Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 19;67(Pt 12):o3352. doi: 10.1107/S1600536811046873

3-({[(1-Phenyl­eth­yl)sulfan­yl]methane­thio­yl}sulfan­yl)propanoic acid

M Kannan a, V Ramkumar a, R Dhamodharan a,*
PMCID: PMC3238997  PMID: 22199846

Abstract

In the title compound, C12H14O2S3, a chain transfer agent (CTA) used in polymerization, the dihedral angle between the aromatic ring and the CS3 grouping is 84.20 (10)°. In the crystal, carb­oxy­lic acid inversion dimers linked by pairs of O—H⋯O hydrogen bonds generate R 2 2(8) loops.

Related literature

For background to chain transfer agents, see: Chong et al. (1999); Coady et al. (2008). For a related structure, see: Kannan et al. (2010).graphic file with name e-67-o3352-scheme1.jpg

Experimental

Crystal data

  • C12H14O2S3

  • M r = 286.41

  • Monoclinic, Inline graphic

  • a = 13.6280 (8) Å

  • b = 10.2908 (5) Å

  • c = 10.7299 (5) Å

  • β = 113.039 (2)°

  • V = 1384.77 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 298 K

  • 0.42 × 0.28 × 0.22 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.811, T max = 0.894

  • 9109 measured reflections

  • 3020 independent reflections

  • 2224 reflections with I > 2σ(I)

  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.095

  • S = 1.03

  • 3020 reflections

  • 159 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811046873/hb6480sup1.cif

e-67-o3352-sup1.cif (16.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811046873/hb6480Isup2.hkl

e-67-o3352-Isup2.hkl (148.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811046873/hb6480Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O⋯O1i 0.81 (3) 1.85 (3) 2.651 (2) 177 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge the Department of Chemistry, IIT Madras, for the data collection. MK thanks the CSIR, India, for a fellowship.

supplementary crystallographic information

Comment

The title compound C12H14S3O2 is a carbanotrithioate. It can be used as a chain transfer agent (CTA) in RAFT polymerization (Chong et al., 1999) to control the polymerization and it will produce carbanotrithionate end-terminated polymers. Very few single-crystal XRD data are available for CTAs, because most of them are liquids (Coady et al., 2008). Recently, we have reported the single-crystal data of a multi-functional CTA, which can be used for the synthesis of star polymers. Carbanotrithioate CTA is suitable for the polymerization of styrene, acrylates and methacrylates. With appropriate choice of the CTA (RAFT agent) and reaction conditions, RAFT polymerization can be successfully used to produce polymers of narrow polydispersity with predetermined molecular weights. Moreover, the polymers obtained by the RAFT process can be chain extended or used as precursors to synthesize stimuli responsive block copolymers by the addition of further monomer(s). The title compound will result in carboxylic acid end-terminated polymer; this functionality can be further modified and utilized for making block copolymers by reacting it with another homo-polymer.

The compound C12H14S3O2 is stabilized by a O—H···O interaction with R22(8) graph set motif.

Experimental

The title compound, was prepared by adding 3-mercapto propanoic acid (1.00 g, 7.35 mmol) to a stirred suspension of K3PO4 (1.72 g, 8.09 mmol) in acetone (20 ml) over a period of ten minutes. CS2 (1.68 g, 22.06 mmol) was added upon which the solution turned bright yellow. After stirring for ten minutes 1-bromo ethyl benzene (1.26 g, 7.35 mmol) was added and an instant precipitation of KBr was noted. After stirring for three hours the suspension was filtered and the cake was rinsed with acetone (2 × 20 ml). After removing the solvent from the filtrate under reduced pressure the resulting yellow residue was purified by column chromatography on silica using a petroleum ether/ethyl acetate gradient to yield light yellow solid (96%) that crystallized to form light yellow blocks.

Refinement

All hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms, with aromatic C—H = 0.93 Å, methyl C—H = 0.96 Å and methylene C—H = 0.97 Å. The displacement parameters were set for phenyl and methylene H atoms at Uiso(H) = 1.2Ueq(C) and methyl H atoms at Uiso(H) = 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule with atoms represented as 30% probability ellipsoids.

Crystal data

C12H14O2S3 F(000) = 600
Mr = 286.41 Dx = 1.374 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4284 reflections
a = 13.6280 (8) Å θ = 2.6–27.2°
b = 10.2908 (5) Å µ = 0.52 mm1
c = 10.7299 (5) Å T = 298 K
β = 113.039 (2)° Block, light yellow
V = 1384.77 (12) Å3 0.42 × 0.28 × 0.22 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 3020 independent reflections
Radiation source: fine-focus sealed tube 2224 reflections with I > 2σ(I)
graphite Rint = 0.017
phi and ω scans θmax = 28.5°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −17→18
Tmin = 0.811, Tmax = 0.894 k = −12→12
9109 measured reflections l = −14→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0372P)2 + 0.5628P] where P = (Fo2 + 2Fc2)/3
3020 reflections (Δ/σ)max = 0.001
159 parameters Δρmax = 0.32 e Å3
0 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.34830 (19) 0.5248 (2) 0.1937 (3) 0.0664 (6)
H1 0.3225 0.5785 0.1180 0.080*
C2 0.4227 (2) 0.4306 (3) 0.2022 (4) 0.0874 (9)
H2 0.4469 0.4216 0.1328 0.105*
C3 0.4606 (2) 0.3509 (3) 0.3116 (4) 0.0948 (11)
H3 0.5103 0.2870 0.3168 0.114*
C4 0.4260 (2) 0.3645 (3) 0.4129 (4) 0.0912 (10)
H4 0.4519 0.3095 0.4875 0.109*
C5 0.3523 (2) 0.4598 (2) 0.4070 (3) 0.0684 (6)
H5 0.3302 0.4692 0.4783 0.082*
C6 0.31156 (16) 0.54066 (18) 0.2959 (2) 0.0492 (5)
C7 0.23156 (16) 0.64611 (17) 0.2845 (2) 0.0477 (5)
H7 0.1806 0.6504 0.1901 0.057*
C8 0.1697 (2) 0.6301 (3) 0.3737 (3) 0.0832 (8)
H8A 0.1330 0.5482 0.3546 0.125*
H8B 0.1187 0.6993 0.3559 0.125*
H8C 0.2180 0.6327 0.4671 0.125*
C9 0.21603 (15) 0.91964 (17) 0.24871 (19) 0.0421 (4)
C10 0.18484 (18) 1.18835 (19) 0.2244 (2) 0.0553 (5)
H10A 0.1186 1.1527 0.2231 0.066*
H10B 0.2046 1.2608 0.2872 0.066*
C11 0.16642 (16) 1.23796 (18) 0.0855 (2) 0.0479 (5)
H11A 0.2342 1.2624 0.0825 0.057*
H11B 0.1359 1.1692 0.0199 0.057*
C12 0.09317 (15) 1.35291 (18) 0.0482 (2) 0.0444 (4)
O1 0.04244 (14) 1.38506 (15) 0.11389 (17) 0.0706 (5)
O2 0.08929 (15) 1.41368 (17) −0.05809 (18) 0.0708 (5)
S1 0.30835 (4) 0.79721 (5) 0.32472 (6) 0.05737 (18)
S2 0.09018 (4) 0.90297 (6) 0.15929 (6) 0.06006 (18)
S3 0.28670 (5) 1.06576 (5) 0.28523 (7) 0.06266 (19)
H1O 0.051 (3) 1.477 (3) −0.073 (3) 0.111 (12)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0664 (15) 0.0545 (13) 0.0817 (17) 0.0057 (11) 0.0326 (13) −0.0060 (12)
C2 0.0686 (18) 0.0723 (18) 0.125 (3) 0.0037 (14) 0.0424 (18) −0.0282 (18)
C3 0.0550 (17) 0.0490 (15) 0.163 (3) 0.0051 (12) 0.023 (2) −0.0112 (18)
C4 0.0649 (18) 0.0499 (15) 0.127 (3) −0.0007 (13) 0.0035 (18) 0.0247 (16)
C5 0.0650 (15) 0.0477 (13) 0.0813 (17) −0.0060 (11) 0.0166 (13) 0.0118 (12)
C6 0.0460 (12) 0.0316 (10) 0.0666 (14) −0.0063 (8) 0.0182 (10) −0.0023 (9)
C7 0.0498 (12) 0.0357 (10) 0.0610 (13) −0.0039 (8) 0.0256 (10) 0.0005 (9)
C8 0.098 (2) 0.0674 (16) 0.115 (2) 0.0002 (15) 0.0750 (19) 0.0082 (15)
C9 0.0449 (11) 0.0387 (10) 0.0425 (11) 0.0042 (8) 0.0170 (9) 0.0011 (8)
C10 0.0641 (14) 0.0361 (10) 0.0645 (14) 0.0124 (9) 0.0240 (11) 0.0065 (9)
C11 0.0471 (11) 0.0399 (10) 0.0585 (13) 0.0088 (8) 0.0228 (10) 0.0041 (9)
C12 0.0457 (11) 0.0380 (10) 0.0515 (12) 0.0057 (8) 0.0214 (10) 0.0048 (8)
O1 0.0899 (12) 0.0649 (10) 0.0778 (11) 0.0397 (9) 0.0553 (10) 0.0286 (8)
O2 0.0879 (13) 0.0675 (11) 0.0748 (12) 0.0384 (10) 0.0510 (10) 0.0314 (9)
S1 0.0441 (3) 0.0327 (3) 0.0829 (4) 0.0021 (2) 0.0114 (3) 0.0055 (2)
S2 0.0411 (3) 0.0620 (3) 0.0680 (4) 0.0046 (2) 0.0115 (3) −0.0083 (3)
S3 0.0507 (3) 0.0354 (3) 0.0857 (5) 0.0032 (2) 0.0092 (3) 0.0112 (3)

Geometric parameters (Å, °)

C1—C2 1.380 (3) C8—H8B 0.9600
C1—C6 1.383 (3) C8—H8C 0.9600
C1—H1 0.9300 C9—S2 1.614 (2)
C2—C3 1.357 (5) C9—S1 1.7415 (19)
C2—H2 0.9300 C9—S3 1.7455 (19)
C3—C4 1.351 (5) C10—C11 1.500 (3)
C3—H3 0.9300 C10—S3 1.799 (2)
C4—C5 1.388 (4) C10—H10A 0.9700
C4—H4 0.9300 C10—H10B 0.9700
C5—C6 1.380 (3) C11—C12 1.498 (2)
C5—H5 0.9300 C11—H11A 0.9700
C6—C7 1.509 (3) C11—H11B 0.9700
C7—C8 1.512 (3) C12—O1 1.211 (2)
C7—S1 1.8291 (19) C12—O2 1.283 (2)
C7—H7 0.9800 O2—H1O 0.81 (3)
C8—H8A 0.9600
C2—C1—C6 121.0 (3) H8A—C8—H8B 109.5
C2—C1—H1 119.5 C7—C8—H8C 109.5
C6—C1—H1 119.5 H8A—C8—H8C 109.5
C3—C2—C1 120.2 (3) H8B—C8—H8C 109.5
C3—C2—H2 119.9 S2—C9—S1 127.34 (11)
C1—C2—H2 119.9 S2—C9—S3 126.14 (11)
C4—C3—C2 119.9 (3) S1—C9—S3 106.51 (11)
C4—C3—H3 120.0 C11—C10—S3 113.87 (14)
C2—C3—H3 120.0 C11—C10—H10A 108.8
C3—C4—C5 120.8 (3) S3—C10—H10A 108.8
C3—C4—H4 119.6 C11—C10—H10B 108.8
C5—C4—H4 119.6 S3—C10—H10B 108.8
C6—C5—C4 120.3 (3) H10A—C10—H10B 107.7
C6—C5—H5 119.9 C12—C11—C10 111.69 (16)
C4—C5—H5 119.9 C12—C11—H11A 109.3
C5—C6—C1 117.8 (2) C10—C11—H11A 109.3
C5—C6—C7 122.5 (2) C12—C11—H11B 109.3
C1—C6—C7 119.66 (19) C10—C11—H11B 109.3
C6—C7—C8 115.77 (18) H11A—C11—H11B 107.9
C6—C7—S1 105.29 (13) O1—C12—O2 123.36 (18)
C8—C7—S1 110.65 (16) O1—C12—C11 122.18 (17)
C6—C7—H7 108.3 O2—C12—C11 114.46 (16)
C8—C7—H7 108.3 C12—O2—H1O 112 (2)
S1—C7—H7 108.3 C9—S1—C7 105.23 (9)
C7—C8—H8A 109.5 C9—S3—C10 104.07 (10)
C7—C8—H8B 109.5
C6—C1—C2—C3 0.4 (4) C1—C6—C7—S1 −76.6 (2)
C1—C2—C3—C4 −0.5 (4) S3—C10—C11—C12 −171.50 (14)
C2—C3—C4—C5 −0.3 (4) C10—C11—C12—O1 −11.6 (3)
C3—C4—C5—C6 1.2 (4) C10—C11—C12—O2 168.19 (19)
C4—C5—C6—C1 −1.3 (3) S2—C9—S1—C7 −1.18 (16)
C4—C5—C6—C7 −179.8 (2) S3—C9—S1—C7 179.94 (9)
C2—C1—C6—C5 0.5 (3) C6—C7—S1—C9 156.85 (14)
C2—C1—C6—C7 179.0 (2) C8—C7—S1—C9 −77.38 (19)
C5—C6—C7—C8 −20.6 (3) S2—C9—S3—C10 8.69 (16)
C1—C6—C7—C8 160.9 (2) S1—C9—S3—C10 −172.41 (10)
C5—C6—C7—S1 101.9 (2) C11—C10—S3—C9 −97.04 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H1O···O1i 0.81 (3) 1.85 (3) 2.651 (2) 177 (3)

Symmetry codes: (i) −x, −y+3, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6480).

References

  1. Bruker (2004). APEX2, SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chong, Y. K., Le, T. P. T., Moad, G., Rizzardo, E. & Thang, S. H. (1999). Macromolecules, 32, 2071–2074.
  3. Coady, D. J., Norris, B. C., Lynch, V. M. & Bielawski, C. W. (2008). Macromolecules, 41, 3775–3778.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Kannan, M., Ramkumar, V. & Dhamodharan, R. (2010). Acta Cryst. E66, o1382. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811046873/hb6480sup1.cif

e-67-o3352-sup1.cif (16.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811046873/hb6480Isup2.hkl

e-67-o3352-Isup2.hkl (148.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811046873/hb6480Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES