Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 16;67(Pt 12):o3340–o3341. doi: 10.1107/S1600536811047829

5-Chloro-1-nonyl-1H-benzimidazol-2(3H)-one

Youssef Kandri Rodi a, Fouad Ouazzani Chahdi a,*, El Mokhtar Essassi b, Santiago V Luis c, Michael Bolte d, Lahcen El Ammari e
PMCID: PMC3238987  PMID: 22199836

Abstract

The asymmetric unit of the title compound, C16H23ClN2O, comtains two independent mol­ecules in which the fused-ring systems are essentially planar, the largest deviation from the mean plane of each mol­ecule being 0.011 (2) Å and 0.016 (2) Å. The benzimidazole rings of the two mol­ecules make a dihedral angle of 66.65 (7)°. The nonyl substituents are almost perpendicular to the benzimidazole planes [C—N—C—C tosrsion angles = 96.0 (3) and 81.0 (2)°]. In the crystal, each independent molecule forms an inversion dimer via a pair of N—H⋯O hydrogen bonds. In one of the independent molecules, the terminal –CH2–CH3 group of the alkyl chain is disordered over two sets of sites with a refined occupancy ratio of 0.746 (7):0.254 (7).

Related literature

For the pharmacological, biochemical and structural properties of benzimidazolo­nes, see: Al Muhaimeed (1997); Nakano et al. (2000); Scott et al. (2002); Zarrinmayeh et al. (1998); Zhu et al. (2000); Ouzidan et al. (2011a ,b ).graphic file with name e-67-o3340-scheme1.jpg

Experimental

Crystal data

  • C16H23ClN2O

  • M r = 294.81

  • Triclinic, Inline graphic

  • a = 5.51441 (17) Å

  • b = 15.6507 (4) Å

  • c = 20.0540 (6) Å

  • α = 71.807 (3)°

  • β = 86.612 (2)°

  • γ = 80.709 (2)°

  • V = 1622.59 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.06 mm−1

  • T = 296 K

  • 0.43 × 0.20 × 0.16 mm

Data collection

  • Agilent SuperNova Dual (Cu at zero) Atlas diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.640, T max = 0.720

  • 31859 measured reflections

  • 6416 independent reflections

  • 5705 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.124

  • S = 1.03

  • 6416 reflections

  • 379 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811047829/im2336sup1.cif

e-67-o3340-sup1.cif (41.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811047829/im2336Isup2.hkl

e-67-o3340-Isup2.hkl (307.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811047829/im2336Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.83 (2) 1.96 (2) 2.778 (2) 170 (2)
N2A—H2A⋯O1Aii 0.85 (2) 1.95 (2) 2.7937 (18) 171.1 (19)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

Benzimidazoles and their derivatives exhibit a number of important pharmacological properties, such as antihistaminic (Al Muhaimeed, 1997) anti-ulcerative (Scott et al., 2002) and antiallergic (Nakano et al., 2000). In addition, benzimidazole derivatives are effective against the human cytomegalovirus (HCMV) (Zhu et al., 2000) and are also efficient selective neuropeptide Y Y1 receptor antagonists (Zarrinmayeh et al., 1998).

As a continuation of our research work devoted to the development of substituted benzimidazol-2-one derivatives (Ouzidan et al., 2011a, 2011b), we report the synthesis of a new benzimidazol-2-one derivative by action of nonyl bromide with 5-chloro-1,3-dihydrobenzimidazol-2-one. The reaction provided the title compound (Scheme 1).

The asymmetric unit of the title compound, C16H23ClN2O is built up from two independent molecules with different orientations as shown in Fig.1. The two fused five and six-membered rings building each molecule are almost planar with the maximum deviation of 0.011 (2) Å and 0.016 (2) Å for N2 in the first molecule (C1 to C19) and for C1A in the second molecule (C1A to C19A), respectively. The dihedral angle between the two benzimidazole rings is 66.65 (7)°. The nonyl groups are almost perpendicular to the benzimidazole planes as indicated by the torsion angles of C1—N1—C11—C12 = 96.0 (3) ° and C1A—N1A—C11A—C12A = 81.0 (2) °.

In the crystal structure, each molecule forms a hydrogen bonded centrosymmetrical dimer as shown in Fig.2.

Experimental

To 5-chloro-1,3-dihydrobenzimidazol-2-one (0.2 g, 1.18 mmol), potassium carbonate (0.33 g, 2.38 mmol), and tetra-n-butylammonium bromide (0.04 g, 0.11 mmol) in DMF (15 ml) was added nonyl bromide (0.34 ml, 1.78 mmol). Stirring was continued at room temperature for 6 h. The salts were removed by filtration and the filtrate concentrated under reduced pressure. The residue was separated by chromatography on a column of silica gel with ethyl acetate/hexane (1/2) as eluent (Yield: 34%). Single crystals were isolated when the solvent was allowed to evaporate at room temperature.

Refinement

The nonyl group of the first molecule shows a disordered –CH2—CH3 terminus as shown in the high values of the atomic displacement parameters. This group is refined with C18–C19 distance restraints to 1.510 Å. H atoms were located in a difference map and treated as riding with N—H = 0.86 Å, C—H = 0.93 Å (aromatic), C—H = 0.97 Å (methylene) and C—H = 0.96 Å (methyl) with Uiso(H) = 1.2 Ueq(aromatic, methylene) and Uiso(H) = 1.5 Ueq(methyl). The nitrogen bonded H atom was refined without fixed thermal parameters.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.

Fig. 2.

Fig. 2.

Centrosymmetric dimer of one of the independent molecules linked by hydrogen bonds.

Crystal data

C16H23ClN2O Z = 4
Mr = 294.81 F(000) = 632
Triclinic, P1 Dx = 1.207 Mg m3
Hall symbol: -P 1 Cu Kα radiation, λ = 1.54184 Å
a = 5.51441 (17) Å Cell parameters from 5000 reflections
b = 15.6507 (4) Å θ = 5–50°
c = 20.0540 (6) Å µ = 2.06 mm1
α = 71.807 (3)° T = 296 K
β = 86.612 (2)° Block, yellow
γ = 80.709 (2)° 0.43 × 0.20 × 0.16 mm
V = 1622.59 (8) Å3

Data collection

Agilent SuperNova Dual (Cu at zero) Atlas diffractometer 6416 independent reflections
Radiation source: SuperNova (Cu) X-ray Source 5705 reflections with I > 2σ(I)
mirror Rint = 0.031
Detector resolution: 10.4051 pixels mm-1 θmax = 73.5°, θmin = 3.0°
ω scans h = −6→6
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −19→19
Tmin = 0.640, Tmax = 0.720 l = −24→24
31859 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0609P)2 + 0.658P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
6416 reflections Δρmax = 0.46 e Å3
379 parameters Δρmin = −0.32 e Å3
9 restraints Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0031 (3)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cl1 0.25688 (10) 1.14681 (4) 0.21378 (3) 0.05904 (16)
O1 0.9124 (2) 0.88615 (9) 0.54464 (7) 0.0510 (3)
N1 0.6002 (3) 0.87446 (10) 0.47672 (8) 0.0432 (3)
N2 0.7802 (3) 0.99710 (11) 0.44015 (8) 0.0434 (3)
H2 0.873 (4) 1.0339 (15) 0.4395 (11) 0.049 (6)*
C1 0.4881 (3) 0.92923 (12) 0.41404 (9) 0.0409 (4)
C2 0.6050 (3) 1.00686 (12) 0.39072 (9) 0.0400 (4)
C3 0.5395 (3) 1.07491 (12) 0.32944 (9) 0.0434 (4)
H3 0.6185 1.1259 0.3135 0.052*
C4 0.3486 (3) 1.06323 (13) 0.29259 (9) 0.0441 (4)
C5 0.2297 (3) 0.98786 (14) 0.31460 (10) 0.0469 (4)
H5 0.1026 0.9832 0.2881 0.056*
C6 0.2996 (3) 0.91879 (13) 0.37635 (10) 0.0463 (4)
H6 0.2220 0.8674 0.3917 0.056*
C7 0.7793 (3) 0.91679 (13) 0.49246 (9) 0.0430 (4)
C11 0.5279 (4) 0.79200 (14) 0.52610 (10) 0.0521 (5)
H11A 0.3529 0.7936 0.5218 0.063*
H11B 0.5576 0.7914 0.5734 0.063*
C12 0.6626 (4) 0.70491 (14) 0.51532 (11) 0.0555 (5)
H12A 0.8369 0.7087 0.5110 0.067*
H12B 0.6391 0.6548 0.5570 0.067*
C13 0.5848 (4) 0.68309 (13) 0.45206 (11) 0.0526 (5)
H13A 0.6122 0.7321 0.4100 0.063*
H13B 0.4102 0.6797 0.4557 0.063*
C14 0.7238 (4) 0.59384 (14) 0.44517 (12) 0.0573 (5)
H14A 0.8975 0.5986 0.4395 0.069*
H14B 0.7032 0.5457 0.4884 0.069*
C15 0.6427 (4) 0.56742 (13) 0.38457 (12) 0.0578 (5)
H15A 0.6546 0.6168 0.3415 0.069*
H15B 0.4716 0.5589 0.3916 0.069*
C16 0.7941 (5) 0.48115 (16) 0.37656 (15) 0.0746 (7)
H16A 0.9640 0.4908 0.3680 0.090*
H16B 0.7876 0.4326 0.4205 0.090*
C17 0.7129 (7) 0.4510 (2) 0.31899 (18) 0.0965 (10)
H17A 0.7396 0.4950 0.2739 0.116* 0.746 (7)
H17B 0.5388 0.4469 0.3241 0.116* 0.746 (7)
H17C 0.6367 0.5062 0.2847 0.116* 0.254 (7)
H17D 0.5809 0.4166 0.3392 0.116* 0.254 (7)
C18 0.8622 (12) 0.3558 (3) 0.3220 (2) 0.118 (2) 0.746 (7)
H18A 1.0352 0.3620 0.3170 0.141* 0.746 (7)
H18B 0.8392 0.3142 0.3684 0.141* 0.746 (7)
C19 0.8116 (13) 0.3189 (4) 0.2768 (4) 0.167 (3) 0.746 (7)
H19A 0.9265 0.2645 0.2810 0.250* 0.746 (7)
H19B 0.8222 0.3606 0.2304 0.250* 0.746 (7)
H19C 0.6481 0.3040 0.2853 0.250* 0.746 (7)
C18' 0.869 (2) 0.3959 (10) 0.2756 (8) 0.095 (4)* 0.254 (7)
H18C 0.7580 0.3612 0.2632 0.115* 0.254 (7)
H18D 0.9086 0.4405 0.2321 0.115* 0.254 (7)
C19' 1.056 (2) 0.3440 (8) 0.2934 (7) 0.084 (4)* 0.254 (7)
H19D 1.1224 0.3233 0.2548 0.126* 0.254 (7)
H19E 1.0224 0.2929 0.3321 0.126* 0.254 (7)
H19F 1.1727 0.3744 0.3073 0.126* 0.254 (7)
Cl1A 1.08169 (10) −0.26825 (3) 0.31097 (3) 0.06033 (16)
O1A 1.2494 (2) 0.09656 (8) −0.01986 (6) 0.0430 (3)
N1A 0.9635 (2) 0.06117 (9) 0.07076 (7) 0.0368 (3)
N2A 1.3088 (2) −0.03410 (9) 0.07700 (7) 0.0367 (3)
H2A 1.445 (4) −0.0579 (13) 0.0637 (10) 0.042 (5)*
C1A 0.9508 (3) −0.01099 (11) 0.13176 (9) 0.0347 (3)
C2A 1.1701 (3) −0.07145 (11) 0.13562 (9) 0.0345 (3)
C3A 1.2157 (3) −0.15133 (11) 0.18992 (9) 0.0386 (4)
H3A 1.3617 −0.1914 0.1927 0.046*
C4A 1.0307 (3) −0.16868 (12) 0.24037 (9) 0.0414 (4)
C5A 0.8119 (3) −0.11037 (13) 0.23750 (9) 0.0425 (4)
H5A 0.6934 −0.1251 0.2724 0.051*
C6A 0.7689 (3) −0.02980 (12) 0.18245 (9) 0.0395 (4)
H6A 0.6228 0.0102 0.1798 0.047*
C7A 1.1823 (3) 0.04634 (11) 0.03651 (9) 0.0358 (3)
C11A 0.7749 (3) 0.13966 (11) 0.04375 (9) 0.0394 (4)
H11C 0.6153 0.1195 0.0505 0.047*
H11D 0.8009 0.1657 −0.0063 0.047*
C12A 0.7736 (3) 0.21293 (11) 0.07887 (10) 0.0403 (4)
H12C 0.9238 0.2394 0.0667 0.048*
H12D 0.7690 0.1857 0.1294 0.048*
C13A 0.5537 (3) 0.28753 (11) 0.05638 (10) 0.0416 (4)
H13C 0.4042 0.2603 0.0661 0.050*
H13D 0.5634 0.3166 0.0061 0.050*
C14A 0.5394 (3) 0.35946 (12) 0.09357 (11) 0.0477 (4)
H14C 0.5532 0.3293 0.1437 0.057*
H14D 0.6785 0.3920 0.0788 0.057*
C15A 0.3046 (3) 0.42779 (12) 0.07968 (11) 0.0486 (4)
H15C 0.1654 0.3954 0.0950 0.058*
H15D 0.2899 0.4577 0.0295 0.058*
C16A 0.2936 (4) 0.49973 (13) 0.11649 (12) 0.0521 (5)
H16C 0.4253 0.5352 0.0984 0.062*
H16D 0.3220 0.4696 0.1662 0.062*
C17A 0.0511 (4) 0.56397 (13) 0.10765 (12) 0.0513 (5)
H17E 0.0253 0.5955 0.0581 0.062*
H17F −0.0811 0.5283 0.1244 0.062*
C18A 0.0374 (4) 0.63392 (15) 0.14628 (14) 0.0618 (6)
H18E 0.0751 0.6027 0.1953 0.074*
H18F 0.1612 0.6728 0.1271 0.074*
C19A −0.2113 (4) 0.69262 (15) 0.14139 (15) 0.0666 (6)
H19G −0.2089 0.7353 0.1668 0.100*
H19H −0.3346 0.6548 0.1613 0.100*
H19I −0.2483 0.7250 0.0930 0.100*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0582 (3) 0.0627 (3) 0.0485 (3) 0.0098 (2) −0.0121 (2) −0.0134 (2)
O1 0.0467 (7) 0.0585 (8) 0.0468 (7) −0.0017 (6) −0.0114 (6) −0.0160 (6)
N1 0.0388 (8) 0.0488 (8) 0.0421 (8) −0.0026 (6) −0.0022 (6) −0.0155 (6)
N2 0.0385 (8) 0.0489 (8) 0.0446 (8) −0.0044 (7) −0.0046 (6) −0.0173 (7)
C1 0.0345 (8) 0.0476 (9) 0.0414 (9) 0.0018 (7) 0.0004 (7) −0.0191 (7)
C2 0.0326 (8) 0.0486 (9) 0.0417 (9) 0.0009 (7) −0.0006 (7) −0.0216 (7)
C3 0.0403 (9) 0.0458 (9) 0.0444 (9) 0.0003 (7) 0.0009 (7) −0.0180 (8)
C4 0.0389 (9) 0.0520 (10) 0.0409 (9) 0.0072 (7) −0.0030 (7) −0.0199 (8)
C5 0.0350 (9) 0.0607 (11) 0.0495 (10) 0.0022 (8) −0.0059 (7) −0.0269 (9)
C6 0.0378 (9) 0.0531 (10) 0.0513 (10) −0.0031 (8) −0.0009 (8) −0.0225 (8)
C7 0.0361 (9) 0.0513 (10) 0.0429 (9) 0.0024 (7) −0.0026 (7) −0.0202 (8)
C11 0.0491 (11) 0.0587 (11) 0.0450 (10) −0.0084 (9) 0.0010 (8) −0.0111 (9)
C12 0.0517 (11) 0.0519 (11) 0.0547 (11) −0.0041 (9) −0.0080 (9) −0.0050 (9)
C13 0.0498 (11) 0.0475 (10) 0.0527 (11) −0.0016 (8) −0.0024 (9) −0.0068 (8)
C14 0.0552 (12) 0.0441 (10) 0.0616 (12) −0.0007 (9) −0.0009 (10) −0.0037 (9)
C15 0.0588 (12) 0.0414 (10) 0.0664 (13) −0.0022 (9) 0.0010 (10) −0.0098 (9)
C16 0.0811 (17) 0.0474 (12) 0.0872 (17) 0.0025 (11) 0.0077 (14) −0.0166 (12)
C17 0.119 (3) 0.0678 (17) 0.111 (2) −0.0117 (16) 0.022 (2) −0.0447 (17)
C18 0.199 (6) 0.065 (2) 0.074 (3) 0.010 (3) 0.041 (3) −0.023 (2)
C19 0.153 (6) 0.113 (5) 0.272 (9) −0.012 (4) 0.016 (6) −0.119 (6)
Cl1A 0.0607 (3) 0.0530 (3) 0.0560 (3) −0.0081 (2) 0.0013 (2) −0.0012 (2)
O1A 0.0374 (6) 0.0425 (6) 0.0453 (7) −0.0005 (5) 0.0027 (5) −0.0113 (5)
N1A 0.0302 (7) 0.0375 (7) 0.0436 (7) 0.0013 (5) −0.0006 (6) −0.0170 (6)
N2A 0.0275 (7) 0.0388 (7) 0.0432 (8) 0.0019 (5) 0.0023 (6) −0.0156 (6)
C1A 0.0293 (8) 0.0379 (8) 0.0411 (8) −0.0019 (6) −0.0028 (6) −0.0193 (7)
C2A 0.0279 (7) 0.0385 (8) 0.0415 (8) −0.0033 (6) −0.0005 (6) −0.0195 (7)
C3A 0.0311 (8) 0.0373 (8) 0.0486 (9) −0.0009 (6) −0.0024 (7) −0.0169 (7)
C4A 0.0403 (9) 0.0410 (9) 0.0438 (9) −0.0081 (7) −0.0021 (7) −0.0131 (7)
C5A 0.0347 (9) 0.0524 (10) 0.0443 (9) −0.0101 (7) 0.0051 (7) −0.0196 (8)
C6A 0.0277 (8) 0.0484 (9) 0.0462 (9) −0.0004 (7) 0.0000 (7) −0.0229 (8)
C7A 0.0307 (8) 0.0373 (8) 0.0428 (9) −0.0025 (6) −0.0016 (7) −0.0180 (7)
C11A 0.0311 (8) 0.0411 (9) 0.0470 (9) 0.0034 (6) −0.0060 (7) −0.0182 (7)
C12A 0.0327 (8) 0.0385 (8) 0.0512 (10) 0.0006 (6) −0.0060 (7) −0.0180 (7)
C13A 0.0365 (9) 0.0385 (9) 0.0480 (10) 0.0032 (7) −0.0047 (7) −0.0146 (7)
C14A 0.0437 (10) 0.0408 (9) 0.0598 (11) 0.0029 (7) −0.0064 (8) −0.0206 (8)
C15A 0.0428 (10) 0.0432 (9) 0.0617 (12) 0.0037 (8) −0.0047 (8) −0.0229 (9)
C16A 0.0442 (10) 0.0466 (10) 0.0686 (13) 0.0046 (8) −0.0058 (9) −0.0270 (9)
C17A 0.0435 (10) 0.0449 (10) 0.0684 (13) 0.0037 (8) −0.0053 (9) −0.0260 (9)
C18A 0.0461 (11) 0.0578 (12) 0.0918 (16) 0.0046 (9) −0.0058 (10) −0.0428 (12)
C19A 0.0532 (12) 0.0552 (12) 0.1005 (18) 0.0067 (9) −0.0053 (12) −0.0434 (13)

Geometric parameters (Å, °)

Cl1—C4 1.7478 (19) C18'—H18D 0.9700
O1—C7 1.236 (2) C19'—H19D 0.9600
N1—C7 1.376 (2) C19'—H19E 0.9600
N1—C1 1.395 (2) C19'—H19F 0.9600
N1—C11 1.458 (2) Cl1A—C4A 1.7435 (18)
N2—C7 1.363 (2) O1A—C7A 1.234 (2)
N2—C2 1.382 (2) N1A—C7A 1.376 (2)
N2—H2 0.83 (2) N1A—C1A 1.389 (2)
C1—C6 1.379 (3) N1A—C11A 1.457 (2)
C1—C2 1.405 (3) N2A—C7A 1.370 (2)
C2—C3 1.373 (3) N2A—C2A 1.385 (2)
C3—C4 1.388 (3) N2A—H2A 0.85 (2)
C3—H3 0.9300 C1A—C6A 1.383 (2)
C4—C5 1.381 (3) C1A—C2A 1.400 (2)
C5—C6 1.392 (3) C2A—C3A 1.376 (2)
C5—H5 0.9300 C3A—C4A 1.391 (2)
C6—H6 0.9300 C3A—H3A 0.9300
C11—C12 1.515 (3) C4A—C5A 1.383 (2)
C11—H11A 0.9700 C5A—C6A 1.389 (3)
C11—H11B 0.9700 C5A—H5A 0.9300
C12—C13 1.514 (3) C6A—H6A 0.9300
C12—H12A 0.9700 C11A—C12A 1.521 (2)
C12—H12B 0.9700 C11A—H11C 0.9700
C13—C14 1.523 (3) C11A—H11D 0.9700
C13—H13A 0.9700 C12A—C13A 1.522 (2)
C13—H13B 0.9700 C12A—H12C 0.9700
C14—C15 1.512 (3) C12A—H12D 0.9700
C14—H14A 0.9700 C13A—C14A 1.523 (2)
C14—H14B 0.9700 C13A—H13C 0.9700
C15—C16 1.517 (3) C13A—H13D 0.9700
C15—H15A 0.9700 C14A—C15A 1.519 (2)
C15—H15B 0.9700 C14A—H14C 0.9700
C16—C17 1.492 (4) C14A—H14D 0.9700
C16—H16A 0.9700 C15A—C16A 1.519 (3)
C16—H16B 0.9700 C15A—H15C 0.9700
C17—C18' 1.543 (11) C15A—H15D 0.9700
C17—C18 1.566 (5) C16A—C17A 1.521 (2)
C17—H17A 0.9700 C16A—H16C 0.9700
C17—H17B 0.9700 C16A—H16D 0.9700
C17—H17C 0.9700 C17A—C18A 1.517 (3)
C17—H17D 0.9700 C17A—H17E 0.9700
C18—C19 1.282 (7) C17A—H17F 0.9700
C18—H18A 0.9700 C18A—C19A 1.512 (3)
C18—H18B 0.9700 C18A—H18E 0.9700
C19—H19A 0.9600 C18A—H18F 0.9700
C19—H19B 0.9600 C19A—H19G 0.9600
C19—H19C 0.9600 C19A—H19H 0.9600
C18'—C19' 1.202 (12) C19A—H19I 0.9600
C18'—H18C 0.9700
C7—N1—C1 109.15 (15) H19B—C19—H19C 109.5
C7—N1—C11 121.78 (16) C19'—C18'—C17 126.9 (12)
C1—N1—C11 128.50 (16) C19'—C18'—H18C 105.6
C7—N2—C2 110.23 (16) C17—C18'—H18C 105.6
C7—N2—H2 123.3 (15) C19'—C18'—H18D 105.6
C2—N2—H2 126.5 (15) C17—C18'—H18D 105.6
C6—C1—N1 132.18 (18) H18C—C18'—H18D 106.1
C6—C1—C2 121.04 (17) C18'—C19'—H19D 109.5
N1—C1—C2 106.78 (15) C18'—C19'—H19E 109.5
C3—C2—N2 131.50 (17) H19D—C19'—H19E 109.5
C3—C2—C1 121.83 (16) C18'—C19'—H19F 109.5
N2—C2—C1 106.67 (16) H19D—C19'—H19F 109.5
C2—C3—C4 116.14 (17) H19E—C19'—H19F 109.5
C2—C3—H3 121.9 C7A—N1A—C1A 109.46 (13)
C4—C3—H3 121.9 C7A—N1A—C11A 123.64 (14)
C5—C4—C3 123.14 (17) C1A—N1A—C11A 126.86 (13)
C5—C4—Cl1 118.22 (14) C7A—N2A—C2A 109.97 (13)
C3—C4—Cl1 118.63 (15) C7A—N2A—H2A 122.0 (13)
C4—C5—C6 120.23 (17) C2A—N2A—H2A 127.7 (13)
C4—C5—H5 119.9 C6A—C1A—N1A 131.97 (15)
C6—C5—H5 119.9 C6A—C1A—C2A 121.06 (15)
C1—C6—C5 117.62 (18) N1A—C1A—C2A 106.96 (13)
C1—C6—H6 121.2 C3A—C2A—N2A 131.38 (14)
C5—C6—H6 121.2 C3A—C2A—C1A 121.85 (15)
O1—C7—N2 127.51 (18) N2A—C2A—C1A 106.77 (14)
O1—C7—N1 125.34 (18) C2A—C3A—C4A 116.09 (15)
N2—C7—N1 107.16 (15) C2A—C3A—H3A 122.0
N1—C11—C12 113.94 (16) C4A—C3A—H3A 122.0
N1—C11—H11A 108.8 C5A—C4A—C3A 123.16 (16)
C12—C11—H11A 108.8 C5A—C4A—Cl1A 118.98 (14)
N1—C11—H11B 108.8 C3A—C4A—Cl1A 117.85 (13)
C12—C11—H11B 108.8 C4A—C5A—C6A 120.05 (16)
H11A—C11—H11B 107.7 C4A—C5A—H5A 120.0
C13—C12—C11 115.51 (17) C6A—C5A—H5A 120.0
C13—C12—H12A 108.4 C1A—C6A—C5A 117.78 (15)
C11—C12—H12A 108.4 C1A—C6A—H6A 121.1
C13—C12—H12B 108.4 C5A—C6A—H6A 121.1
C11—C12—H12B 108.4 O1A—C7A—N2A 127.19 (15)
H12A—C12—H12B 107.5 O1A—C7A—N1A 125.98 (15)
C12—C13—C14 112.76 (17) N2A—C7A—N1A 106.83 (14)
C12—C13—H13A 109.0 N1A—C11A—C12A 113.23 (14)
C14—C13—H13A 109.0 N1A—C11A—H11C 108.9
C12—C13—H13B 109.0 C12A—C11A—H11C 108.9
C14—C13—H13B 109.0 N1A—C11A—H11D 108.9
H13A—C13—H13B 107.8 C12A—C11A—H11D 108.9
C15—C14—C13 114.34 (17) H11C—C11A—H11D 107.7
C15—C14—H14A 108.7 C11A—C12A—C13A 111.52 (14)
C13—C14—H14A 108.7 C11A—C12A—H12C 109.3
C15—C14—H14B 108.7 C13A—C12A—H12C 109.3
C13—C14—H14B 108.7 C11A—C12A—H12D 109.3
H14A—C14—H14B 107.6 C13A—C12A—H12D 109.3
C14—C15—C16 113.1 (2) H12C—C12A—H12D 108.0
C14—C15—H15A 109.0 C12A—C13A—C14A 112.85 (15)
C16—C15—H15A 109.0 C12A—C13A—H13C 109.0
C14—C15—H15B 109.0 C14A—C13A—H13C 109.0
C16—C15—H15B 109.0 C12A—C13A—H13D 109.0
H15A—C15—H15B 107.8 C14A—C13A—H13D 109.0
C17—C16—C15 114.6 (2) H13C—C13A—H13D 107.8
C17—C16—H16A 108.6 C15A—C14A—C13A 114.10 (16)
C15—C16—H16A 108.6 C15A—C14A—H14C 108.7
C17—C16—H16B 108.6 C13A—C14A—H14C 108.7
C15—C16—H16B 108.6 C15A—C14A—H14D 108.7
H16A—C16—H16B 107.6 C13A—C14A—H14D 108.7
C16—C17—C18' 128.3 (6) H14C—C14A—H14D 107.6
C16—C17—C18 109.5 (3) C14A—C15A—C16A 113.61 (16)
C18'—C17—C18 35.5 (5) C14A—C15A—H15C 108.8
C16—C17—H17A 109.8 C16A—C15A—H15C 108.8
C18'—C17—H17A 74.6 C14A—C15A—H15D 108.8
C18—C17—H17A 109.8 C16A—C15A—H15D 108.8
C16—C17—H17B 109.8 H15C—C15A—H15D 107.7
C18'—C17—H17B 117.5 C15A—C16A—C17A 114.03 (16)
C18—C17—H17B 109.8 C15A—C16A—H16C 108.7
H17A—C17—H17B 108.2 C17A—C16A—H16C 108.7
C16—C17—H17C 105.2 C15A—C16A—H16D 108.7
C18'—C17—H17C 105.2 C17A—C16A—H16D 108.7
C18—C17—H17C 139.6 H16C—C16A—H16D 107.6
H17A—C17—H17C 36.9 C18A—C17A—C16A 114.01 (17)
H17B—C17—H17C 76.1 C18A—C17A—H17E 108.8
C16—C17—H17D 105.2 C16A—C17A—H17E 108.8
C18'—C17—H17D 105.2 C18A—C17A—H17F 108.8
C18—C17—H17D 84.3 C16A—C17A—H17F 108.8
H17A—C17—H17D 134.3 H17E—C17A—H17F 107.6
H17B—C17—H17D 30.1 C19A—C18A—C17A 113.28 (18)
H17C—C17—H17D 105.9 C19A—C18A—H18E 108.9
C19—C18—C17 117.6 (5) C17A—C18A—H18E 108.9
C19—C18—H18A 107.9 C19A—C18A—H18F 108.9
C17—C18—H18A 107.9 C17A—C18A—H18F 108.9
C19—C18—H18B 107.9 H18E—C18A—H18F 107.7
C17—C18—H18B 107.9 C18A—C19A—H19G 109.5
H18A—C18—H18B 107.2 C18A—C19A—H19H 109.5
C18—C19—H19A 109.5 H19G—C19A—H19H 109.5
C18—C19—H19B 109.5 C18A—C19A—H19I 109.5
H19A—C19—H19B 109.5 H19G—C19A—H19I 109.5
C18—C19—H19C 109.5 H19H—C19A—H19I 109.5
H19A—C19—H19C 109.5
C7—N1—C1—C6 −179.22 (18) C16—C17—C18'—C19' 26 (2)
C11—N1—C1—C6 −7.9 (3) C18—C17—C18'—C19' −42.3 (13)
C7—N1—C1—C2 0.62 (18) C7A—N1A—C1A—C6A −177.64 (17)
C11—N1—C1—C2 171.91 (16) C11A—N1A—C1A—C6A −0.1 (3)
C7—N2—C2—C3 −179.52 (17) C7A—N1A—C1A—C2A 0.82 (18)
C7—N2—C2—C1 0.68 (18) C11A—N1A—C1A—C2A 178.39 (14)
C6—C1—C2—C3 −0.7 (3) C7A—N2A—C2A—C3A 178.36 (17)
N1—C1—C2—C3 179.40 (14) C7A—N2A—C2A—C1A −0.95 (18)
C6—C1—C2—N2 179.08 (15) C6A—C1A—C2A—C3A −0.6 (2)
N1—C1—C2—N2 −0.78 (18) N1A—C1A—C2A—C3A −179.32 (14)
N2—C2—C3—C4 −178.71 (17) C6A—C1A—C2A—N2A 178.74 (15)
C1—C2—C3—C4 1.1 (2) N1A—C1A—C2A—N2A 0.07 (17)
C2—C3—C4—C5 −0.7 (2) N2A—C2A—C3A—C4A −178.81 (16)
C2—C3—C4—Cl1 −179.55 (12) C1A—C2A—C3A—C4A 0.4 (2)
C3—C4—C5—C6 −0.1 (3) C2A—C3A—C4A—C5A 0.0 (3)
Cl1—C4—C5—C6 178.81 (13) C2A—C3A—C4A—Cl1A −179.05 (12)
N1—C1—C6—C5 179.77 (17) C3A—C4A—C5A—C6A −0.3 (3)
C2—C1—C6—C5 0.0 (2) Cl1A—C4A—C5A—C6A 178.81 (13)
C4—C5—C6—C1 0.4 (3) N1A—C1A—C6A—C5A 178.69 (16)
C2—N2—C7—O1 179.57 (17) C2A—C1A—C6A—C5A 0.4 (2)
C2—N2—C7—N1 −0.30 (19) C4A—C5A—C6A—C1A 0.0 (3)
C1—N1—C7—O1 179.92 (16) C2A—N2A—C7A—O1A −178.60 (16)
C11—N1—C7—O1 7.9 (3) C2A—N2A—C7A—N1A 1.45 (18)
C1—N1—C7—N2 −0.20 (18) C1A—N1A—C7A—O1A 178.65 (15)
C11—N1—C7—N2 −172.19 (15) C11A—N1A—C7A—O1A 1.0 (3)
C7—N1—C11—C12 −93.8 (2) C1A—N1A—C7A—N2A −1.40 (18)
C1—N1—C11—C12 95.8 (2) C11A—N1A—C7A—N2A −179.06 (14)
N1—C11—C12—C13 −73.8 (2) C7A—N1A—C11A—C12A −101.69 (18)
C11—C12—C13—C14 −178.88 (17) C1A—N1A—C11A—C12A 81.1 (2)
C12—C13—C14—C15 177.21 (18) N1A—C11A—C12A—C13A −172.36 (14)
C13—C14—C15—C16 176.70 (19) C11A—C12A—C13A—C14A 176.96 (15)
C14—C15—C16—C17 177.7 (2) C12A—C13A—C14A—C15A −172.27 (16)
C15—C16—C17—C18' 151.9 (8) C13A—C14A—C15A—C16A −179.44 (17)
C15—C16—C17—C18 −173.2 (3) C14A—C15A—C16A—C17A −175.42 (18)
C16—C17—C18—C19 178.6 (6) C15A—C16A—C17A—C18A 178.20 (19)
C18'—C17—C18—C19 −51.9 (10) C16A—C17A—C18A—C19A −175.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···O1i 0.83 (2) 1.96 (2) 2.778 (2) 170 (2)
N2A—H2A···O1Aii 0.85 (2) 1.95 (2) 2.7937 (18) 171.1 (19)

Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) −x+3, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2336).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Al Muhaimeed, H. (1997). J. Int. Med. Res. 25, 175–181. [DOI] [PubMed]
  3. Nakano, H., Inoue, T., Kawasaki, N., Miyataka, H., Matsumoto, H., Taguchi, T., Inagaki, N., Nagai, H. & Satoh, T. (2000). Bioorg. Med. Chem. 8, 373–380. [DOI] [PubMed]
  4. Ouzidan, Y., Kandri Rodi, Y., Butcher, R. J., Essassi, E. M. & El Ammari, L. (2011a). Acta Cryst. E67, o283. [DOI] [PMC free article] [PubMed]
  5. Ouzidan, Y., Kandri Rodi, Y., Saffon, N., Essassi, E. M. & Ng, S. W. (2011b). Acta Cryst. E67, o520. [DOI] [PMC free article] [PubMed]
  6. Scott, L. J., Dunn, C. J., Mallarkey, G. & Sharpe, M. (2002). Drugs, 62, 1503–1538. [DOI] [PubMed]
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Zarrinmayeh, H., Nunes, A. M., Ornstein, P. L., Zimmerman, D. M., Arnold, M. B., Schober, D. A., Gackenheimer, S. L., Bruns, R. F., Hipskind, P. A., Britton, T. C., Cantrell, B. E. & Gehlert, D. R. (1998). J. Med. Chem. 41, 2709–2719. [DOI] [PubMed]
  10. Zhu, Z., Lippa, B., Drach, J. C. & Townsend, L. B. (2000). J. Med. Chem. 43, 2430–2437. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811047829/im2336sup1.cif

e-67-o3340-sup1.cif (41.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811047829/im2336Isup2.hkl

e-67-o3340-Isup2.hkl (307.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811047829/im2336Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES