Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 19;67(Pt 12):o3372. doi: 10.1107/S1600536811048471

5-(4,4′′-Difluoro-5′-hy­droxy-1,1′:3′,1′′-terphenyl-4′-yl)-3-(morpholin-4-ylmeth­yl)-1,3,4-oxadiazole-2(3H)-thione

Hoong-Kun Fun a,*,, Suhana Arshad a, S Samshuddin b, B Narayana b, B K Sarojini c
PMCID: PMC3239015  PMID: 22199864

Abstract

In the title compound, C25H21F2N3O3S, the morpholine ring adopts a chair conformation. The 1,3,4-oxadiazole-2(3H)-thione group makes dihedral angles of 78.69 (8), 53.56 (7) and 55.30 (9)° with the benzene rings. In the crystal, O—H⋯O, C—H⋯S and C—H⋯F hydrogen bonds linked the mol­ecules into layers lying parallel to the ab plane. Weak C—H⋯π inter­actions also occur.

Related literature

For pharmacological background, see: Bhatia & Gupta (2011); Liu (2006). For ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987).graphic file with name e-67-o3372-scheme1.jpg

Experimental

Crystal data

  • C25H21F2N3O3S

  • M r = 481.51

  • Monoclinic, Inline graphic

  • a = 16.0547 (14) Å

  • b = 11.4125 (11) Å

  • c = 25.364 (2) Å

  • β = 94.202 (2)°

  • V = 4634.9 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 296 K

  • 0.48 × 0.25 × 0.17 mm

Data collection

  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.916, T max = 0.969

  • 23057 measured reflections

  • 6182 independent reflections

  • 4139 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.143

  • S = 1.03

  • 6182 reflections

  • 311 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811048471/hb6502sup1.cif

e-67-o3372-sup1.cif (23.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811048471/hb6502Isup2.hkl

e-67-o3372-Isup2.hkl (302.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811048471/hb6502Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1O3⋯O2i 0.79 (2) 1.95 (2) 2.728 (2) 167 (2)
C5—H5A⋯S1ii 0.93 2.80 3.639 (2) 151
C12—H12A⋯F1iii 0.93 2.47 3.292 (2) 148
C23—H23A⋯F1iv 0.97 2.51 3.462 (3) 167
C1—H1ACg1v 0.93 2.91 3.414 (2) 115

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

HKF and SA thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). SA thanks the Malaysian Government and USM for the Academic Staff Training Scheme (ASTS) award. BN thanks the UGC for financial assistance through an SAP and BSR one-time grant for the purchase of chemicals. SS thanks Mangalore University for research facilities.

supplementary crystallographic information

Comment

Substituted 1,3,4-oxadiazoles are of considerable pharmaceutical interest. For a recent review, see: Bhatia & Gupta (2011). Polysubstituted aromatics such as terphenyls exhibit considerable biological properties, e.g., potent anticoagulant, immunosuppressants, antithrombotic, neuroprotective, specific 5-lipoxygenase inhibitory and cytotoxic activities (Liu, 2006). Encouraged by these diverse biological activities of 1,3,4-oxadiazoles and terphenyls, our research group has decided to prepare terphenyl derivative bearing the oxadiazole moiety, thus bringing both types of functional groups together in a single molecule: we now report the synthesis and structure of the title compound, (I). The precursor of the title compound was prepared from 4,4'-difluorochalcone by several steps.

The molecular structure is shown in Fig. 1. The morpholine ring adopts a chair conformation with puckering parameters Q= 0.579 (2) Å, Θ= 2.9 (2)° and φ= 247 (5)° (Cremer & Pople, 1975). The 1,3,4-oxadiazole-2(3H)-thione (S1/C20/O1/C19/N1/N2) group makes dihedral angles of 78.69 (8), 53.56 (7) and 55.30 (9) ° with the benzene (C1–C6, C7–C12 & C13–C18) rings, respectively. Bond lengths (Allen et al., 1987) and angles are within normal ranges.

The crystal packing is shown in Fig. 2. Intermolecular O3—H1O3···O2, C5—H5A···S1, C12—H12A···F1 and C23—H23A···F1 hydrogen bonds (Table 1) linked the molecules into layers parallel to ab plane. C—H···π interactions (Table 1) which involves C1 and phenyl ring (Cg1 = C7–C12) further stabilize the crystal structure.

Experimental

To a solution of 5-(4,4''-difluoro-5'-hydroxy-1,1':3',1''-terphenyl-4'-yl) -1,3,4-oxadiazole-2(3H)-thione (3.82 g, 0.01 mol) in ethanol (5 ml) was added formaldehyde (0.5 ml, 37%) and morpholine (0.01 mol). The reaction mixture was stirred overnight. After cooling, the precipitate was filtered and crystallized from ethanol. Colourless blocks of (I) were grown from 1:1 mixture of ethanol and DMF by slow evaporation and the yield was 72%. M.p.: 475 K.

Refinement

H1O3 atom attached to the O atom was located from the difference map and refined freely, [O–H = 0.78 (3) Å]. The remaining H atoms were positioned geometrically [C–H = 0.93 or 0.97 Å] and refined using a riding model with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of the title compound. Dashed lines represent the hydrogen bonds. Hydrogen atoms not involved in hydrogen bonding have been omitted for the sake of clarity.

Crystal data

C25H21F2N3O3S F(000) = 2000
Mr = 481.51 Dx = 1.380 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 6002 reflections
a = 16.0547 (14) Å θ = 2.3–27.3°
b = 11.4125 (11) Å µ = 0.19 mm1
c = 25.364 (2) Å T = 296 K
β = 94.202 (2)° Block, colourless
V = 4634.9 (7) Å3 0.48 × 0.25 × 0.17 mm
Z = 8

Data collection

Bruker SMART APEXII DUO CCD area-detector diffractometer 6182 independent reflections
Radiation source: fine-focus sealed tube 4139 reflections with I > 2σ(I)
graphite Rint = 0.029
φ and ω scans θmax = 29.1°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −20→21
Tmin = 0.916, Tmax = 0.969 k = −15→14
23057 measured reflections l = −34→34

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0688P)2 + 1.531P] where P = (Fo2 + 2Fc2)/3
6182 reflections (Δ/σ)max < 0.001
311 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.15583 (3) 0.82030 (5) 0.44595 (2) 0.06259 (17)
F1 0.77333 (9) 0.33903 (13) 0.20221 (6) 0.0943 (5)
F2 0.46943 (11) 1.25156 (10) 0.31200 (6) 0.1043 (5)
O1 0.29532 (7) 0.74319 (10) 0.40602 (4) 0.0469 (3)
O2 0.38526 (11) 1.29292 (12) 0.42547 (7) 0.0812 (5)
O3 0.39200 (10) 0.53070 (12) 0.41580 (6) 0.0697 (5)
N1 0.39553 (9) 0.85596 (11) 0.44436 (5) 0.0439 (3)
N2 0.31768 (8) 0.88887 (11) 0.45963 (5) 0.0420 (3)
N3 0.32987 (9) 1.09806 (11) 0.48147 (6) 0.0462 (3)
C1 0.64272 (12) 0.56922 (18) 0.24724 (7) 0.0583 (5)
H1A 0.6243 0.6433 0.2366 0.070*
C2 0.69619 (13) 0.5084 (2) 0.21659 (8) 0.0673 (6)
H2A 0.7141 0.5411 0.1858 0.081*
C3 0.72171 (12) 0.4003 (2) 0.23261 (8) 0.0616 (5)
C4 0.69747 (13) 0.34894 (18) 0.27745 (9) 0.0635 (5)
H4A 0.7161 0.2744 0.2873 0.076*
C5 0.64462 (12) 0.41028 (16) 0.30795 (8) 0.0569 (5)
H5A 0.6277 0.3764 0.3388 0.068*
C6 0.61605 (10) 0.52180 (14) 0.29362 (6) 0.0456 (4)
C7 0.55723 (10) 0.58586 (14) 0.32581 (6) 0.0451 (4)
C8 0.50339 (11) 0.52572 (14) 0.35719 (7) 0.0504 (4)
H8A 0.5062 0.4445 0.3594 0.061*
C9 0.44575 (11) 0.58574 (14) 0.38513 (7) 0.0498 (4)
C10 0.43949 (10) 0.70772 (13) 0.38186 (6) 0.0432 (4)
C11 0.49340 (10) 0.76946 (13) 0.35017 (6) 0.0428 (4)
C12 0.55155 (11) 0.70777 (14) 0.32334 (7) 0.0473 (4)
H12A 0.5878 0.7488 0.3031 0.057*
C13 0.48645 (11) 0.89862 (13) 0.34198 (6) 0.0442 (4)
C14 0.41390 (13) 0.94776 (16) 0.31948 (8) 0.0605 (5)
H14A 0.3680 0.8998 0.3111 0.073*
C15 0.40759 (16) 1.06664 (18) 0.30901 (9) 0.0715 (6)
H15A 0.3585 1.0987 0.2935 0.086*
C16 0.47502 (17) 1.13499 (16) 0.32200 (9) 0.0669 (6)
C17 0.54758 (16) 1.09168 (18) 0.34457 (10) 0.0725 (6)
H17A 0.5925 1.1412 0.3533 0.087*
C18 0.55406 (13) 0.97158 (16) 0.35447 (8) 0.0591 (5)
H18A 0.6038 0.9405 0.3695 0.071*
C19 0.37959 (10) 0.77082 (13) 0.41218 (6) 0.0410 (3)
C20 0.25662 (11) 0.82095 (14) 0.43819 (6) 0.0434 (4)
C21 0.30977 (12) 0.98278 (14) 0.49890 (7) 0.0497 (4)
H21A 0.2528 0.9833 0.5093 0.060*
H21B 0.3460 0.9643 0.5301 0.060*
C22 0.28404 (13) 1.13579 (17) 0.43316 (8) 0.0602 (5)
H22A 0.2249 1.1204 0.4352 0.072*
H22B 0.3030 1.0927 0.4033 0.072*
C23 0.29823 (15) 1.26587 (18) 0.42564 (9) 0.0719 (6)
H23A 0.2698 1.2908 0.3925 0.086*
H23B 0.2744 1.3088 0.4539 0.086*
C24 0.42904 (15) 1.25413 (18) 0.47370 (12) 0.0814 (7)
H24A 0.4074 1.2946 0.5034 0.098*
H24B 0.4879 1.2729 0.4731 0.098*
C25 0.41867 (12) 1.12362 (16) 0.48025 (10) 0.0644 (5)
H25A 0.4414 1.0825 0.4510 0.077*
H25B 0.4484 1.0978 0.5129 0.077*
H1O3 0.3975 (15) 0.462 (2) 0.4167 (10) 0.085 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0450 (3) 0.0795 (4) 0.0650 (3) −0.0045 (2) 0.0151 (2) 0.0078 (2)
F1 0.0814 (9) 0.1175 (12) 0.0876 (9) 0.0413 (8) 0.0312 (7) −0.0178 (8)
F2 0.1615 (16) 0.0372 (6) 0.1162 (11) −0.0069 (7) 0.0247 (11) 0.0151 (7)
O1 0.0495 (7) 0.0439 (6) 0.0489 (6) −0.0027 (5) 0.0138 (5) −0.0051 (5)
O2 0.0963 (12) 0.0428 (7) 0.1116 (12) 0.0026 (7) 0.0566 (10) 0.0151 (8)
O3 0.0916 (11) 0.0357 (7) 0.0894 (10) −0.0003 (7) 0.0576 (9) 0.0079 (6)
N1 0.0444 (7) 0.0367 (7) 0.0522 (7) −0.0046 (5) 0.0149 (6) −0.0034 (6)
N2 0.0448 (8) 0.0333 (6) 0.0500 (7) −0.0026 (5) 0.0170 (6) −0.0023 (5)
N3 0.0476 (8) 0.0344 (7) 0.0585 (8) 0.0001 (6) 0.0167 (6) −0.0009 (6)
C1 0.0570 (11) 0.0596 (11) 0.0609 (10) 0.0109 (9) 0.0209 (9) 0.0060 (9)
C2 0.0602 (13) 0.0873 (15) 0.0574 (10) 0.0148 (11) 0.0241 (9) 0.0043 (10)
C3 0.0450 (10) 0.0789 (14) 0.0621 (11) 0.0153 (9) 0.0114 (8) −0.0157 (10)
C4 0.0587 (12) 0.0581 (11) 0.0748 (13) 0.0153 (9) 0.0117 (10) −0.0077 (10)
C5 0.0599 (11) 0.0527 (10) 0.0597 (10) 0.0059 (8) 0.0163 (9) 0.0002 (8)
C6 0.0416 (9) 0.0453 (9) 0.0509 (8) 0.0004 (7) 0.0105 (7) −0.0044 (7)
C7 0.0450 (9) 0.0416 (8) 0.0501 (8) −0.0016 (7) 0.0129 (7) −0.0034 (7)
C8 0.0615 (11) 0.0322 (8) 0.0603 (10) 0.0012 (7) 0.0230 (8) 0.0000 (7)
C9 0.0603 (11) 0.0364 (8) 0.0557 (9) −0.0037 (7) 0.0249 (8) 0.0004 (7)
C10 0.0481 (9) 0.0341 (8) 0.0492 (8) −0.0036 (6) 0.0165 (7) −0.0048 (6)
C11 0.0440 (9) 0.0343 (8) 0.0513 (8) −0.0074 (6) 0.0123 (7) −0.0036 (6)
C12 0.0454 (9) 0.0416 (8) 0.0569 (9) −0.0088 (7) 0.0179 (8) −0.0020 (7)
C13 0.0510 (10) 0.0348 (8) 0.0488 (8) −0.0092 (7) 0.0174 (7) −0.0038 (6)
C14 0.0619 (12) 0.0458 (10) 0.0732 (12) −0.0109 (9) 0.0013 (10) 0.0040 (9)
C15 0.0857 (16) 0.0513 (11) 0.0769 (13) 0.0032 (11) 0.0012 (12) 0.0133 (10)
C16 0.0993 (17) 0.0350 (9) 0.0689 (12) −0.0083 (10) 0.0234 (12) 0.0032 (8)
C17 0.0840 (16) 0.0447 (11) 0.0906 (15) −0.0277 (11) 0.0186 (13) −0.0078 (10)
C18 0.0573 (11) 0.0458 (10) 0.0753 (12) −0.0151 (8) 0.0122 (9) −0.0045 (9)
C19 0.0456 (9) 0.0325 (7) 0.0464 (8) −0.0056 (6) 0.0137 (7) 0.0005 (6)
C20 0.0472 (9) 0.0408 (8) 0.0434 (8) −0.0030 (7) 0.0127 (7) 0.0057 (6)
C21 0.0621 (11) 0.0389 (8) 0.0509 (9) −0.0035 (7) 0.0232 (8) −0.0050 (7)
C22 0.0640 (12) 0.0498 (10) 0.0677 (12) 0.0024 (9) 0.0110 (10) 0.0033 (9)
C23 0.0871 (16) 0.0531 (11) 0.0778 (13) 0.0152 (11) 0.0208 (12) 0.0155 (10)
C24 0.0629 (13) 0.0455 (11) 0.139 (2) −0.0091 (9) 0.0271 (15) 0.0061 (13)
C25 0.0505 (11) 0.0415 (10) 0.1024 (16) −0.0016 (8) 0.0153 (10) 0.0027 (10)

Geometric parameters (Å, °)

S1—C20 1.6445 (17) C8—H8A 0.9300
F1—C3 1.365 (2) C9—C10 1.398 (2)
F2—C16 1.356 (2) C10—C11 1.412 (2)
O1—C20 1.3834 (18) C10—C19 1.464 (2)
O1—C19 1.3868 (19) C11—C12 1.387 (2)
O2—C23 1.431 (3) C11—C13 1.492 (2)
O2—C24 1.436 (3) C12—H12A 0.9300
O3—C9 1.3577 (18) C13—C14 1.378 (3)
O3—H1O3 0.78 (3) C13—C18 1.386 (2)
N1—C19 1.283 (2) C14—C15 1.385 (3)
N1—N2 1.3871 (18) C14—H14A 0.9300
N2—C20 1.334 (2) C15—C16 1.355 (3)
N2—C21 1.4749 (19) C15—H15A 0.9300
N3—C21 1.432 (2) C16—C17 1.353 (3)
N3—C22 1.448 (3) C17—C18 1.396 (3)
N3—C25 1.458 (2) C17—H17A 0.9300
C1—C2 1.386 (2) C18—H18A 0.9300
C1—C6 1.391 (2) C21—H21A 0.9700
C1—H1A 0.9300 C21—H21B 0.9700
C2—C3 1.353 (3) C22—C23 1.516 (3)
C2—H2A 0.9300 C22—H22A 0.9700
C3—C4 1.362 (3) C22—H22B 0.9700
C4—C5 1.380 (2) C23—H23A 0.9700
C4—H4A 0.9300 C23—H23B 0.9700
C5—C6 1.392 (2) C24—C25 1.509 (3)
C5—H5A 0.9300 C24—H24A 0.9700
C6—C7 1.485 (2) C24—H24B 0.9700
C7—C12 1.395 (2) C25—H25A 0.9700
C7—C8 1.397 (2) C25—H25B 0.9700
C8—C9 1.387 (2)
C20—O1—C19 105.32 (12) C13—C14—H14A 119.1
C23—O2—C24 110.36 (15) C15—C14—H14A 119.1
C9—O3—H1O3 113.7 (18) C16—C15—C14 118.1 (2)
C19—N1—N2 103.95 (13) C16—C15—H15A 120.9
C20—N2—N1 112.27 (12) C14—C15—H15A 120.9
C20—N2—C21 126.91 (14) C17—C16—C15 122.69 (18)
N1—N2—C21 120.62 (13) C17—C16—F2 118.7 (2)
C21—N3—C22 114.98 (15) C15—C16—F2 118.6 (2)
C21—N3—C25 115.67 (14) C16—C17—C18 119.03 (19)
C22—N3—C25 111.09 (15) C16—C17—H17A 120.5
C2—C1—C6 121.44 (18) C18—C17—H17A 120.5
C2—C1—H1A 119.3 C13—C18—C17 120.1 (2)
C6—C1—H1A 119.3 C13—C18—H18A 119.9
C3—C2—C1 118.32 (18) C17—C18—H18A 119.9
C3—C2—H2A 120.8 N1—C19—O1 113.05 (13)
C1—C2—H2A 120.8 N1—C19—C10 126.79 (15)
C2—C3—C4 123.01 (17) O1—C19—C10 120.12 (13)
C2—C3—F1 118.72 (18) N2—C20—O1 105.36 (13)
C4—C3—F1 118.27 (19) N2—C20—S1 130.84 (12)
C3—C4—C5 118.36 (19) O1—C20—S1 123.79 (12)
C3—C4—H4A 120.8 N3—C21—N2 115.25 (13)
C5—C4—H4A 120.8 N3—C21—H21A 108.5
C4—C5—C6 121.45 (17) N2—C21—H21A 108.5
C4—C5—H5A 119.3 N3—C21—H21B 108.5
C6—C5—H5A 119.3 N2—C21—H21B 108.5
C1—C6—C5 117.43 (15) H21A—C21—H21B 107.5
C1—C6—C7 121.40 (15) N3—C22—C23 109.02 (18)
C5—C6—C7 121.14 (15) N3—C22—H22A 109.9
C12—C7—C8 118.31 (14) C23—C22—H22A 109.9
C12—C7—C6 120.54 (14) N3—C22—H22B 109.9
C8—C7—C6 121.07 (14) C23—C22—H22B 109.9
C9—C8—C7 120.80 (15) H22A—C22—H22B 108.3
C9—C8—H8A 119.6 O2—C23—C22 111.55 (16)
C7—C8—H8A 119.6 O2—C23—H23A 109.3
O3—C9—C8 122.70 (15) C22—C23—H23A 109.3
O3—C9—C10 116.67 (14) O2—C23—H23B 109.3
C8—C9—C10 120.62 (14) C22—C23—H23B 109.3
C9—C10—C11 119.10 (14) H23A—C23—H23B 108.0
C9—C10—C19 120.39 (13) O2—C24—C25 110.3 (2)
C11—C10—C19 120.48 (14) O2—C24—H24A 109.6
C12—C11—C10 119.26 (14) C25—C24—H24A 109.6
C12—C11—C13 118.65 (13) O2—C24—H24B 109.6
C10—C11—C13 121.99 (13) C25—C24—H24B 109.6
C11—C12—C7 121.89 (14) H24A—C24—H24B 108.1
C11—C12—H12A 119.1 N3—C25—C24 108.40 (16)
C7—C12—H12A 119.1 N3—C25—H25A 110.0
C14—C13—C18 118.30 (16) C24—C25—H25A 110.0
C14—C13—C11 120.80 (15) N3—C25—H25B 110.0
C18—C13—C11 120.83 (17) C24—C25—H25B 110.0
C13—C14—C15 121.73 (19) H25A—C25—H25B 108.4
C19—N1—N2—C20 2.31 (17) C18—C13—C14—C15 0.4 (3)
C19—N1—N2—C21 177.47 (14) C11—C13—C14—C15 −176.60 (18)
C6—C1—C2—C3 0.5 (3) C13—C14—C15—C16 −0.6 (3)
C1—C2—C3—C4 −0.2 (3) C14—C15—C16—C17 0.1 (3)
C1—C2—C3—F1 178.97 (19) C14—C15—C16—F2 −179.89 (19)
C2—C3—C4—C5 −0.2 (3) C15—C16—C17—C18 0.7 (3)
F1—C3—C4—C5 −179.36 (19) F2—C16—C17—C18 −179.34 (19)
C3—C4—C5—C6 0.2 (3) C14—C13—C18—C17 0.4 (3)
C2—C1—C6—C5 −0.5 (3) C11—C13—C18—C17 177.39 (17)
C2—C1—C6—C7 −178.59 (18) C16—C17—C18—C13 −0.9 (3)
C4—C5—C6—C1 0.1 (3) N2—N1—C19—O1 −1.38 (17)
C4—C5—C6—C7 178.19 (18) N2—N1—C19—C10 176.19 (14)
C1—C6—C7—C12 −24.7 (3) C20—O1—C19—N1 0.08 (17)
C5—C6—C7—C12 157.23 (18) C20—O1—C19—C10 −177.68 (13)
C1—C6—C7—C8 152.03 (18) C9—C10—C19—N1 125.76 (19)
C5—C6—C7—C8 −26.0 (3) C11—C10—C19—N1 −52.3 (2)
C12—C7—C8—C9 0.0 (3) C9—C10—C19—O1 −56.8 (2)
C6—C7—C8—C9 −176.80 (17) C11—C10—C19—O1 125.07 (16)
C7—C8—C9—O3 179.61 (18) N1—N2—C20—O1 −2.28 (16)
C7—C8—C9—C10 0.9 (3) C21—N2—C20—O1 −177.07 (14)
O3—C9—C10—C11 −179.50 (17) N1—N2—C20—S1 176.89 (12)
C8—C9—C10—C11 −0.8 (3) C21—N2—C20—S1 2.1 (2)
O3—C9—C10—C19 2.4 (3) C19—O1—C20—N2 1.33 (15)
C8—C9—C10—C19 −178.88 (17) C19—O1—C20—S1 −177.92 (12)
C9—C10—C11—C12 −0.4 (3) C22—N3—C21—N2 54.9 (2)
C19—C10—C11—C12 177.73 (16) C25—N3—C21—N2 −76.8 (2)
C9—C10—C11—C13 175.85 (17) C20—N2—C21—N3 −116.90 (18)
C19—C10—C11—C13 −6.0 (3) N1—N2—C21—N3 68.7 (2)
C10—C11—C12—C7 1.4 (3) C21—N3—C22—C23 168.57 (15)
C13—C11—C12—C7 −174.96 (17) C25—N3—C22—C23 −57.65 (19)
C8—C7—C12—C11 −1.2 (3) C24—O2—C23—C22 −57.5 (2)
C6—C7—C12—C11 175.63 (16) N3—C22—C23—O2 56.2 (2)
C12—C11—C13—C14 116.54 (19) C23—O2—C24—C25 59.3 (2)
C10—C11—C13—C14 −59.7 (2) C21—N3—C25—C24 −166.88 (18)
C12—C11—C13—C18 −60.4 (2) C22—N3—C25—C24 59.7 (2)
C10—C11—C13—C18 123.36 (18) O2—C24—C25—N3 −59.7 (2)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C7–C12 ring.
D—H···A D—H H···A D···A D—H···A
O3—H1O3···O2i 0.79 (2) 1.95 (2) 2.728 (2) 167 (2)
C5—H5A···S1ii 0.93 2.80 3.639 (2) 151
C12—H12A···F1iii 0.93 2.47 3.292 (2) 148
C23—H23A···F1iv 0.97 2.51 3.462 (3) 167
C1—H1A···Cg1v 0.93 2.91 3.414 (2) 115

Symmetry codes: (i) x, y−1, z; (ii) x+1/2, y−1/2, z; (iii) −x+3/2, y+1/2, −z+1/2; (iv) −x+1, y+1, −z+1/2; (v) −x+1, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6502).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bhatia, S. & Gupta, M. (2011). J. Chem. Pharm. Res. 3, 137–147.
  3. Bruker (2009). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  5. Liu, J. K. (2006). Chem. Rev., 106, 2209–2223. [DOI] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811048471/hb6502sup1.cif

e-67-o3372-sup1.cif (23.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811048471/hb6502Isup2.hkl

e-67-o3372-Isup2.hkl (302.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811048471/hb6502Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES