048008

(4R*,4aS*,4bS*,5R*,10aR*)-4-Hy­droxy-4a,5-dimethyl-2-(propan-2-yl)-1,4,4a,4b,5,6,7,8,10,10a-deca­hydro­phenan­thren-1-one

Ignez Caracelli a,*, Julio Zukerman-Schpector b, André T Lousada Machado b, Timothy J Brocksom c, M Lúcia Ferreira c, Edward R T Tiekink d
PMCID: PMC3238985  PMID: 22199834

Abstract

In the title compound, C19H28O2, the A ring adopts a chair conformation. Both the B and C rings adopt envelope conformations with the C atoms common to both rings and adjacent to the carbonyl and hydroxyl groups, respectively, lying 0.604 (3) and 0.634 (3) Å out of the mean planes defined by the remaining five C atoms of rings B and C, respectively (r.m.s. deviations = 0.0100 and 0.0157 Å, respectively). The formation of linear supra­molecular C(7) chains along the a axis mediated by hy­droxy-O—H⋯O(carbon­yl) hydrogen bonds is the most prominent feature of the crystal packing.

Related literature

For background to the biological activity of some diterpene compounds, see: Guo et al. (2011); Slusarczyk et al. (2011). For the synthesis, see: Ferreira (2002). For conformational analysis, see: Cremer & Pople (1975).graphic file with name e-67-o3338-scheme1.jpg

Experimental

Crystal data

  • C19H28O2

  • M r = 288.41

  • Orthorhombic, Inline graphic

  • a = 6.5507 (9) Å

  • b = 11.733 (1) Å

  • c = 22.338 (3) Å

  • V = 1716.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 290 K

  • 0.15 × 0.12 × 0.09 mm

Data collection

  • Enraf–Nonius CAD-4 Mach 3 diffractometer

  • 2272 measured reflections

  • 1945 independent reflections

  • 1077 reflections with I > 2σ(I)

  • R int = 0.038

  • 3 standard reflections every 30 min intensity decay: 2.0%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.122

  • S = 1.02

  • 1945 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.11 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and MarvinSketch (Chemaxon, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811048008/hb6477sup1.cif

e-67-o3338-sup1.cif (21.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811048008/hb6477Isup2.hkl

e-67-o3338-Isup2.hkl (93.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2o⋯O1i 0.82 2.02 2.804 (3) 160

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank FAPESP, CNPq (306532/2009–3 to JZ-S; 308116/2010–0 to IC) and CAPES (808/2009 to JZ-S and IC) for financial support.

supplementary crystallographic information

Comment

Natural diterpenes exhibit a wide range of biological activities such as neuroprotectives (Guo et al., 2011) and as anti-plasmodials and anti-trypanocidals (Slusarczyk et al., 2011). While aiming at the synthesis of some hydrophenanthrene diterpenes, a series of new intermediates were obtained and among them was the title compound (Ferreira, 2002), (I), which has been characterized crystallographically.

The A ring in (I), Fig. 1, has a chair conformation. Each of the B and C rings presents a half-chair conformation with atom C7 lying 0.604 (3) Å and C2 lying 0.634 (3) Å out of the approximate plane defined by the remaining five C atoms of rings B and C, respectively (r.m.s. deviation 0.0100 and 0.0157 Å for rings B and C, respectively). The ring puckering parameters are: q2 = 0.040 (4), 0.348 (3), 0.367 (3) Å; q3 = 0.530 (4), 0.265 (3), 0.269 (3) Å; QT = 0.531 (4), 0.438 (3), 0.455 (3) Å; and θ = 3.9 (4), 52.7 (4), 53.7 (4)°, for rings A, B and C, respectively (Cremer & Pople, 1975).

In the crystal packing, the molecules are linked through O–H···O hydrogen bonds to form linear supramolecular chains along the a axis, Fig. 2 and Table 1. Chains pack in the crystal structure with no specific intermolecular interactions operating between them, Fig. 3.

Experimental

The detailed synthesis of the title compound is described in a Ph.D. thesis (Ferreira, 2002). Crystals were grown by slow evaporation from its hexane solution held at 293 K. 1H-NMR (CDCl3, 400 MHz): δ (p.p.m.): 6.47 (d, 1H, J = 5.4 Hz); 5.50 (d, 1H, J = 4.5 Hz); 4.4 (d, 1H, J = 5.4 Hz); 2.87 (heptet, 1H, J = 6.8 Hz); 2.39 (d, 1H, J = 3.7 Hz); 2.29–2.33 (m, 1H); 2.08–2.13 (m, 2H); 1.98–2.03 (m, 2H); 1.68–1.78 (m, 1H); 1.68–1.78 (m, 2H); 1.35 (dt, 2H, J1 = 12.8 and J2 = 3.6 Hz); 1.21 (d, 3H, J = 6.5 Hz); 1.16 (s, 3H); 1.06 (d, 3H, J = 6.9 Hz); 1.02 (d, 3H, J = 6.9 Hz); δ(OH) not obs. 13C (CDCl3, 100 MHz) δ (p.p.m.): 202.5; 142.2; 141.8; 136.0; 118.3; 71.0; 53.9; 53.1; 37.6; 36.7; 36.7; 33.6; 29.0; 27.5; 26.1; 26.0; 25.2; 21.4; 21.4 Analysis found: C 78.98, H 9.79%. C19H28O2 requires: C 79.12, H 9.79%.

Refinement

The H atoms were geometrically placed (C—H = 0.93–0.98 Å; O—H = 0.82 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(methyl-C,O). The absolute structure was based on that of a starting material used in the synthesis (Ferreira, 2002). In the absence of significant anamolous dispersion effects, 287 Friedel pairs were merged in the final refinement cycles.

Figures

Fig. 1.

Fig. 1.

The molecular structure of compound (I) showing displacement ellipsoids at the 30% probability level (arbitrary spheres for the H atoms).

Fig. 2.

Fig. 2.

A view of the linear supramolecular chain along the a axis in (I). The hydroxy-O—H···O(carbonyl) hydrogen bonds are represented by orange dashed lines.

Fig. 3.

Fig. 3.

A view in projection down the a axis of the unit-cell contents of (I). The hydroxy-O—H···O(carbonyl) hydrogen bonds are represented by orange dashed lines.

Crystal data

C19H28O2 F(000) = 632
Mr = 288.41 Dx = 1.116 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 23 reflections
a = 6.5507 (9) Å θ = 9.1–16.5°
b = 11.733 (1) Å µ = 0.07 mm1
c = 22.338 (3) Å T = 290 K
V = 1716.9 (4) Å3 Irregular, colourless
Z = 4 0.15 × 0.12 × 0.09 mm

Data collection

Enraf–Nonius CAD-4 Mach 3 diffractometer Rint = 0.038
Radiation source: fine-focus sealed tube θmax = 26.0°, θmin = 2.0°
graphite h = −1→8
ω/–2θ scans k = −14→0
2272 measured reflections l = −27→0
1945 independent reflections 3 standard reflections every 30 min
1077 reflections with I > 2σ(I) intensity decay: 2.0%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0557P)2 + 0.0441P] where P = (Fo2 + 2Fc2)/3
1945 reflections (Δ/σ)max < 0.001
191 parameters Δρmax = 0.15 e Å3
0 restraints Δρmin = −0.11 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.5700 (5) 0.1474 (3) 0.87731 (12) 0.0536 (8)
H1 0.6626 0.1974 0.8996 0.064*
C2 0.6209 (4) 0.1683 (2) 0.80946 (13) 0.0488 (8)
C3 0.4355 (4) 0.1501 (3) 0.76804 (12) 0.0478 (7)
H3 0.3371 0.2113 0.7758 0.057*
C4 0.4904 (5) 0.1535 (3) 0.70352 (13) 0.0527 (8)
H4 0.3867 0.1723 0.6769 0.063*
C5 0.6731 (5) 0.1322 (3) 0.68010 (13) 0.0508 (7)
C6 0.8399 (5) 0.1005 (3) 0.72195 (15) 0.0559 (8)
C7 0.7936 (4) 0.0895 (2) 0.78799 (14) 0.0526 (8)
H7 0.9173 0.1121 0.8096 0.063*
C8 0.7588 (5) −0.0363 (3) 0.80105 (14) 0.0616 (9)
H8A 0.6508 −0.0653 0.7755 0.074*
H8B 0.8823 −0.0789 0.7925 0.074*
C9 0.7016 (6) −0.0514 (3) 0.86456 (15) 0.0656 (9)
H9 0.7258 −0.1223 0.8818 0.079*
C10 0.6191 (5) 0.0279 (3) 0.89854 (14) 0.0592 (8)
C11 0.5787 (7) 0.0058 (4) 0.96343 (16) 0.0875 (13)
H11A 0.6721 0.0509 0.9874 0.105*
H11B 0.6046 −0.0739 0.9720 0.105*
C12 0.3627 (8) 0.0344 (4) 0.98085 (18) 0.1012 (15)
H12A 0.2688 −0.0165 0.9606 0.121*
H12B 0.3454 0.0245 1.0237 0.121*
C13 0.3167 (8) 0.1551 (3) 0.96402 (16) 0.0900 (12)
H13A 0.4014 0.2053 0.9880 0.108*
H13B 0.1753 0.1712 0.9738 0.108*
C14 0.3521 (6) 0.1821 (3) 0.89755 (16) 0.0699 (10)
H14 0.2546 0.1368 0.8743 0.084*
C15 0.6977 (6) 0.2914 (3) 0.80117 (15) 0.0750 (11)
H15A 0.5933 0.3438 0.8135 0.113*
H15B 0.7300 0.3041 0.7598 0.113*
H15C 0.8177 0.3030 0.8251 0.113*
C16 0.7253 (5) 0.1371 (3) 0.61470 (13) 0.0627 (9)
H16 0.8109 0.0708 0.6056 0.075*
C17 0.8497 (8) 0.2431 (4) 0.60174 (17) 0.1106 (16)
H17A 0.8863 0.2445 0.5601 0.166*
H17B 0.9713 0.2425 0.6257 0.166*
H17C 0.7704 0.3095 0.6111 0.166*
C18 0.5396 (6) 0.1315 (4) 0.57472 (15) 0.0879 (13)
H18A 0.5818 0.1327 0.5336 0.132*
H18B 0.4530 0.1958 0.5826 0.132*
H18C 0.4659 0.0624 0.5826 0.132*
C19 0.2980 (9) 0.3082 (3) 0.88848 (17) 0.1022 (16)
H19A 0.1605 0.3215 0.9015 0.153*
H19B 0.3100 0.3272 0.8468 0.153*
H19C 0.3898 0.3547 0.9114 0.153*
O1 1.0090 (3) 0.0749 (2) 0.70292 (10) 0.0824 (8)
O2 0.3390 (3) 0.04403 (17) 0.78121 (9) 0.0563 (6)
H2o 0.2390 0.0359 0.7595 0.085*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0577 (17) 0.0556 (18) 0.0474 (17) −0.0035 (17) −0.0097 (15) −0.0039 (15)
C2 0.0480 (18) 0.0450 (17) 0.0533 (17) −0.0047 (15) −0.0104 (15) 0.0007 (13)
C3 0.0434 (16) 0.0470 (17) 0.0529 (17) 0.0061 (15) −0.0055 (13) 0.0023 (14)
C4 0.0456 (16) 0.0577 (19) 0.0546 (18) 0.0020 (16) −0.0140 (15) 0.0068 (15)
C5 0.0432 (16) 0.0584 (19) 0.0509 (16) −0.0044 (16) −0.0060 (15) 0.0036 (15)
C6 0.0357 (15) 0.068 (2) 0.064 (2) −0.0068 (16) −0.0025 (16) 0.0015 (16)
C7 0.0381 (16) 0.0631 (19) 0.0566 (19) −0.0061 (15) −0.0127 (15) 0.0056 (16)
C8 0.0565 (18) 0.060 (2) 0.068 (2) 0.0132 (17) −0.0010 (17) 0.0056 (17)
C9 0.069 (2) 0.057 (2) 0.071 (2) 0.0115 (19) −0.0020 (18) 0.0172 (17)
C10 0.0614 (19) 0.062 (2) 0.0543 (19) 0.0002 (18) −0.0080 (17) 0.0110 (17)
C11 0.112 (3) 0.089 (3) 0.062 (2) −0.001 (3) 0.001 (2) 0.012 (2)
C12 0.127 (4) 0.109 (3) 0.068 (2) −0.018 (3) 0.028 (3) 0.005 (2)
C13 0.094 (3) 0.108 (3) 0.068 (2) 0.009 (3) 0.014 (2) −0.017 (2)
C14 0.072 (2) 0.074 (2) 0.064 (2) 0.007 (2) 0.002 (2) −0.0152 (17)
C15 0.092 (3) 0.054 (2) 0.079 (2) −0.018 (2) −0.014 (2) 0.0031 (17)
C16 0.0524 (18) 0.082 (2) 0.0536 (19) −0.0020 (19) −0.0015 (16) 0.0041 (17)
C17 0.129 (4) 0.126 (4) 0.077 (3) −0.042 (4) 0.018 (3) 0.021 (3)
C18 0.077 (2) 0.130 (3) 0.057 (2) 0.019 (3) −0.017 (2) −0.009 (2)
C19 0.129 (4) 0.091 (3) 0.087 (3) 0.044 (3) 0.007 (3) −0.018 (2)
O1 0.0360 (11) 0.143 (2) 0.0685 (15) 0.0035 (15) 0.0004 (12) 0.0002 (15)
O2 0.0438 (11) 0.0629 (13) 0.0623 (13) −0.0109 (12) −0.0077 (11) −0.0014 (11)

Geometric parameters (Å, °)

C1—C10 1.514 (4) C11—H11B 0.9700
C1—C14 1.552 (5) C12—C13 1.495 (6)
C1—C2 1.571 (4) C12—H12A 0.9700
C1—H1 0.9800 C12—H12B 0.9700
C2—C7 1.538 (4) C13—C14 1.536 (5)
C2—C15 1.541 (4) C13—H13A 0.9700
C2—C3 1.542 (4) C13—H13B 0.9700
C3—O2 1.427 (3) C14—C19 1.535 (5)
C3—C4 1.486 (4) C14—H14 0.9800
C3—H3 0.9800 C15—H15A 0.9600
C4—C5 1.330 (4) C15—H15B 0.9600
C4—H4 0.9300 C15—H15C 0.9600
C5—C6 1.485 (4) C16—C18 1.511 (5)
C5—C16 1.501 (4) C16—C17 1.515 (5)
C6—O1 1.224 (4) C16—H16 0.9800
C6—C7 1.512 (5) C17—H17A 0.9600
C7—C8 1.522 (4) C17—H17B 0.9600
C7—H7 0.9800 C17—H17C 0.9600
C8—C9 1.478 (4) C18—H18A 0.9600
C8—H8A 0.9700 C18—H18B 0.9600
C8—H8B 0.9700 C18—H18C 0.9600
C9—C10 1.317 (4) C19—H19A 0.9600
C9—H9 0.9300 C19—H19B 0.9600
C10—C11 1.496 (5) C19—H19C 0.9600
C11—C12 1.505 (6) O2—H2o 0.8200
C11—H11A 0.9700
C10—C1—C14 110.3 (3) H11A—C11—H11B 107.9
C10—C1—C2 113.7 (2) C13—C12—C11 109.6 (4)
C14—C1—C2 115.8 (3) C13—C12—H12A 109.7
C10—C1—H1 105.3 C11—C12—H12A 109.7
C14—C1—H1 105.3 C13—C12—H12B 109.7
C2—C1—H1 105.3 C11—C12—H12B 109.7
C7—C2—C15 106.6 (3) H12A—C12—H12B 108.2
C7—C2—C3 108.0 (2) C12—C13—C14 114.1 (3)
C15—C2—C3 108.3 (2) C12—C13—H13A 108.7
C7—C2—C1 111.3 (2) C14—C13—H13A 108.7
C15—C2—C1 109.4 (2) C12—C13—H13B 108.7
C3—C2—C1 113.0 (2) C14—C13—H13B 108.7
O2—C3—C4 109.3 (2) H13A—C13—H13B 107.6
O2—C3—C2 110.2 (2) C19—C14—C13 106.9 (3)
C4—C3—C2 112.8 (2) C19—C14—C1 115.2 (4)
O2—C3—H3 108.1 C13—C14—C1 111.5 (3)
C4—C3—H3 108.1 C19—C14—H14 107.6
C2—C3—H3 108.1 C13—C14—H14 107.6
C5—C4—C3 126.5 (3) C1—C14—H14 107.6
C5—C4—H4 116.8 C2—C15—H15A 109.5
C3—C4—H4 116.8 C2—C15—H15B 109.5
C4—C5—C6 117.5 (3) H15A—C15—H15B 109.5
C4—C5—C16 125.5 (3) C2—C15—H15C 109.5
C6—C5—C16 117.0 (3) H15A—C15—H15C 109.5
O1—C6—C5 120.6 (3) H15B—C15—H15C 109.5
O1—C6—C7 120.0 (3) C5—C16—C18 113.0 (3)
C5—C6—C7 119.2 (3) C5—C16—C17 109.8 (3)
C6—C7—C8 107.5 (3) C18—C16—C17 110.9 (3)
C6—C7—C2 113.6 (2) C5—C16—H16 107.6
C8—C7—C2 114.4 (3) C18—C16—H16 107.6
C6—C7—H7 107.0 C17—C16—H16 107.6
C8—C7—H7 107.0 C16—C17—H17A 109.5
C2—C7—H7 107.0 C16—C17—H17B 109.5
C9—C8—C7 109.8 (3) H17A—C17—H17B 109.5
C9—C8—H8A 109.7 C16—C17—H17C 109.5
C7—C8—H8A 109.7 H17A—C17—H17C 109.5
C9—C8—H8B 109.7 H17B—C17—H17C 109.5
C7—C8—H8B 109.7 C16—C18—H18A 109.5
H8A—C8—H8B 108.2 C16—C18—H18B 109.5
C10—C9—C8 124.9 (3) H18A—C18—H18B 109.5
C10—C9—H9 117.6 C16—C18—H18C 109.5
C8—C9—H9 117.6 H18A—C18—H18C 109.5
C9—C10—C11 120.5 (3) H18B—C18—H18C 109.5
C9—C10—C1 124.1 (3) C14—C19—H19A 109.5
C11—C10—C1 115.2 (3) C14—C19—H19B 109.5
C10—C11—C12 112.2 (4) H19A—C19—H19B 109.5
C10—C11—H11A 109.2 C14—C19—H19C 109.5
C12—C11—H11A 109.2 H19A—C19—H19C 109.5
C10—C11—H11B 109.2 H19B—C19—H19C 109.5
C12—C11—H11B 109.2 C3—O2—H2o 109.5
C10—C1—C2—C7 −26.9 (3) C15—C2—C7—C8 171.6 (3)
C14—C1—C2—C7 −156.1 (3) C3—C2—C7—C8 −72.2 (3)
C10—C1—C2—C15 −144.5 (3) C1—C2—C7—C8 52.4 (3)
C14—C1—C2—C15 86.3 (4) C6—C7—C8—C9 −176.9 (3)
C10—C1—C2—C3 94.8 (3) C2—C7—C8—C9 −49.8 (4)
C14—C1—C2—C3 −34.5 (4) C7—C8—C9—C10 23.6 (5)
C7—C2—C3—O2 74.3 (3) C8—C9—C10—C11 −176.3 (3)
C15—C2—C3—O2 −170.6 (3) C8—C9—C10—C1 0.0 (6)
C1—C2—C3—O2 −49.2 (3) C14—C1—C10—C9 133.7 (4)
C7—C2—C3—C4 −48.2 (3) C2—C1—C10—C9 1.7 (5)
C15—C2—C3—C4 67.0 (3) C14—C1—C10—C11 −49.8 (4)
C1—C2—C3—C4 −171.7 (3) C2—C1—C10—C11 178.2 (3)
O2—C3—C4—C5 −99.1 (4) C9—C10—C11—C12 −128.9 (4)
C2—C3—C4—C5 23.9 (4) C1—C10—C11—C12 54.5 (5)
C3—C4—C5—C6 0.8 (5) C10—C11—C12—C13 −55.1 (5)
C3—C4—C5—C16 −179.5 (3) C11—C12—C13—C14 55.9 (5)
C4—C5—C6—O1 176.7 (3) C12—C13—C14—C19 −179.9 (4)
C16—C5—C6—O1 −3.1 (5) C12—C13—C14—C1 −53.1 (5)
C4—C5—C6—C7 2.3 (4) C10—C1—C14—C19 169.7 (3)
C16—C5—C6—C7 −177.4 (3) C2—C1—C14—C19 −59.4 (4)
O1—C6—C7—C8 −77.0 (4) C10—C1—C14—C13 47.6 (4)
C5—C6—C7—C8 97.4 (3) C2—C1—C14—C13 178.5 (3)
O1—C6—C7—C2 155.4 (3) C4—C5—C16—C18 −18.6 (5)
C5—C6—C7—C2 −30.2 (4) C6—C5—C16—C18 161.2 (3)
C15—C2—C7—C6 −64.5 (3) C4—C5—C16—C17 105.8 (4)
C3—C2—C7—C6 51.7 (3) C6—C5—C16—C17 −74.5 (4)
C1—C2—C7—C6 176.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2o···O1i 0.82 2.02 2.804 (3) 160

Symmetry codes: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6477).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Chemaxon (2009). MarvinSketch www.chemaxon.com.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  5. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  6. Fair, C. K. (1990). MolEN. Enraf–Nonius, Delft, The Netherlands.
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Ferreira, M. L. (2002). PhD Thesis, Universidade Federal de São Carlos, Brazil.
  9. Guo, P., Li, Y., Xu, J., Guo, Y., Jin, D.-Q., Gao, J., Hou, W. & Zhang, T. (2011). Fitoterapia, 82, 1123–1127. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Slusarczyk, S., Zimmermann, S., Kaiser, M., Matkowski, A., Hamburger, M. & Adams, M. (2011). Planta Med. 77, 1594–1596. [DOI] [PubMed]
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811048008/hb6477sup1.cif

e-67-o3338-sup1.cif (21.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811048008/hb6477Isup2.hkl

e-67-o3338-Isup2.hkl (93.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES