Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 19;67(Pt 12):o3347. doi: 10.1107/S1600536811048148

1-(4,6-Dimethyl­pyrimidin-2-yl)thio­urea

Sohail Saeed a,*, Naghmana Rashid a, Jerry P Jasinski b, James A Golen b
PMCID: PMC3238992  PMID: 22199841

Abstract

In the crystal structure of the title compound, C7H10N4S, weak inter­molecular N—H⋯S inter­actions form a two-dimensional network parallel to the ab plane. An intra­molecular N—H⋯N hydrogen bond occurs.

Related literature

For structural characterization of N-substituted thio­urea derivatives with heterocyclic substituents, see: Saeed et al. (2010a ,b , 2011). For standard bond lengths, see Allen et al. (1987).graphic file with name e-67-o3347-scheme1.jpg

Experimental

Crystal data

  • C7H10N4S

  • M r = 182.25

  • Orthorhombic, Inline graphic

  • a = 8.3372 (5) Å

  • b = 15.8303 (10) Å

  • c = 6.618 (1) Å

  • V = 873.45 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 173 K

  • 0.30 × 0.20 × 0.18 mm

Data collection

  • Oxford DiffractionXcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) T min = 0.910, T max = 0.945

  • 7240 measured reflections

  • 2057 independent reflections

  • 1588 reflections with I > 2σ(I)

  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.144

  • S = 1.10

  • 2057 reflections

  • 120 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811048148/im2335sup1.cif

e-67-o3347-sup1.cif (14.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811048148/im2335Isup2.hkl

e-67-o3347-Isup2.hkl (101.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811048148/im2335Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N4 0.90 (2) 1.99 (3) 2.676 (3) 131 (3)
N1—H1B⋯S1i 0.87 (2) 2.58 (2) 3.399 (2) 159 (4)
N2—H2A⋯S1ii 0.85 (2) 2.53 (2) 3.338 (2) 160 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

Comment

The crystal structure of the title compound is a byproduct of the reaction of 1-(4,6-dimethylpyrimidin-2-yl)-3-(3,5-dinitrophenyl)thiourea with a copper acetate salt. It is related to our previous studies on the structural chemistry of heterocyclic compounds containing an N-substituted thiourea (Saeed et al., 2010a, 2010b, 2011). Herein, as a continuation of these studies, the structure of the title compound, (I), C7H10N4S, is described.

In the title compound, (I), (Fig. 1) the crystal packing is realized by intramolecular N1—H1···N4 hydrogen bonds and weak N—H···S intermolecular interactions (Table 1) forming a 2-D network along [110] (Fig. 2). Bond distances are in normal ranges (Allen et al. (1987).

Experimental

After refluxing a reaction mixture of 1-(4,6-dimethylpyrimidin-2-yl)-3- (3,5-dinitrophenyl)thiourea with copper acetate salt, it was transfered into cold water. The crude solid product was filtered, washed again with water and purified by re-crystallization from ethanol (Yield: 45%). Single crystals of the title compound were obtained by recrystallisation from a dichloromethane/ethanol mixture (2:1).

Refinement

H1A, H1B and H2A were located in a Fourier map and refined isotropically. All other H atoms were placed in their calculated positions and then refined using the riding model with atom—H bond lengths of 0.95Å (CH) or 0.98Å (CH3). Isotropic displacement parameters for these atoms were set to 1.19 (CH) or 1.48–1.50 (CH3) times Ueq of the parent atom. 928 Friedel pairs were measured.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing the atom labeling scheme and 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Packing diagram of the title compound viewed along the c axis. Dashed lines indicate weak N—H···S intermolecular interactions forming a 2-D network along [110].

Crystal data

C7H10N4S F(000) = 384
Mr = 182.25 Dx = 1.386 Mg m3
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 2136 reflections
a = 8.3372 (5) Å θ = 3.3–32.5°
b = 15.8303 (10) Å µ = 0.32 mm1
c = 6.618 (1) Å T = 173 K
V = 873.45 (15) Å3 Block, pale yellow
Z = 4 0.30 × 0.20 × 0.18 mm

Data collection

Oxford DiffractionXcalibur Eos Gemini diffractometer 2057 independent reflections
Radiation source: Enhance (Mo) X-ray Source 1588 reflections with I > 2σ(I)
graphite Rint = 0.043
Detector resolution: 16.1500 pixels mm-1 θmax = 27.9°, θmin = 3.3°
ω scans h = −10→10
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) k = −20→20
Tmin = 0.910, Tmax = 0.945 l = −8→8
7240 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144 H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0705P)2 + 0.3395P] where P = (Fo2 + 2Fc2)/3
2057 reflections (Δ/σ)max = 0.021
120 parameters Δρmax = 0.57 e Å3
4 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.39504 (8) 0.77736 (4) 0.3627 (3) 0.0334 (2)
N1 0.2593 (2) 0.62628 (14) 0.3662 (11) 0.0295 (5)
H1A 0.261 (4) 0.5693 (11) 0.374 (13) 0.035*
H1B 0.179 (3) 0.6589 (17) 0.338 (8) 0.035*
N2 0.5367 (2) 0.62855 (12) 0.3683 (10) 0.0241 (5)
H2A 0.615 (3) 0.6613 (16) 0.345 (9) 0.029*
N3 0.7243 (2) 0.52446 (13) 0.3633 (9) 0.0309 (6)
N4 0.4441 (3) 0.48807 (14) 0.3725 (8) 0.0263 (5)
C1 0.3948 (3) 0.67031 (15) 0.3601 (11) 0.0246 (6)
C2 0.5672 (3) 0.54221 (16) 0.3715 (9) 0.0265 (6)
C3 0.7616 (3) 0.44226 (17) 0.3597 (12) 0.0310 (6)
C4 0.6435 (3) 0.38055 (16) 0.3665 (14) 0.0318 (6)
H4A 0.6711 0.3225 0.3786 0.038*
C5 0.4852 (3) 0.40536 (17) 0.3554 (10) 0.0292 (7)
C6 0.3496 (3) 0.34350 (17) 0.3676 (15) 0.0403 (8)
H6A 0.2609 0.3629 0.2823 0.060*
H6B 0.3130 0.3390 0.5079 0.060*
H6C 0.3863 0.2881 0.3205 0.060*
C7 0.9355 (3) 0.42072 (19) 0.3708 (14) 0.0413 (9)
H7A 0.9991 0.4684 0.3206 0.062*
H7B 0.9568 0.3707 0.2878 0.062*
H7C 0.9648 0.4089 0.5114 0.062*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0193 (3) 0.0239 (3) 0.0570 (5) 0.0017 (2) −0.0110 (6) −0.0034 (11)
N1 0.0161 (10) 0.0256 (10) 0.0466 (15) 0.0014 (8) −0.007 (3) −0.008 (3)
N2 0.0173 (10) 0.0222 (10) 0.0328 (13) −0.0013 (8) −0.005 (3) −0.005 (3)
N3 0.0206 (11) 0.0298 (12) 0.0424 (16) 0.0013 (8) −0.015 (2) −0.008 (3)
N4 0.0254 (11) 0.0278 (10) 0.0257 (14) −0.0015 (8) −0.006 (2) 0.003 (2)
C1 0.0197 (11) 0.0293 (12) 0.0248 (15) 0.0002 (9) −0.012 (2) −0.001 (3)
C2 0.0257 (13) 0.0284 (12) 0.0254 (16) −0.0001 (9) −0.008 (3) 0.003 (3)
C3 0.0247 (13) 0.0335 (14) 0.0347 (17) 0.0019 (10) −0.009 (3) −0.006 (3)
C4 0.0270 (13) 0.0255 (12) 0.0430 (17) 0.0021 (10) 0.007 (4) 0.007 (4)
C5 0.0258 (13) 0.0304 (13) 0.0315 (18) −0.0027 (10) −0.009 (2) 0.003 (3)
C6 0.0283 (14) 0.0319 (14) 0.061 (2) −0.0073 (11) −0.013 (4) 0.001 (5)
C7 0.0291 (14) 0.0356 (15) 0.059 (2) 0.0061 (12) −0.014 (4) −0.001 (4)

Geometric parameters (Å, °)

S1—C1 1.695 (3) C3—C4 1.388 (4)
N1—C1 1.328 (3) C3—C7 1.491 (4)
N1—H1A 0.904 (17) C4—C5 1.379 (4)
N1—H1B 0.869 (18) C4—H4A 0.9500
N2—C1 1.356 (3) C5—C6 1.497 (4)
N2—C2 1.390 (3) C6—H6A 0.9800
N2—H2A 0.846 (17) C6—H6B 0.9800
N3—C3 1.338 (3) C6—H6C 0.9800
N3—C2 1.341 (3) C7—H7A 0.9800
N4—C2 1.337 (3) C7—H7B 0.9800
N4—C5 1.358 (3) C7—H7C 0.9800
C1—N1—H1A 120.7 (19) C5—C4—H4A 120.8
C1—N1—H1B 110 (2) C3—C4—H4A 120.8
H1A—N1—H1B 128 (3) N4—C5—C4 120.8 (3)
C1—N2—C2 129.7 (2) N4—C5—C6 115.8 (3)
C1—N2—H2A 112 (2) C4—C5—C6 122.2 (2)
C2—N2—H2A 118 (2) C5—C6—H6A 109.5
C3—N3—C2 115.6 (2) C5—C6—H6B 109.5
C2—N4—C5 115.1 (2) H6A—C6—H6B 109.5
N1—C1—N2 119.0 (2) C5—C6—H6C 109.5
N1—C1—S1 121.71 (19) H6A—C6—H6C 109.5
N2—C1—S1 119.07 (17) H6B—C6—H6C 109.5
N4—C2—N3 128.0 (2) C3—C7—H7A 109.5
N4—C2—N2 119.3 (2) C3—C7—H7B 109.5
N3—C2—N2 112.6 (2) H7A—C7—H7B 109.5
N3—C3—C4 121.2 (2) C3—C7—H7C 109.5
N3—C3—C7 116.6 (2) H7A—C7—H7C 109.5
C4—C3—C7 121.8 (2) H7B—C7—H7C 109.5
C5—C4—C3 118.5 (2)
C2—N2—C1—N1 4.0 (12) C2—N3—C3—C4 −0.7 (11)
C2—N2—C1—S1 178.8 (6) C2—N3—C3—C7 −174.2 (6)
C5—N4—C2—N3 −2.7 (10) N3—C3—C4—C5 6.9 (12)
C5—N4—C2—N2 173.7 (5) C7—C3—C4—C5 180.0 (8)
C3—N3—C2—N4 −1.4 (10) C2—N4—C5—C4 9.0 (11)
C3—N3—C2—N2 −178.1 (6) C2—N4—C5—C6 176.8 (6)
C1—N2—C2—N4 −2.1 (11) C3—C4—C5—N4 −11.2 (12)
C1—N2—C2—N3 174.9 (8) C3—C4—C5—C6 −178.2 (8)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···N4 0.90 (2) 1.99 (3) 2.676 (3) 131 (3)
N1—H1B···S1i 0.87 (2) 2.58 (2) 3.399 (2) 159 (4)
N2—H2A···S1ii 0.85 (2) 2.53 (2) 3.338 (2) 160 (4)

Symmetry codes: (i) x−1/2, −y+3/2, z; (ii) x+1/2, −y+3/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2335).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  3. Saeed, S., Rashid, N., Hussain, R., Jones, P. G. & Bhatti, M. H. (2010a). Cent. Eur. J. Chem. 8, 550–558.
  4. Saeed, S., Rashid, N., Jones, P. G., Ali, M. & Hussain, R. (2010b). Eur. J. Med. Chem. 45, 1323–1331. [DOI] [PubMed]
  5. Saeed, S., Rashid, N., Jones, P. G. & Tahir, A. (2011). J. Heterocycl. Chem. 48, 74–84.
  6. Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811048148/im2335sup1.cif

e-67-o3347-sup1.cif (14.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811048148/im2335Isup2.hkl

e-67-o3347-Isup2.hkl (101.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811048148/im2335Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES