Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 19;67(Pt 12):o3368. doi: 10.1107/S1600536811048434

5,8-Dibromo-15-nitro-2,11-dithia­[3.3]paracyclo­phane

Fang Hu a,*, Zhi-Ming Chen a
PMCID: PMC3239012  PMID: 22199861

Abstract

In the title compound [systematic name: 13,15-dibromo-6-nitro-3,10-dithia­tricyclo­[10.2.2.25,8]octa­deca-1(14),5,7,12,15,17-hexa­ene], C16H13Br2NO2S2, the dihedral angle between the two benzene rings is 0.93 (2)°. The crystal structure is stabilized by weak π–π inter­molecular inter­actions [centroid–centroid distance = 3.286 (5) Å]. One S atom and the H atoms on neighboring C atoms are disordered over two sets of sites (occupancy ratios: S = 0.91:0.09 and H = 0.93:0.07).

Related literature

For industrial applications of paracyclo­phanes, see: Xu et al. (2008). For the preparation of the title compound, see: Wang et al. (2006).graphic file with name e-67-o3368-scheme1.jpg

Experimental

Crystal data

  • C16H13Br2NO2S2

  • M r = 475.21

  • Monoclinic, Inline graphic

  • a = 6.9200 (3) Å

  • b = 12.6556 (6) Å

  • c = 18.8743 (8) Å

  • β = 94.939 (2)°

  • V = 1646.81 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.18 mm−1

  • T = 298 K

  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • 11528 measured reflections

  • 3885 independent reflections

  • 2405 reflections with I > 2σ(I)

  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.119

  • S = 0.99

  • 3885 reflections

  • 218 parameters

  • 10 restraints

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811048434/jj2107sup1.cif

e-67-o3368-sup1.cif (26KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811048434/jj2107Isup2.hkl

e-67-o3368-Isup2.hkl (190.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811048434/jj2107Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to Professor Sheng-Hua Liu for technical assistance with the structure analysis and Dr Xiang-Gao Meng for the data collection.

supplementary crystallographic information

Comment

Molecular building blocks associated with para-cyclophanes are widely used in chiral catalysis, optoelectronic (NLO) materials, polymer chemistry, materials science, molecular electronics and organic solar cells (Xu et al. 2008). Crystallographic studies on these types of complexes are relatively sparse when compared to the volume of synthesis research carried out in these areas. Herein, we report the crystal structure of the title complex, (I).

In the title compound, C16 H13 Br2N O2 S2, (I), the dihedral angle between the two benzene rings is 0.93 (2)° (Fig. 1). Crystal packing is stabilized by weak π—π intermolecular interactions (centroid-to-centroid distance = 3.286 (5) Å). The S2 atom ((0.91:0.09 for the major and minor components) and H15A, H15B (0.93) H15C, H15D (0.07), H16A, H16B (0.93), H16C, H16D (0.07) atoms are disordered over two sites.

Experimental

A solution with equimolar amounts of 2,5-dibromo-1,4-bis(mercaptomethyl)benzene (3.26 g,10 mmol) and 1,4-dibromomethyl-2-nitrobenzene(3.10 g,10 mmol) in degassed THF (500 ml) was added dropwise under N2 over 12 h to a refluxing solution of potassium carbonate (6.9 g,50 mmol) in EtOH(1.5L). After 2 h at the reflux temperature, the mixture was cooled and the solvent removed. The resulting residue was treated with CH2Cl2 (300 ml) and water (300 ml). The aqueous was extracted with CH2Cl2 three times. The combined organic layers were dried over Na2SO4. The solvent was removed, and the resulting solid was chromatographed on silica gel using CH2Cl2/petroleum ether (1:1, v/v) as eluent. Colourless single crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of a dichloromethane/n-hexane(1:30) solution over a period of 5 days (Wang et al., 2006).

Refinement

During refinement, all the H atoms were placed in calculated positions and allowed to ride, with CH = 0.93 Å; CH2 = 0.97Å and Uiso(H) = 1.2Ueq(C). The S2, C15 & C16 atoms with attached H atoms are disorderd over two sites (occupancies = S: 0.91:0.09; C & H: 0.93: 0.07 for the major and minor components).

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Dashed lines indicate disorder in the S2 ((0.91:0.09), H15A, H15B (0.93) H15C, H15D (0.07), H16A, H16B (0.93), H16C, H16D (0.07) atoms disordered over two sites.

Crystal data

C16H13Br2NO2S2 F(000) = 936
Mr = 475.21 Dx = 1.917 Mg m3Dm = 1.917 Mg m3Dm measured by not measured
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 1981 reflections
a = 6.9200 (3) Å θ = 2.7–23.5°
b = 12.6556 (6) Å µ = 5.18 mm1
c = 18.8743 (8) Å T = 298 K
β = 94.939 (2)° Block, colorless
V = 1646.81 (13) Å3 0.20 × 0.10 × 0.10 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 2405 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.046
graphite θmax = 28.3°, θmin = 1.9°
Detector resolution: 14.63 pixels mm-1 h = −6→8
phi and ω scans k = −16→16
11528 measured reflections l = −24→24
3885 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119 H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0561P)2] where P = (Fo2 + 2Fc2)/3
3885 reflections (Δ/σ)max = 0.001
218 parameters Δρmax = 0.68 e Å3
10 restraints Δρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Br1 0.13008 (8) 0.55071 (3) 0.35467 (3) 0.05578 (18)
Br2 0.15356 (8) 0.04434 (3) 0.41644 (3) 0.06213 (19)
S1 0.44323 (16) 0.30062 (8) 0.21060 (5) 0.0411 (3)
S2 0.34926 (19) 0.28334 (11) 0.59074 (6) 0.0500 (3) 0.91
S2' 0.3416 (13) 0.1428 (9) 0.5658 (8) 0.070 (4) 0.09
O1 0.6200 (6) 0.0274 (3) 0.3297 (2) 0.0847 (12)
O2 0.7893 (5) 0.1268 (3) 0.26556 (17) 0.0686 (10)
N1 0.6927 (6) 0.1124 (3) 0.3165 (2) 0.0526 (10)
C1 0.1908 (6) 0.2278 (3) 0.3351 (2) 0.0373 (10)
H1 0.2078 0.1787 0.2996 0.045*
C2 0.1618 (5) 0.1933 (3) 0.4029 (2) 0.0359 (9)
C3 0.1406 (6) 0.2625 (3) 0.4590 (2) 0.0383 (10)
C4 0.1303 (6) 0.3690 (3) 0.4410 (2) 0.0382 (10)
H4 0.1068 0.4182 0.4758 0.046*
C5 0.1538 (5) 0.4037 (3) 0.3736 (2) 0.0329 (9)
C6 0.1946 (6) 0.3345 (3) 0.3197 (2) 0.0351 (9)
C7 0.2498 (6) 0.3724 (3) 0.2476 (2) 0.0461 (11)
H7A 0.2874 0.4461 0.2519 0.055*
H7B 0.1355 0.3687 0.2141 0.055*
C8 0.6582 (6) 0.3413 (4) 0.2651 (2) 0.0490 (11)
H8A 0.7714 0.3131 0.2447 0.059*
H8B 0.6671 0.4178 0.2640 0.059*
C9 0.6617 (6) 0.3057 (3) 0.3415 (2) 0.0388 (10)
C10 0.6674 (6) 0.2011 (3) 0.3653 (2) 0.0399 (10)
C11 0.6354 (6) 0.1726 (3) 0.4341 (2) 0.0414 (10)
H11 0.6364 0.1017 0.4470 0.050*
C12 0.6017 (5) 0.2495 (4) 0.4840 (2) 0.0405 (10)
C13 0.6116 (6) 0.3537 (3) 0.4629 (2) 0.0414 (10)
H13 0.5988 0.4067 0.4963 0.050*
C14 0.6398 (5) 0.3814 (3) 0.3939 (2) 0.0406 (10)
H14 0.6443 0.4527 0.3820 0.049*
C15 0.5534 (6) 0.2184 (4) 0.5567 (2) 0.0565 (13)
H15A 0.6666 0.2314 0.5895 0.068* 0.93
H15B 0.5293 0.1429 0.5567 0.068* 0.93
H15C 0.5438 0.2820 0.5849 0.068* 0.07
H15D 0.6630 0.1785 0.5782 0.068* 0.07
C16 0.1441 (6) 0.2292 (4) 0.5353 (2) 0.0507 (12)
H16A 0.1491 0.1527 0.5378 0.061* 0.93
H16B 0.0247 0.2518 0.5541 0.061* 0.93
H16C 0.0229 0.1934 0.5417 0.061* 0.07
H16D 0.1498 0.2914 0.5655 0.061* 0.07

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0760 (4) 0.0390 (2) 0.0522 (3) 0.0092 (2) 0.0046 (3) −0.0008 (2)
Br2 0.0733 (4) 0.0420 (3) 0.0746 (4) 0.0017 (2) 0.0269 (3) 0.0120 (2)
S1 0.0484 (7) 0.0486 (6) 0.0270 (6) 0.0011 (5) 0.0074 (5) −0.0040 (5)
S2 0.0590 (9) 0.0652 (8) 0.0267 (6) 0.0065 (6) 0.0086 (6) −0.0006 (6)
S2' 0.084 (8) 0.076 (7) 0.052 (7) 0.002 (7) 0.014 (6) 0.020 (6)
O1 0.103 (3) 0.061 (2) 0.095 (3) −0.026 (2) 0.033 (2) −0.029 (2)
O2 0.071 (3) 0.082 (3) 0.056 (2) 0.0060 (19) 0.0234 (19) −0.0144 (18)
N1 0.048 (3) 0.060 (3) 0.051 (3) −0.001 (2) 0.006 (2) −0.013 (2)
C1 0.036 (2) 0.040 (2) 0.036 (2) 0.0027 (18) 0.0072 (18) −0.0042 (18)
C2 0.031 (2) 0.039 (2) 0.040 (2) 0.0043 (17) 0.0125 (18) 0.0083 (19)
C3 0.028 (2) 0.054 (2) 0.034 (2) 0.0013 (19) 0.0103 (18) 0.0036 (19)
C4 0.035 (2) 0.048 (2) 0.032 (2) 0.0038 (19) 0.0054 (18) −0.0049 (19)
C5 0.028 (2) 0.037 (2) 0.035 (2) 0.0006 (17) 0.0042 (17) 0.0004 (17)
C6 0.030 (2) 0.043 (2) 0.032 (2) 0.0032 (17) 0.0005 (17) −0.0022 (17)
C7 0.054 (3) 0.051 (3) 0.034 (2) 0.009 (2) 0.007 (2) 0.007 (2)
C8 0.047 (3) 0.057 (3) 0.045 (3) −0.015 (2) 0.012 (2) 0.000 (2)
C9 0.023 (2) 0.060 (3) 0.033 (2) −0.0078 (19) 0.0046 (17) −0.001 (2)
C10 0.031 (2) 0.047 (2) 0.041 (3) 0.0025 (19) −0.0004 (19) −0.004 (2)
C11 0.029 (2) 0.052 (3) 0.043 (3) 0.0052 (19) 0.0017 (19) 0.007 (2)
C12 0.020 (2) 0.061 (3) 0.039 (2) 0.0014 (19) −0.0037 (18) 0.002 (2)
C13 0.033 (3) 0.055 (2) 0.036 (2) 0.004 (2) 0.0006 (19) −0.010 (2)
C14 0.029 (2) 0.048 (2) 0.044 (3) −0.0035 (19) −0.0013 (19) −0.001 (2)
C15 0.054 (3) 0.082 (3) 0.032 (2) 0.008 (3) −0.004 (2) 0.011 (2)
C16 0.040 (3) 0.070 (3) 0.044 (3) 0.000 (2) 0.011 (2) 0.013 (2)

Geometric parameters (Å, °)

Br1—C5 1.899 (4) C7—H7A 0.9700
Br2—C2 1.904 (4) C7—H7B 0.9700
S1—C7 1.807 (4) C8—C9 1.509 (5)
S1—C8 1.809 (4) C8—H8A 0.9700
S2—C15 1.800 (4) C8—H8B 0.9700
S2—C16 1.823 (4) C9—C14 1.396 (6)
S2—H15C 1.3601 C9—C10 1.398 (5)
S2—H16D 1.4245 C10—C11 1.384 (6)
S2'—C15 1.771 (9) C11—C12 1.386 (6)
S2'—C16 1.806 (9) C11—H11 0.9300
O1—N1 1.222 (5) C12—C13 1.381 (6)
O2—N1 1.231 (5) C12—C15 1.493 (6)
N1—C10 1.472 (5) C13—C14 1.378 (5)
C1—C6 1.382 (5) C13—H13 0.9300
C1—C2 1.383 (5) C14—H14 0.9300
C1—H1 0.9300 C15—H15A 0.9700
C2—C3 1.392 (5) C15—H15B 0.9700
C3—C4 1.390 (6) C15—H15C 0.9700
C3—C16 1.499 (5) C15—H15D 0.9700
C4—C5 1.369 (5) C16—H16A 0.9700
C4—H4 0.9300 C16—H16B 0.9700
C5—C6 1.389 (5) C16—H16C 0.9700
C6—C7 1.523 (6) C16—H16D 0.9700
C7—S1—C8 103.8 (2) C13—C12—C15 122.5 (4)
C15—S2—C16 102.7 (2) C11—C12—C15 120.2 (4)
C16—S2—H15C 132.5 C14—C13—C12 122.0 (4)
C15—S2—H16D 132.9 C14—C13—H13 119.0
H15C—S2—H16D 155.6 C12—C13—H13 119.0
C15—S2'—C16 104.6 (5) C13—C14—C9 121.8 (4)
O1—N1—O2 123.4 (4) C13—C14—H14 119.1
O1—N1—C10 118.0 (4) C9—C14—H14 119.1
O2—N1—C10 118.6 (4) C12—C15—S2' 119.0 (6)
C6—C1—C2 120.7 (4) C12—C15—S2 116.9 (3)
C6—C1—H1 119.6 S2'—C15—S2 62.0 (5)
C2—C1—H1 119.6 C12—C15—H15A 108.1
C1—C2—C3 122.5 (4) S2'—C15—H15A 131.2
C1—C2—Br2 116.4 (3) S2—C15—H15A 108.1
C3—C2—Br2 121.0 (3) C12—C15—H15B 108.1
C4—C3—C2 115.5 (4) S2'—C15—H15B 47.5
C4—C3—C16 120.3 (4) S2—C15—H15B 108.1
C2—C3—C16 124.0 (4) H15A—C15—H15B 107.3
C5—C4—C3 122.1 (4) C12—C15—H15C 108.5
C5—C4—H4 119.0 S2'—C15—H15C 107.4
C3—C4—H4 119.0 S2—C15—H15C 48.1
C4—C5—C6 121.7 (4) H15A—C15—H15C 66.4
C4—C5—Br1 118.3 (3) H15B—C15—H15C 143.0
C6—C5—Br1 120.0 (3) C12—C15—H15D 107.0
C1—C6—C5 116.9 (4) S2'—C15—H15D 107.6
C1—C6—C7 120.5 (4) S2—C15—H15D 134.3
C5—C6—C7 122.6 (4) H15B—C15—H15D 67.4
C6—C7—S1 116.0 (3) H15C—C15—H15D 107.0
C6—C7—H7A 108.3 C3—C16—S2' 115.2 (6)
S1—C7—H7A 108.3 C3—C16—S2 113.1 (3)
C6—C7—H7B 108.3 S2'—C16—S2 60.9 (4)
S1—C7—H7B 108.3 C3—C16—H16A 109.0
H7A—C7—H7B 107.4 S2'—C16—H16A 50.0
C9—C8—S1 113.8 (3) S2—C16—H16A 109.0
C9—C8—H8A 108.8 C3—C16—H16B 109.0
S1—C8—H8A 108.8 S2'—C16—H16B 135.0
C9—C8—H8B 108.8 S2—C16—H16B 109.0
S1—C8—H8B 108.8 H16A—C16—H16B 107.8
H8A—C8—H8B 107.7 C3—C16—H16C 108.0
C14—C9—C10 115.1 (4) S2'—C16—H16C 108.4
C14—C9—C8 118.6 (4) S2—C16—H16C 138.0
C10—C9—C8 126.0 (4) H16A—C16—H16C 63.6
C11—C10—C9 123.1 (4) H16B—C16—H16C 47.1
C11—C10—N1 115.3 (4) C3—C16—H16D 109.4
C9—C10—N1 121.5 (4) S2'—C16—H16D 108.2
C10—C11—C12 120.3 (4) S2—C16—H16D 50.8
C10—C11—H11 119.9 H16A—C16—H16D 141.5
C12—C11—H11 119.9 H16B—C16—H16D 62.6
C13—C12—C11 117.3 (4) H16C—C16—H16D 107.4
C6—C1—C2—C3 −1.8 (6) O1—N1—C10—C9 −150.2 (4)
C6—C1—C2—Br2 178.6 (3) O2—N1—C10—C9 31.4 (6)
C1—C2—C3—C4 6.4 (6) C9—C10—C11—C12 −2.1 (6)
Br2—C2—C3—C4 −174.0 (3) N1—C10—C11—C12 −177.4 (3)
C1—C2—C3—C16 −168.8 (4) C10—C11—C12—C13 −3.2 (6)
Br2—C2—C3—C16 10.8 (6) C10—C11—C12—C15 175.7 (4)
C2—C3—C4—C5 −4.6 (6) C11—C12—C13—C14 4.5 (6)
C16—C3—C4—C5 170.8 (4) C15—C12—C13—C14 −174.3 (4)
C3—C4—C5—C6 −1.8 (6) C12—C13—C14—C9 −0.6 (6)
C3—C4—C5—Br1 178.4 (3) C10—C9—C14—C13 −4.5 (6)
C2—C1—C6—C5 −4.7 (6) C8—C9—C14—C13 169.8 (4)
C2—C1—C6—C7 172.8 (4) C13—C12—C15—S2' 117.9 (6)
C4—C5—C6—C1 6.5 (6) C11—C12—C15—S2' −60.9 (6)
Br1—C5—C6—C1 −173.7 (3) C13—C12—C15—S2 46.7 (5)
C4—C5—C6—C7 −171.0 (4) C11—C12—C15—S2 −132.2 (4)
Br1—C5—C6—C7 8.8 (5) C16—S2'—C15—C12 −65.4 (9)
C1—C6—C7—S1 −38.9 (5) C16—S2'—C15—S2 41.5 (5)
C5—C6—C7—S1 138.6 (3) C16—S2—C15—C12 69.6 (4)
C8—S1—C7—C6 −72.3 (4) C16—S2—C15—S2' −40.6 (5)
C7—S1—C8—C9 65.9 (4) C4—C3—C16—S2' −127.1 (6)
S1—C8—C9—C14 −109.7 (4) C2—C3—C16—S2' 47.9 (7)
S1—C8—C9—C10 64.0 (5) C4—C3—C16—S2 −59.7 (5)
C14—C9—C10—C11 5.9 (6) C2—C3—C16—S2 115.3 (4)
C8—C9—C10—C11 −168.0 (4) C15—S2'—C16—C3 62.2 (9)
C14—C9—C10—N1 −179.1 (4) C15—S2'—C16—S2 −41.3 (5)
C8—C9—C10—N1 7.0 (6) C15—S2—C16—C3 −66.9 (4)
O1—N1—C10—C11 25.2 (6) C15—S2—C16—S2' 40.2 (5)
O2—N1—C10—C11 −153.2 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2107).

References

  1. Bruker (2001). SAINT-Plus and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  3. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  4. Wang, W., Xu, J., Zhang, X. & Lai, Y. H. (2006). Macromol. Chem. 39, 7277–7285.
  5. Xu, J. W., Wang, W. L., Lin, T. T., Sun, Z. & Lai, Y. H. (2008). Supramol. Chem. 20, 723–730.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811048434/jj2107sup1.cif

e-67-o3368-sup1.cif (26KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811048434/jj2107Isup2.hkl

e-67-o3368-Isup2.hkl (190.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811048434/jj2107Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES