Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 19;67(Pt 12):o3373. doi: 10.1107/S1600536811048276

2-(4-Chloro­anilino)-1-(4-chloro­phen­yl)ethanone

Hoong-Kun Fun a,*,, Ching Kheng Quah a,§, A M Vijesh b,c, A M Isloor c, T Arulmoli b
PMCID: PMC3239017  PMID: 22199865

Abstract

In the title compound, C14H11Cl2NO, the benzene rings form a dihedral angle of 3.14 (6)°. Overall, the mol­ecule is close to being planar (r.m.s. deviation for all the non-H atoms = 0.054 Å). No significant directional inter­molecular inter­actions are observed in the crystal structure.

Related literature

For general background to amine derivatives, see: Sridharan et al. (2006). For bond-length data, see: Allen et al. (1987). For related structures, see: Fun et al. (2010, 2011).graphic file with name e-67-o3373-scheme1.jpg

Experimental

Crystal data

  • C14H11Cl2NO

  • M r = 280.14

  • Triclinic, Inline graphic

  • a = 5.7286 (3) Å

  • b = 7.4225 (5) Å

  • c = 15.4274 (9) Å

  • α = 85.337 (1)°

  • β = 89.772 (1)°

  • γ = 82.519 (1)°

  • V = 648.23 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 296 K

  • 0.55 × 0.26 × 0.15 mm

Data collection

  • Bruker SMART APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.776, T max = 0.931

  • 14634 measured reflections

  • 4406 independent reflections

  • 3279 reflections with I > 2σ(I)

  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.121

  • S = 1.05

  • 4406 reflections

  • 167 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811048276/hb6501sup1.cif

e-67-o3373-sup1.cif (16.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811048276/hb6501Isup2.hkl

e-67-o3373-Isup2.hkl (215.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811048276/hb6501Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and CKQ thank Universiti Sains Malysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160). AMI is thankful to the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India, for the Young scientist award. AMV is thankful to the management of SeQuent Scientific Ltd, New Mangalore, India, for their invaluable support and allocation of resources for this work.

supplementary crystallographic information

Comment

1-(4-Chlorophenyl)-2-[(4-chlorophenyl)amino]ethanone is a derivative of an amine formed by the reaction between an amine and phenacyl bromide. It finds applications in the field of synthetic chemistry and is a key intermediate in indole synthesis (Sridharan et al., 2006). Keeping this in view, the title compound was synthesized to study its crystal structure.

The molecular structure is shown in Fig. 1. The phenyl rings (C1-C6 and C9-C14) form a dihedral angle of 3.14 (6) °. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Fun et al., 2010, 2011). No significant hydrogen bond is observed in this compound.

Experimental

The mixture of 4-chloroaniline (1.0 g, 0.0078 mol) potassium carbonate (0.95 g, 0.0069 mol) and 2-bromo-1-(4-chlorophenyl)ethanone (1.83 g, 0.0078 mol) in dimethyl formamide (10 ml) was stirred at room temperature for 2 h. On cooling, colorless needle-shaped crystals 2-(4-chlorophenyl)- 2-oxoethyl 2-methylbenzoate begins to separate. It was collected by filtration and recrystallized from hot ethanol as colourless needles. Yield: 1.85 g, 84.5 %, m.p.: 427-428 K.

Refinement

H1N1 was located in a difference Fourier map and allowed to refine freely [N1–H1n1 = 0.780 (17) Å]. The remaining H atoms were positioned geometrically and refined using a riding model with C–H = 0.93 or 0.97 Å and Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms.

Crystal data

C14H11Cl2NO Z = 2
Mr = 280.14 F(000) = 288
Triclinic, P1 Dx = 1.435 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.7286 (3) Å Cell parameters from 5676 reflections
b = 7.4225 (5) Å θ = 2.7–31.5°
c = 15.4274 (9) Å µ = 0.49 mm1
α = 85.337 (1)° T = 296 K
β = 89.772 (1)° Needle, colorless
γ = 82.519 (1)° 0.55 × 0.26 × 0.15 mm
V = 648.23 (7) Å3

Data collection

Bruker SMART APEXII DUO CCD diffractometer 4406 independent reflections
Radiation source: fine-focus sealed tube 3279 reflections with I > 2σ(I)
graphite Rint = 0.017
φ and ω scans θmax = 31.9°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −8→8
Tmin = 0.776, Tmax = 0.931 k = −10→10
14634 measured reflections l = −22→22

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0546P)2 + 0.1078P] where P = (Fo2 + 2Fc2)/3
4406 reflections (Δ/σ)max = 0.001
167 parameters Δρmax = 0.29 e Å3
0 restraints Δρmin = −0.31 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.53272 (7) 0.38195 (5) 0.30213 (2) 0.06177 (13)
Cl2 1.09875 (12) 0.23470 (8) −0.52931 (3) 0.0986 (2)
O1 1.46099 (17) 0.11247 (15) −0.11538 (6) 0.0595 (3)
N1 1.1416 (2) 0.20038 (17) 0.00358 (7) 0.0479 (3)
C1 1.0802 (2) 0.20624 (16) 0.15684 (7) 0.0414 (2)
H1A 1.2343 0.1513 0.1664 0.050*
C2 0.9398 (2) 0.24941 (18) 0.22701 (8) 0.0450 (3)
H2A 0.9990 0.2233 0.2833 0.054*
C3 0.7107 (2) 0.33154 (16) 0.21332 (8) 0.0418 (2)
C4 0.6222 (2) 0.37011 (17) 0.13004 (8) 0.0448 (3)
H4A 0.4682 0.4259 0.1213 0.054*
C5 0.7621 (2) 0.32599 (17) 0.05920 (8) 0.0428 (2)
H5A 0.7008 0.3513 0.0032 0.051*
C6 0.99495 (19) 0.24365 (14) 0.07159 (7) 0.0363 (2)
C7 1.0671 (2) 0.23121 (16) −0.08528 (7) 0.0392 (2)
H7A 1.0121 0.3597 −0.0986 0.047*
H7B 0.9371 0.1631 −0.0946 0.047*
C8 1.2670 (2) 0.17276 (15) −0.14502 (7) 0.0399 (2)
C9 1.2203 (2) 0.19003 (15) −0.24018 (7) 0.0392 (2)
C10 1.3956 (2) 0.12290 (19) −0.29565 (9) 0.0519 (3)
H10A 1.5399 0.0686 −0.2726 0.062*
C11 1.3597 (3) 0.1352 (2) −0.38450 (9) 0.0623 (4)
H11A 1.4780 0.0889 −0.4212 0.075*
C12 1.1463 (3) 0.2168 (2) −0.41788 (9) 0.0583 (4)
C13 0.9689 (3) 0.2858 (2) −0.36467 (9) 0.0592 (4)
H13A 0.8257 0.3412 −0.3883 0.071*
C14 1.0057 (2) 0.27170 (19) −0.27579 (8) 0.0497 (3)
H14A 0.8861 0.3172 −0.2394 0.060*
H1N1 1.266 (3) 0.146 (2) 0.0124 (11) 0.058 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0600 (2) 0.0724 (2) 0.0522 (2) −0.00031 (16) 0.01890 (15) −0.01462 (16)
Cl2 0.1357 (5) 0.1203 (4) 0.03485 (19) 0.0016 (4) −0.0021 (2) −0.0062 (2)
O1 0.0450 (5) 0.0820 (7) 0.0464 (5) 0.0127 (5) −0.0019 (4) −0.0088 (5)
N1 0.0406 (5) 0.0649 (7) 0.0342 (5) 0.0077 (5) 0.0009 (4) −0.0032 (4)
C1 0.0368 (5) 0.0484 (6) 0.0370 (5) 0.0015 (4) −0.0030 (4) −0.0028 (4)
C2 0.0460 (6) 0.0537 (7) 0.0343 (5) −0.0022 (5) −0.0024 (4) −0.0050 (5)
C3 0.0422 (6) 0.0426 (6) 0.0409 (5) −0.0038 (4) 0.0072 (4) −0.0075 (4)
C4 0.0354 (5) 0.0496 (6) 0.0472 (6) 0.0009 (5) 0.0017 (4) −0.0003 (5)
C5 0.0382 (5) 0.0511 (6) 0.0370 (5) −0.0008 (5) −0.0029 (4) 0.0007 (4)
C6 0.0370 (5) 0.0370 (5) 0.0346 (5) −0.0034 (4) 0.0006 (4) −0.0028 (4)
C7 0.0390 (5) 0.0440 (6) 0.0342 (5) −0.0033 (4) 0.0020 (4) −0.0044 (4)
C8 0.0402 (5) 0.0407 (5) 0.0382 (5) −0.0017 (4) 0.0028 (4) −0.0051 (4)
C9 0.0424 (5) 0.0389 (5) 0.0360 (5) −0.0036 (4) 0.0041 (4) −0.0042 (4)
C10 0.0497 (7) 0.0587 (7) 0.0442 (6) 0.0056 (6) 0.0078 (5) −0.0063 (5)
C11 0.0715 (9) 0.0697 (9) 0.0429 (7) 0.0045 (7) 0.0163 (6) −0.0099 (6)
C12 0.0788 (10) 0.0608 (8) 0.0348 (6) −0.0071 (7) 0.0034 (6) −0.0044 (5)
C13 0.0592 (8) 0.0745 (9) 0.0408 (6) 0.0020 (7) −0.0048 (6) −0.0024 (6)
C14 0.0463 (6) 0.0611 (8) 0.0393 (6) 0.0028 (5) 0.0028 (5) −0.0056 (5)

Geometric parameters (Å, °)

Cl1—C3 1.7406 (12) C5—H5A 0.9300
Cl2—C12 1.7332 (14) C7—C8 1.5091 (15)
O1—C8 1.2187 (14) C7—H7A 0.9700
N1—C6 1.3738 (15) C7—H7B 0.9700
N1—C7 1.4290 (15) C8—C9 1.4855 (16)
N1—H1N1 0.780 (17) C9—C10 1.3860 (16)
C1—C2 1.3798 (16) C9—C14 1.3921 (17)
C1—C6 1.3985 (15) C10—C11 1.3808 (19)
C1—H1A 0.9300 C10—H10A 0.9300
C2—C3 1.3823 (17) C11—C12 1.374 (2)
C2—H2A 0.9300 C11—H11A 0.9300
C3—C4 1.3774 (17) C12—C13 1.377 (2)
C4—C5 1.3881 (17) C13—C14 1.3817 (18)
C4—H4A 0.9300 C13—H13A 0.9300
C5—C6 1.4000 (16) C14—H14A 0.9300
C6—N1—C7 122.77 (10) N1—C7—H7B 109.5
C6—N1—H1N1 120.3 (13) C8—C7—H7B 109.5
C7—N1—H1N1 116.5 (13) H7A—C7—H7B 108.1
C2—C1—C6 121.18 (10) O1—C8—C9 121.31 (11)
C2—C1—H1A 119.4 O1—C8—C7 120.43 (10)
C6—C1—H1A 119.4 C9—C8—C7 118.26 (10)
C1—C2—C3 119.77 (11) C10—C9—C14 118.66 (11)
C1—C2—H2A 120.1 C10—C9—C8 119.16 (11)
C3—C2—H2A 120.1 C14—C9—C8 122.18 (10)
C4—C3—C2 120.29 (11) C11—C10—C9 121.18 (13)
C4—C3—Cl1 120.13 (9) C11—C10—H10A 119.4
C2—C3—Cl1 119.56 (9) C9—C10—H10A 119.4
C3—C4—C5 120.22 (11) C12—C11—C10 118.92 (13)
C3—C4—H4A 119.9 C12—C11—H11A 120.5
C5—C4—H4A 119.9 C10—C11—H11A 120.5
C4—C5—C6 120.41 (10) C11—C12—C13 121.39 (13)
C4—C5—H5A 119.8 C11—C12—Cl2 119.56 (12)
C6—C5—H5A 119.8 C13—C12—Cl2 119.05 (12)
N1—C6—C1 119.28 (10) C12—C13—C14 119.30 (13)
N1—C6—C5 122.59 (10) C12—C13—H13A 120.4
C1—C6—C5 118.13 (10) C14—C13—H13A 120.4
N1—C7—C8 110.63 (10) C13—C14—C9 120.55 (12)
N1—C7—H7A 109.5 C13—C14—H14A 119.7
C8—C7—H7A 109.5 C9—C14—H14A 119.7
C6—C1—C2—C3 −0.17 (19) O1—C8—C9—C10 5.16 (19)
C1—C2—C3—C4 0.11 (19) C7—C8—C9—C10 −174.56 (11)
C1—C2—C3—Cl1 178.85 (10) O1—C8—C9—C14 −174.82 (13)
C2—C3—C4—C5 0.29 (19) C7—C8—C9—C14 5.46 (17)
Cl1—C3—C4—C5 −178.44 (10) C14—C9—C10—C11 −0.3 (2)
C3—C4—C5—C6 −0.64 (19) C8—C9—C10—C11 179.70 (13)
C7—N1—C6—C1 178.89 (11) C9—C10—C11—C12 0.5 (2)
C7—N1—C6—C5 −1.74 (19) C10—C11—C12—C13 −0.1 (3)
C2—C1—C6—N1 179.23 (12) C10—C11—C12—Cl2 179.61 (12)
C2—C1—C6—C5 −0.16 (18) C11—C12—C13—C14 −0.3 (3)
C4—C5—C6—N1 −178.81 (12) Cl2—C12—C13—C14 179.92 (12)
C4—C5—C6—C1 0.57 (18) C12—C13—C14—C9 0.5 (2)
C6—N1—C7—C8 179.16 (11) C10—C9—C14—C13 −0.2 (2)
N1—C7—C8—O1 −1.37 (17) C8—C9—C14—C13 179.82 (13)
N1—C7—C8—C9 178.35 (10)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6501).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Fun, H.-K., Quah, C. K., Shetty, S. & Kalluraya, B. (2010). Acta Cryst. E66, o3131. [DOI] [PMC free article] [PubMed]
  4. Fun, H.-K., Quah, C. K., Vijesh, A. M., Isloor, A. M. & Arulmoli, T. (2011). Acta Cryst. E67, o3351. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  7. Sridharan, V., Perumal, S., Avendano, C. & Menendez, J. C. (2006). Synlett, pp. 91–95.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811048276/hb6501sup1.cif

e-67-o3373-sup1.cif (16.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811048276/hb6501Isup2.hkl

e-67-o3373-Isup2.hkl (215.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811048276/hb6501Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES