Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 19;67(Pt 12):o3374. doi: 10.1107/S1600536811048446

5,8-Bis(3-hy­droxy-3-methyl­but-1-yn-1-yl)-2,11-dithia­[3.3]paracyclo­phane

Di Wu a,*, Jie Huang a
PMCID: PMC3239018  PMID: 22199866

Abstract

In the crystal structure of the title compound [systematic name: 2,2′-dimethyl-4,4′-(3,10-dithia­tricyclo­[10.2.2.25,8]octa­deca-1(14),5,7,12,15,17-hexaen-6,17-di­yl)dibut-3-yn-2-ol], C26H28O2S2, mol­ecules are linked by O—H⋯O hydrogen bonds, forming a tubular chain which runs parallel to the b axis. The tubular structure is reinforced by π–π stacking inter­actions [centroid–centroid distance = 3.6332(16Å].

Related literature

For the preparation of the title compound, see: Jin & Lu (2010). For mol­ecular building blocks associated with para-cyclo­phanes see: Xu et al. (2008).graphic file with name e-67-o3374-scheme1.jpg

Experimental

Crystal data

  • C26H28O2S2

  • M r = 436.60

  • Monoclinic, Inline graphic

  • a = 17.1059 (5) Å

  • b = 11.8596 (4) Å

  • c = 24.5073 (10) Å

  • β = 108.113 (2)°

  • V = 4725.4 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 298 K

  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.943, T max = 0.976

  • 14956 measured reflections

  • 4646 independent reflections

  • 2596 reflections with I > 2σ(I)

  • R int = 0.080

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066

  • wR(F 2) = 0.149

  • S = 0.92

  • 4646 reflections

  • 277 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811048446/go2035sup1.cif

e-67-o3374-sup1.cif (21.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811048446/go2035Isup2.hkl

e-67-o3374-Isup2.hkl (227.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811048446/go2035Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.99 2.777 (4) 161
O2—H2⋯O1ii 0.82 2.03 2.808 (3) 158

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors are grateful to Professor Sheng-Hua Liu for technical assistance with the structure analysis and Dr Xiang-Gao Meng for the data collection.

supplementary crystallographic information

Comment

The molecular building block associated with para-cyclophanes are widely used in chiral catalysis, the design of new optoelectronic (NLO) materials, electron transfer processes, and molecular electronics, polymer chemistry and materials science, and even organic solar cells.(Xu et al., 2008)

Up to now, the dithia[3.3]paracyclophane building blocks, which are synthetically more accessible, have received less attention. Here we report the crystal structure of the title compound (Fig. 1).

The molecules are linked into pairs by the O1-H1···.O2 hydrogen bond, Table 1. These pairs are then linked together by the O2-H2···O1, Table 1, and a symmetry related hydrogen bond to form a tube which runs parallel to the b-axis.

This tubular structure is re-inforced by π–π stacking between the phenyl ring containing C1 and its symmetry related ring in the molecule at (5/2+x,1/2-y,1/2+z), centroid to centroid distance, 3.6332(16Å, perpendicular 3.4658 (12)Å and a slippage of 1.0901Å.

Within the molecule the two phenyl rings have a centroid to centoid distance of 3.2621 (18)Å, an average perpendicular spacing of 3.2402Å with a slippage of 0.3773Å.

Experimental

To a stirred solution of appropriate 5,8-dibromo-2,11-dithia[3,3]paracyclophane and 2-methylbut-3-yn-2-ol (in the molecular ratio 1: 4) in THF, iPr2NH, Pd(PPh3)2Cl2(10 mol%) and CuI(10 mol%) was added under N2, the mixture was refluxed for 48 h. The cooled reaction mixture was filtered, diluted with CH2Cl2 and washed with water. The organic phase was dried with Na2S04, filtered, and the solvent was removed from the filtrate in vacuo. The crude products were purified by column chromatography on silica gel to yield diols (Jin and Lu 2010).

Refinement

All the hydrogen atoms were located at their ideal positions with C—H=0.93Å (aromatic), CH=0.96 Å(methyl), C—H=0.97Å (methylene) and O—H=0.82 Å. The thermal factors of these hydrogen atoms were set 1.2 (for aromatic and methylene) times or 1.5 (for methyl and hydroxyl) times of their carrier atoms.

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Part of the crystal structure of (I), showing the chains generated by the O—H···O hydrogen bonds running parallel to the b-axis.

Crystal data

C26H28O2S2 F(000) = 1856
Mr = 436.60 Dx = 1.227 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 1923 reflections
a = 17.1059 (5) Å θ = 2.4–21.8°
b = 11.8596 (4) Å µ = 0.25 mm1
c = 24.5073 (10) Å T = 298 K
β = 108.113 (2)° Block, colourless
V = 4725.4 (3) Å3 0.20 × 0.10 × 0.10 mm
Z = 8

Data collection

Bruker SMART CCD area-detector diffractometer 4646 independent reflections
Radiation source: fine-focus sealed tube 2596 reflections with I > 2σ(I)
graphite Rint = 0.080
φ and ω scans θmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −21→20
Tmin = 0.943, Tmax = 0.976 k = −12→14
14956 measured reflections l = −30→29

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149 H-atom parameters constrained
S = 0.92 w = 1/[σ2(Fo2) + (0.0638P)2] where P = (Fo2 + 2Fc2)/3
4646 reflections (Δ/σ)max < 0.001
277 parameters Δρmax = 0.27 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 1.00428 (17) 0.1057 (2) 0.17980 (12) 0.0432 (7)
C2 0.91906 (18) 0.1194 (2) 0.15785 (12) 0.0439 (7)
C3 0.88756 (18) 0.2274 (2) 0.15218 (12) 0.0467 (7)
H3 0.8308 0.2376 0.1396 0.056*
C4 0.93876 (18) 0.3215 (2) 0.16488 (12) 0.0427 (7)
C5 1.02399 (17) 0.3086 (2) 0.18464 (12) 0.0432 (7)
C6 1.05457 (18) 0.1999 (2) 0.19349 (12) 0.0479 (8)
H6 1.1110 0.1896 0.2092 0.057*
C7 0.86268 (19) 0.0188 (2) 0.13702 (14) 0.0607 (9)
H7A 0.8323 0.0059 0.1639 0.073*
H7B 0.8966 −0.0472 0.1380 0.073*
C8 0.8537 (3) 0.0327 (3) 0.01972 (17) 0.0937 (13)
H8A 0.8882 −0.0341 0.0274 0.112*
H8B 0.8182 0.0278 −0.0197 0.112*
C9 0.9086 (2) 0.1353 (3) 0.02529 (14) 0.0646 (9)
C10 0.8766 (2) 0.2425 (3) 0.01542 (15) 0.0699 (10)
H10 0.8201 0.2520 −0.0005 0.084*
C11 0.9268 (2) 0.3362 (3) 0.02867 (14) 0.0615 (9)
H11 0.9034 0.4077 0.0221 0.074*
C12 1.0111 (2) 0.3257 (3) 0.05155 (13) 0.0555 (8)
C13 1.0431 (2) 0.2181 (3) 0.05674 (14) 0.0658 (9)
H13 1.0999 0.2083 0.0691 0.079*
C14 0.9928 (2) 0.1248 (3) 0.04403 (14) 0.0644 (9)
H14 1.0162 0.0533 0.0482 0.077*
C15 1.0646 (2) 0.4279 (3) 0.07326 (15) 0.0728 (10)
H15A 1.0291 0.4911 0.0742 0.087*
H15B 1.0930 0.4460 0.0457 0.087*
C16 1.08110 (18) 0.4088 (2) 0.19252 (14) 0.0566 (9)
H16A 1.1188 0.4074 0.2314 0.068*
H16B 1.0486 0.4772 0.1885 0.068*
C17 1.04174 (18) −0.0044 (2) 0.18399 (12) 0.0488 (8)
C18 1.07335 (18) −0.0932 (3) 0.18470 (13) 0.0528 (8)
C19 1.1114 (2) −0.2046 (3) 0.18242 (14) 0.0586 (9)
C20 1.0999 (3) −0.2365 (3) 0.12062 (17) 0.1061 (15)
H20A 1.1261 −0.3076 0.1194 0.159*
H20B 1.1241 −0.1796 0.1030 0.159*
H20C 1.0423 −0.2424 0.1002 0.159*
C21 1.2026 (2) −0.2005 (3) 0.21646 (18) 0.0865 (12)
H21A 1.2090 −0.1789 0.2554 0.130*
H21B 1.2297 −0.1465 0.1994 0.130*
H21C 1.2266 −0.2736 0.2161 0.130*
C22 0.90358 (18) 0.4331 (3) 0.15376 (13) 0.0492 (8)
C23 0.87791 (18) 0.5261 (3) 0.14457 (14) 0.0550 (8)
C24 0.8459 (2) 0.6417 (3) 0.13498 (17) 0.0758 (12)
C25 0.8404 (3) 0.6801 (3) 0.0756 (2) 0.140 (2)
H25A 0.8150 0.7531 0.0687 0.210*
H25B 0.8080 0.6273 0.0480 0.210*
H25C 0.8947 0.6843 0.0720 0.210*
C26 0.7637 (2) 0.6443 (4) 0.1460 (2) 0.135 (2)
H26A 0.7712 0.6261 0.1855 0.203*
H26B 0.7274 0.5902 0.1217 0.203*
H26C 0.7402 0.7183 0.1378 0.203*
O1 1.07259 (14) −0.28867 (17) 0.20705 (10) 0.0672 (6)
H1 1.0921 −0.2870 0.2421 0.101*
O2 0.90016 (13) 0.71742 (18) 0.17522 (11) 0.0744 (7)
H2 0.9478 0.7048 0.1765 0.112*
S1 0.79017 (5) 0.03053 (7) 0.06626 (4) 0.0678 (3)
S2 1.14046 (5) 0.41556 (7) 0.14312 (4) 0.0590 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0508 (18) 0.0408 (18) 0.0387 (18) 0.0058 (14) 0.0149 (15) 0.0022 (13)
C2 0.0529 (19) 0.0422 (17) 0.0369 (17) 0.0019 (14) 0.0146 (15) 0.0054 (13)
C3 0.0460 (17) 0.0450 (19) 0.051 (2) 0.0045 (14) 0.0173 (16) 0.0028 (15)
C4 0.0547 (19) 0.0374 (17) 0.0399 (18) 0.0096 (14) 0.0202 (15) −0.0001 (13)
C5 0.0491 (18) 0.0392 (17) 0.0419 (18) 0.0000 (14) 0.0148 (15) −0.0077 (13)
C6 0.0467 (17) 0.0476 (19) 0.048 (2) 0.0069 (15) 0.0132 (15) −0.0037 (14)
C7 0.057 (2) 0.0465 (19) 0.075 (2) −0.0017 (16) 0.0148 (18) 0.0075 (17)
C8 0.109 (3) 0.088 (3) 0.088 (3) −0.035 (2) 0.036 (3) −0.036 (2)
C9 0.074 (3) 0.075 (3) 0.048 (2) −0.011 (2) 0.0235 (19) −0.0121 (18)
C10 0.059 (2) 0.089 (3) 0.065 (3) −0.003 (2) 0.024 (2) 0.001 (2)
C11 0.067 (2) 0.068 (2) 0.052 (2) 0.0091 (19) 0.0225 (19) 0.0164 (18)
C12 0.063 (2) 0.058 (2) 0.045 (2) 0.0012 (17) 0.0159 (17) 0.0096 (16)
C13 0.062 (2) 0.071 (3) 0.058 (2) 0.004 (2) 0.0083 (19) −0.0029 (19)
C14 0.084 (3) 0.058 (2) 0.046 (2) 0.003 (2) 0.013 (2) −0.0098 (17)
C15 0.077 (2) 0.063 (2) 0.075 (3) −0.0068 (19) 0.020 (2) 0.0167 (19)
C16 0.0585 (19) 0.0420 (18) 0.068 (2) 0.0066 (15) 0.0177 (18) −0.0097 (16)
C17 0.0575 (19) 0.0392 (18) 0.0475 (19) −0.0003 (15) 0.0131 (16) 0.0013 (15)
C18 0.0551 (19) 0.047 (2) 0.052 (2) 0.0068 (16) 0.0108 (16) 0.0014 (16)
C19 0.070 (2) 0.0448 (19) 0.059 (2) 0.0146 (16) 0.0179 (19) 0.0058 (16)
C20 0.170 (4) 0.077 (3) 0.074 (3) 0.028 (3) 0.042 (3) −0.012 (2)
C21 0.061 (2) 0.083 (3) 0.115 (4) 0.020 (2) 0.028 (2) 0.027 (2)
C22 0.0521 (19) 0.0460 (19) 0.051 (2) 0.0065 (15) 0.0186 (16) −0.0078 (15)
C23 0.0471 (18) 0.045 (2) 0.068 (2) 0.0087 (15) 0.0100 (17) −0.0118 (16)
C24 0.069 (2) 0.044 (2) 0.083 (3) 0.0186 (17) −0.022 (2) −0.0229 (19)
C25 0.212 (6) 0.058 (3) 0.087 (4) 0.002 (3) −0.046 (4) −0.002 (2)
C26 0.056 (2) 0.111 (4) 0.201 (6) 0.028 (2) −0.014 (3) −0.088 (4)
O1 0.0762 (16) 0.0430 (13) 0.0763 (17) 0.0061 (11) 0.0145 (14) 0.0070 (12)
O2 0.0620 (14) 0.0477 (13) 0.0908 (19) 0.0060 (11) −0.0093 (15) −0.0242 (12)
S1 0.0540 (5) 0.0654 (6) 0.0772 (7) −0.0130 (4) 0.0104 (5) −0.0030 (5)
S2 0.0494 (5) 0.0500 (5) 0.0773 (7) −0.0036 (4) 0.0194 (5) −0.0010 (4)

Geometric parameters (Å, °)

C1—C6 1.386 (4) C15—S2 1.804 (3)
C1—C2 1.397 (4) C15—H15A 0.9700
C1—C17 1.445 (4) C15—H15B 0.9700
C2—C3 1.381 (4) C16—S2 1.808 (3)
C2—C7 1.519 (4) C16—H16A 0.9700
C3—C4 1.393 (4) C16—H16B 0.9700
C3—H3 0.9300 C17—C18 1.181 (4)
C4—C5 1.395 (4) C18—C19 1.481 (4)
C4—C22 1.444 (4) C19—O1 1.431 (4)
C5—C6 1.383 (4) C19—C20 1.514 (5)
C5—C16 1.512 (4) C19—C21 1.525 (4)
C6—H6 0.9300 C20—H20A 0.9600
C7—S1 1.797 (3) C20—H20B 0.9600
C7—H7A 0.9700 C20—H20C 0.9600
C7—H7B 0.9700 C21—H21A 0.9600
C8—C9 1.517 (5) C21—H21B 0.9600
C8—S1 1.804 (4) C21—H21C 0.9600
C8—H8A 0.9700 C22—C23 1.183 (4)
C8—H8B 0.9700 C23—C24 1.467 (4)
C9—C14 1.375 (4) C24—O2 1.440 (4)
C9—C10 1.376 (5) C24—C25 1.500 (6)
C10—C11 1.379 (4) C24—C26 1.512 (5)
C10—H10 0.9300 C25—H25A 0.9600
C11—C12 1.381 (4) C25—H25B 0.9600
C11—H11 0.9300 C25—H25C 0.9600
C12—C13 1.380 (4) C26—H26A 0.9600
C12—C15 1.512 (4) C26—H26B 0.9600
C13—C14 1.377 (4) C26—H26C 0.9600
C13—H13 0.9300 O1—H1 0.8200
C14—H14 0.9300 O2—H2 0.8200
C6—C1—C2 119.7 (3) S2—C15—H15B 108.2
C6—C1—C17 118.9 (3) H15A—C15—H15B 107.3
C2—C1—C17 121.2 (3) C5—C16—S2 115.1 (2)
C3—C2—C1 118.3 (3) C5—C16—H16A 108.5
C3—C2—C7 120.5 (3) S2—C16—H16A 108.5
C1—C2—C7 121.1 (3) C5—C16—H16B 108.5
C2—C3—C4 121.5 (3) S2—C16—H16B 108.5
C2—C3—H3 119.2 H16A—C16—H16B 107.5
C4—C3—H3 119.2 C18—C17—C1 176.4 (3)
C3—C4—C5 120.4 (2) C17—C18—C19 177.1 (3)
C3—C4—C22 119.7 (3) O1—C19—C18 109.8 (3)
C5—C4—C22 119.7 (3) O1—C19—C20 108.4 (3)
C6—C5—C4 117.4 (3) C18—C19—C20 109.8 (3)
C6—C5—C16 121.0 (3) O1—C19—C21 108.7 (3)
C4—C5—C16 121.5 (2) C18—C19—C21 109.8 (3)
C5—C6—C1 122.5 (3) C20—C19—C21 110.3 (3)
C5—C6—H6 118.8 C19—C20—H20A 109.5
C1—C6—H6 118.8 C19—C20—H20B 109.5
C2—C7—S1 116.0 (2) H20A—C20—H20B 109.5
C2—C7—H7A 108.3 C19—C20—H20C 109.5
S1—C7—H7A 108.3 H20A—C20—H20C 109.5
C2—C7—H7B 108.3 H20B—C20—H20C 109.5
S1—C7—H7B 108.3 C19—C21—H21A 109.5
H7A—C7—H7B 107.4 C19—C21—H21B 109.5
C9—C8—S1 115.6 (2) H21A—C21—H21B 109.5
C9—C8—H8A 108.4 C19—C21—H21C 109.5
S1—C8—H8A 108.4 H21A—C21—H21C 109.5
C9—C8—H8B 108.4 H21B—C21—H21C 109.5
S1—C8—H8B 108.4 C23—C22—C4 177.2 (3)
H8A—C8—H8B 107.4 C22—C23—C24 178.2 (4)
C14—C9—C10 117.4 (3) O2—C24—C23 110.1 (3)
C14—C9—C8 120.8 (4) O2—C24—C25 107.9 (3)
C10—C9—C8 121.7 (4) C23—C24—C25 110.3 (3)
C9—C10—C11 121.3 (3) O2—C24—C26 107.6 (3)
C9—C10—H10 119.4 C23—C24—C26 108.2 (3)
C11—C10—H10 119.4 C25—C24—C26 112.7 (4)
C10—C11—C12 121.2 (3) C24—C25—H25A 109.5
C10—C11—H11 119.4 C24—C25—H25B 109.5
C12—C11—H11 119.4 H25A—C25—H25B 109.5
C13—C12—C11 117.1 (3) C24—C25—H25C 109.5
C13—C12—C15 121.9 (3) H25A—C25—H25C 109.5
C11—C12—C15 120.8 (3) H25B—C25—H25C 109.5
C14—C13—C12 121.3 (3) C24—C26—H26A 109.5
C14—C13—H13 119.3 C24—C26—H26B 109.5
C12—C13—H13 119.3 H26A—C26—H26B 109.5
C9—C14—C13 121.3 (3) C24—C26—H26C 109.5
C9—C14—H14 119.3 H26A—C26—H26C 109.5
C13—C14—H14 119.3 H26B—C26—H26C 109.5
C12—C15—S2 116.6 (2) C19—O1—H1 109.5
C12—C15—H15A 108.2 C24—O2—H2 109.5
S2—C15—H15A 108.2 C7—S1—C8 103.91 (18)
C12—C15—H15B 108.2 C15—S2—C16 104.56 (16)
C6—C1—C2—C3 −2.0 (4) S1—C8—C9—C10 −59.7 (4)
C17—C1—C2—C3 −176.6 (3) C14—C9—C10—C11 −5.7 (5)
C6—C1—C2—C7 174.1 (3) C8—C9—C10—C11 170.3 (3)
C17—C1—C2—C7 −0.6 (4) C9—C10—C11—C12 1.0 (5)
C1—C2—C3—C4 3.4 (4) C10—C11—C12—C13 4.4 (5)
C7—C2—C3—C4 −172.6 (3) C10—C11—C12—C15 −171.8 (3)
C2—C3—C4—C5 −0.9 (4) C11—C12—C13—C14 −5.1 (5)
C2—C3—C4—C22 174.8 (3) C15—C12—C13—C14 171.1 (3)
C3—C4—C5—C6 −3.0 (4) C10—C9—C14—C13 5.0 (5)
C22—C4—C5—C6 −178.7 (3) C8—C9—C14—C13 −171.0 (3)
C3—C4—C5—C16 173.2 (3) C12—C13—C14—C9 0.4 (5)
C22—C4—C5—C16 −2.5 (4) C13—C12—C15—S2 −43.9 (4)
C4—C5—C6—C1 4.5 (4) C11—C12—C15—S2 132.2 (3)
C16—C5—C6—C1 −171.7 (3) C6—C5—C16—S2 64.3 (3)
C2—C1—C6—C5 −2.1 (4) C4—C5—C16—S2 −111.7 (3)
C17—C1—C6—C5 172.7 (3) C2—C7—S1—C8 66.4 (3)
C3—C2—C7—S1 47.5 (4) C9—C8—S1—C7 −66.4 (3)
C1—C2—C7—S1 −128.4 (3) C12—C15—S2—C16 −68.5 (3)
S1—C8—C9—C14 116.1 (3) C5—C16—S2—C15 62.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2i 0.82 1.99 2.777 (4) 161
O2—H2···O1ii 0.82 2.03 2.808 (3) 158

Symmetry codes: (i) −x+2, y−1, −z+1/2; (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GO2035).

References

  1. Bruker (2007). APEX2, SADABS, and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Jin, G. & Lu, Y. (2010). Acta Cryst. E66, o2144. [DOI] [PMC free article] [PubMed]
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Xu, J. W., Wang, W. L., Lin, T. T., Sun, Z. & Lai, Y. H. (2008). Supramol. Chem. 20, 723–730.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811048446/go2035sup1.cif

e-67-o3374-sup1.cif (21.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811048446/go2035Isup2.hkl

e-67-o3374-Isup2.hkl (227.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811048446/go2035Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES