Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 19;67(Pt 12):o3365. doi: 10.1107/S1600536811048495

N′-[(E)-1-(5-Bromo-2-hy­droxy­phen­yl)ethyl­idene]-2-chloro­benzohydrazide

Jian-Guo Chang a,*
PMCID: PMC3239010  PMID: 22199859

Abstract

The title compound, C15H12BrClN2O2, was synthesized by the condensation of 1-(5-bromo-2-hy­droxy­phen­yl)ethanone with 2-chloro­benzohydrazide in anhydrous ethanol. The Schiff base mol­ecule displays a trans configuration with respect to the C=N double bond. The dihedral angle between the two benzene rings is 13.74 (3)°. The mol­ecular conformation is stabilized by an intra­molecular O—H⋯N and the crystal structure by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For further details of the chemistry of the title compound, see: Carcelli et al. (1995); Salem (1998). For a related structure, see: Chang (2008).graphic file with name e-67-o3365-scheme1.jpg

Experimental

Crystal data

  • C15H12BrClN2O2

  • M r = 367.62

  • Monoclinic, Inline graphic

  • a = 14.861 (3) Å

  • b = 4.837 (1) Å

  • c = 21.310 (4) Å

  • β = 106.099 (4)°

  • V = 1471.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.98 mm−1

  • T = 298 K

  • 0.15 × 0.10 × 0.06 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003) T min = 0.664, T max = 0.842

  • 7095 measured reflections

  • 2605 independent reflections

  • 1514 reflections with I > 2σ(I)

  • R int = 0.052

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.119

  • S = 1.05

  • 2605 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811048495/pk2360sup1.cif

e-67-o3365-sup1.cif (17.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811048495/pk2360Isup2.hkl

e-67-o3365-Isup2.hkl (128KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811048495/pk2360Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N2 0.82 1.82 2.530 (4) 144
N1—H1⋯O1i 0.86 2.16 2.858 (4) 138

Symmetry code: (i) Inline graphic.

Acknowledgments

This project was supported by the Postgraduate Foundation of Taishan University (No·Y05–2–09)

supplementary crystallographic information

Comment

The chemistry of aroylhydrazones continues to attract much attention due to their ability to coordinate to metal ions (Salem, 1998) and their biological activity (Carcelli et al., 1995). As an extension of work on the structural characterization of aroylhydrazone derivatives (Chang, 2008), the title compound, (I), was synthesized and its crystal structure is reported here.

The title molecule displays a trans conformation with respect to the C8=N2 double bond (Fig. 1). The dihedral angle between the two benzene rings is 13.74 (3) °. The crystal structure is stabilized by an intramolecular O—H···N and by intermolecular N—H···O hydrogen bonds. (see Table 1 and Figs. 1 & 2.).

Experimental

2-chlorobenzohydrazide (0.01 mol,1.71 g) was dissolved in anhydrous ethanol (40 ml), and 1-(5-bromo-2-hydroxyphenyl)ethanone (0.01 mol, 2.15 g) was added. The reaction mixture was refluxed for 4 h with stirring, then the resulting precipitate was collected by filtration, washed several times with ethanol and dried in vacuo (yield 85%). The compound (1.0 mmol, 0.36 g) was dissolved in dimethylformamide (10 ml) and kept at room temperature for 30 d to obtain colourless single crystals suitable for X-ray diffraction.

Refinement

All H atoms were positioned geometrically and treated as riding on their parent atoms, with CH(methyl) = 0.96 Å, C—H(aromatic) = 0.93 Å, O—H = 0.82 Å, N—H =0.86 Å and with Uiso(H) = 1.5Ueq(Cmethyl, O) and 1.2Ueq(Caromatic, N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of compound (I). Displacement ellipsoids are drawn at the 30% probability level. Dashed lines show intramolecular O–H···N hydrogen bonds.

Fig. 2.

Fig. 2.

Packing diagram of (I), Showing intermolecular N—H···O hydrogen bonds as dashed lines.

Crystal data

C15H12BrClN2O2 F(000) = 736
Mr = 367.62 Dx = 1.655 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 1463 reflections
a = 14.861 (3) Å θ = 2.9–22.6°
b = 4.837 (1) Å µ = 2.98 mm1
c = 21.310 (4) Å T = 298 K
β = 106.099 (4)° Block, colourless
V = 1471.7 (5) Å3 0.15 × 0.10 × 0.06 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 2605 independent reflections
Radiation source: fine-focus sealed tube 1514 reflections with I > 2σ(I)
graphite Rint = 0.052
φ and ω scans θmax = 25.1°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) h = −17→12
Tmin = 0.664, Tmax = 0.842 k = −5→5
7095 measured reflections l = −25→25

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.049P)2 + 0.1072P] where P = (Fo2 + 2Fc2)/3
2605 reflections (Δ/σ)max < 0.001
191 parameters Δρmax = 0.31 e Å3
0 restraints Δρmin = −0.42 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.10714 (4) 0.26900 (11) 0.07214 (2) 0.0735 (3)
Cl1 0.30550 (9) 0.2243 (3) 0.53343 (6) 0.0666 (4)
O1 0.1050 (2) −0.4214 (6) 0.45813 (14) 0.0539 (8)
O2 −0.0140 (2) −0.3493 (7) 0.27979 (16) 0.0590 (9)
H2 0.0073 −0.2826 0.3163 0.089*
N1 0.1335 (2) 0.0122 (7) 0.43053 (16) 0.0427 (9)
H1 0.1565 0.1729 0.4427 0.051*
N2 0.0972 (2) −0.0529 (7) 0.36469 (16) 0.0422 (9)
C1 0.2301 (3) 0.0827 (8) 0.5746 (2) 0.0408 (11)
C2 0.1587 (3) −0.0978 (8) 0.5449 (2) 0.0383 (10)
C3 0.1083 (3) −0.2171 (8) 0.5835 (2) 0.0501 (12)
H3 0.0615 −0.3444 0.5651 0.060*
C4 0.1260 (4) −0.1510 (11) 0.6491 (3) 0.0591 (14)
H4 0.0914 −0.2340 0.6743 0.071*
C5 0.1939 (4) 0.0354 (11) 0.6766 (2) 0.0629 (14)
H5 0.2046 0.0836 0.7203 0.076*
C6 0.2466 (3) 0.1522 (10) 0.6402 (2) 0.0544 (13)
H6 0.2935 0.2781 0.6593 0.065*
C7 0.1312 (3) −0.1848 (8) 0.4744 (2) 0.0398 (11)
C8 0.1261 (3) 0.0878 (8) 0.3226 (2) 0.0379 (11)
C9 0.1998 (3) 0.3071 (9) 0.3396 (2) 0.0505 (12)
H9A 0.1715 0.4847 0.3275 0.076*
H9B 0.2457 0.2737 0.3165 0.076*
H9C 0.2294 0.3036 0.3858 0.076*
C10 0.0828 (3) 0.0126 (8) 0.25362 (19) 0.0383 (10)
C11 0.1075 (3) 0.1475 (9) 0.2027 (2) 0.0451 (11)
H11 0.1523 0.2868 0.2132 0.054*
C12 0.0688 (3) 0.0840 (10) 0.1384 (2) 0.0523 (13)
C13 0.0016 (3) −0.1209 (11) 0.1220 (2) 0.0579 (14)
H13 −0.0257 −0.1645 0.0783 0.070*
C14 −0.0251 (4) −0.2602 (10) 0.1702 (3) 0.0629 (14)
H14 −0.0704 −0.3978 0.1587 0.075*
C15 0.0147 (3) −0.1986 (9) 0.2358 (2) 0.0451 (12)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.1016 (5) 0.0720 (4) 0.0474 (3) 0.0180 (3) 0.0216 (3) 0.0081 (3)
Cl1 0.0595 (9) 0.0796 (10) 0.0582 (8) −0.0267 (7) 0.0123 (6) −0.0046 (7)
O1 0.081 (2) 0.0263 (18) 0.0544 (19) −0.0110 (15) 0.0179 (16) −0.0075 (15)
O2 0.070 (2) 0.048 (2) 0.059 (2) −0.0214 (16) 0.0164 (19) −0.0124 (18)
N1 0.061 (3) 0.0243 (19) 0.039 (2) −0.0107 (17) 0.0094 (18) −0.0010 (17)
N2 0.055 (3) 0.030 (2) 0.037 (2) −0.0065 (17) 0.0073 (18) −0.0052 (17)
C1 0.041 (3) 0.036 (2) 0.042 (3) 0.001 (2) 0.006 (2) −0.001 (2)
C2 0.042 (3) 0.030 (2) 0.041 (2) 0.007 (2) 0.009 (2) 0.002 (2)
C3 0.058 (3) 0.036 (3) 0.056 (3) −0.008 (2) 0.015 (3) −0.002 (2)
C4 0.069 (4) 0.054 (3) 0.059 (3) 0.000 (3) 0.027 (3) 0.006 (3)
C5 0.073 (4) 0.066 (4) 0.049 (3) 0.003 (3) 0.017 (3) −0.005 (3)
C6 0.057 (3) 0.047 (3) 0.054 (3) −0.001 (2) 0.007 (3) −0.009 (2)
C7 0.043 (3) 0.025 (3) 0.051 (3) 0.0008 (19) 0.013 (2) −0.001 (2)
C8 0.038 (3) 0.028 (2) 0.045 (3) 0.0042 (19) 0.007 (2) −0.006 (2)
C9 0.054 (3) 0.047 (3) 0.045 (3) −0.011 (2) 0.005 (2) 0.001 (2)
C10 0.041 (3) 0.031 (2) 0.041 (3) 0.005 (2) 0.008 (2) −0.005 (2)
C11 0.054 (3) 0.036 (3) 0.043 (3) 0.003 (2) 0.009 (2) −0.007 (2)
C12 0.060 (3) 0.046 (3) 0.045 (3) 0.017 (3) 0.006 (2) −0.002 (2)
C13 0.065 (4) 0.055 (3) 0.044 (3) 0.017 (3) −0.002 (3) −0.011 (3)
C14 0.060 (4) 0.061 (4) 0.056 (3) −0.001 (3) −0.003 (3) −0.014 (3)
C15 0.040 (3) 0.042 (3) 0.049 (3) −0.001 (2) 0.005 (2) −0.004 (2)

Geometric parameters (Å, °)

Br1—C12 1.889 (5) C5—C6 1.368 (7)
Cl1—C1 1.743 (4) C5—H5 0.9300
O1—C7 1.228 (5) C6—H6 0.9300
O2—C15 1.346 (5) C8—C10 1.477 (5)
O2—H2 0.8200 C8—C9 1.495 (6)
N1—C7 1.342 (5) C9—H9A 0.9600
N1—N2 1.393 (4) C9—H9B 0.9600
N1—H1 0.8600 C9—H9C 0.9600
N2—C8 1.291 (5) C10—C11 1.399 (6)
C1—C2 1.384 (5) C10—C15 1.413 (6)
C1—C6 1.392 (6) C11—C12 1.366 (6)
C2—C3 1.383 (6) C11—H11 0.9300
C2—C7 1.505 (6) C12—C13 1.382 (7)
C3—C4 1.386 (6) C13—C14 1.376 (7)
C3—H3 0.9300 C13—H13 0.9300
C4—C5 1.359 (7) C14—C15 1.391 (7)
C4—H4 0.9300 C14—H14 0.9300
C15—O2—H2 109.5 N2—C8—C9 124.6 (4)
C7—N1—N2 117.6 (3) C10—C8—C9 120.3 (4)
C7—N1—H1 121.2 C8—C9—H9A 109.5
N2—N1—H1 121.2 C8—C9—H9B 109.5
C8—N2—N1 118.1 (3) H9A—C9—H9B 109.5
C2—C1—C6 120.6 (4) C8—C9—H9C 109.5
C2—C1—Cl1 122.5 (3) H9A—C9—H9C 109.5
C6—C1—Cl1 116.9 (3) H9B—C9—H9C 109.5
C3—C2—C1 117.7 (4) C11—C10—C15 116.8 (4)
C3—C2—C7 115.8 (4) C11—C10—C8 121.4 (4)
C1—C2—C7 126.5 (4) C15—C10—C8 121.8 (4)
C2—C3—C4 121.4 (4) C12—C11—C10 123.0 (4)
C2—C3—H3 119.3 C12—C11—H11 118.5
C4—C3—H3 119.3 C10—C11—H11 118.5
C5—C4—C3 119.9 (5) C11—C12—C13 119.3 (5)
C5—C4—H4 120.1 C11—C12—Br1 120.9 (4)
C3—C4—H4 120.1 C13—C12—Br1 119.8 (4)
C4—C5—C6 120.2 (5) C14—C13—C12 119.9 (5)
C4—C5—H5 119.9 C14—C13—H13 120.0
C6—C5—H5 119.9 C12—C13—H13 120.0
C5—C6—C1 120.1 (5) C13—C14—C15 121.1 (5)
C5—C6—H6 120.0 C13—C14—H14 119.5
C1—C6—H6 120.0 C15—C14—H14 119.5
O1—C7—N1 122.2 (4) O2—C15—C14 117.1 (4)
O1—C7—C2 121.3 (4) O2—C15—C10 123.1 (4)
N1—C7—C2 116.4 (3) C14—C15—C10 119.8 (5)
N2—C8—C10 115.1 (4)
C7—N1—N2—C8 −156.6 (4) N1—N2—C8—C9 3.2 (6)
C6—C1—C2—C3 −3.5 (6) N2—C8—C10—C11 −179.9 (4)
Cl1—C1—C2—C3 174.4 (3) C9—C8—C10—C11 −1.5 (6)
C6—C1—C2—C7 178.1 (4) N2—C8—C10—C15 −0.1 (6)
Cl1—C1—C2—C7 −4.0 (6) C9—C8—C10—C15 178.3 (4)
C1—C2—C3—C4 2.4 (6) C15—C10—C11—C12 0.2 (6)
C7—C2—C3—C4 −179.0 (4) C8—C10—C11—C12 −179.9 (4)
C2—C3—C4—C5 0.2 (7) C10—C11—C12—C13 0.5 (7)
C3—C4—C5—C6 −1.8 (8) C10—C11—C12—Br1 −178.7 (3)
C4—C5—C6—C1 0.7 (7) C11—C12—C13—C14 −0.6 (7)
C2—C1—C6—C5 2.0 (7) Br1—C12—C13—C14 178.6 (4)
Cl1—C1—C6—C5 −175.9 (4) C12—C13—C14—C15 0.0 (7)
N2—N1—C7—O1 5.5 (6) C13—C14—C15—O2 −178.6 (4)
N2—N1—C7—C2 −172.0 (3) C13—C14—C15—C10 0.8 (7)
C3—C2—C7—O1 −35.1 (6) C11—C10—C15—O2 178.4 (4)
C1—C2—C7—O1 143.3 (4) C8—C10—C15—O2 −1.4 (7)
C3—C2—C7—N1 142.5 (4) C11—C10—C15—C14 −0.9 (6)
C1—C2—C7—N1 −39.1 (6) C8—C10—C15—C14 179.2 (4)
N1—N2—C8—C10 −178.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2···N2 0.82 1.82 2.530 (4) 144.
N1—H1···O1i 0.86 2.16 2.858 (4) 138.

Symmetry codes: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2360).

References

  1. Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Carcelli, M., Mazza, P., Pelizzi, G. & Zani, F. (1995). J. Inorg. Biochem. 57, 43–62. [DOI] [PubMed]
  3. Chang, J.-G. (2008). Acta Cryst. E64, o198. [DOI] [PMC free article] [PubMed]
  4. Salem, A. A. (1998). Microchem. J. 60, 51–66.
  5. Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811048495/pk2360sup1.cif

e-67-o3365-sup1.cif (17.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811048495/pk2360Isup2.hkl

e-67-o3365-Isup2.hkl (128KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811048495/pk2360Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES