Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 19;67(Pt 12):o3375. doi: 10.1107/S1600536811048847

3-Bromo-5-tert-butyl-2-hy­droxy­benz­alde­hyde

V Balasubramani a, T Vinuchakkaravarthy b, Sreeraj Gopi a, S Narasimhan a, D Velmurugan b,*
PMCID: PMC3239019  PMID: 22199867

Abstract

The mol­ecular conformation of the title compound, C11H13BrO2, is stabilized by an intra­molecular O—H⋯O hydrogen bond. All non-H atoms except the methyl groups lie approximately in a common plane (r.m.s. deviation = 0.011 Å).

Related literature

For the biological activity of substituted salicyl­aldehyde and its derivatives, see: Mounika et al. (2010); Dueke-Eze et al. (2010); Jesmin et al. (2010). For a related structure, see: Wang et al. (2010).graphic file with name e-67-o3375-scheme1.jpg

Experimental

Crystal data

  • C11H13BrO2

  • M r = 257.11

  • Orthorhombic, Inline graphic

  • a = 9.9727 (19) Å

  • b = 12.174 (2) Å

  • c = 18.558 (3) Å

  • V = 2253.0 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.62 mm−1

  • T = 293 K

  • 0.2 × 0.2 × 0.2 mm

Data collection

  • Bruker SMART APEXII area-detector diffractometer

  • 11555 measured reflections

  • 2808 independent reflections

  • 1442 reflections with I > 2σ(I)

  • R int = 0.079

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.162

  • S = 1.02

  • 2808 reflections

  • 131 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.49 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811048847/bt5688sup1.cif

e-67-o3375-sup1.cif (15.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811048847/bt5688Isup2.hkl

e-67-o3375-Isup2.hkl (133.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811048847/bt5688Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1 0.82 1.93 2.650 (6) 145

Acknowledgments

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection.

supplementary crystallographic information

Comment

The crystal structure determination of the title compound was undertaken as a part of the synthesis, structure and properties of new substituted salicylaldehyde derivatives.

In the title compound, the substituted aldehyde group, hydroxy group and and bromine are essentially coplanar with the benzene ring with a plane mean deviation of 0.025 (6)°, -0.029 (4)°, -0.015 (1)° and -0.015 (1)°, respectively. An intramolecular O2—H2A···O(1) hydrogen bonding observed between the oxygen atoms of the hydroxy group and the aldehyde group stabilizes the molecular structure.

Experimental

The synthesis of the title compound follows the modified Riemmer-Tiemann reaction, in which the substituted salicylaldehydes were synthesized from substituted phenols. To 80 mL of water 60g of sodium hydroxide was added and dissolved completely. Then 15g of 4-tert-butyl phenol was added and heated to 60-65°C. 30 mL chloroform was added step by step to the mixture. The resulting reaction mixture was heated for one hour, until the formation of precipitate. The liquid layer containing 5-tert-butyl-2-hydroxy benzaldehyde as the product was separated through suction pump. It was then brominated using liquid bromine and acetic acid. The final product 3-bromo-5-tert-butyl-2-hydroxy benzaldehyde with a maximum yield of 83% was checked for purity using TLC.

Refinement

Hydrogen atoms were placed in calculated positions with O—H = 0.82Å, Caromatic—H = 0.93Å, Cmethyl—H = 0.96Å and refined using a riding model with fixed isotropic displacement parameters Uiso(H) = 1.5 Ueq(Cmethyl, O) or Uiso(H) = 1.2 Ueq(Caromatic) or.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.

Crystal data

C11H13BrO2 F(000) = 1040
Mr = 257.11 Dx = 1.516 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 2808 reflections
a = 9.9727 (19) Å θ = 2.2–28.3°
b = 12.174 (2) Å µ = 3.62 mm1
c = 18.558 (3) Å T = 293 K
V = 2253.0 (7) Å3 Block, red
Z = 8 0.2 × 0.2 × 0.2 mm

Data collection

Bruker SMART APEXII area-detector diffractometer 1442 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.079
graphite θmax = 28.3°, θmin = 2.2°
ω and φ scans h = −13→13
11555 measured reflections k = −16→16
2808 independent reflections l = −24→24

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056 H-atom parameters constrained
wR(F2) = 0.162 w = 1/[σ2(Fo2) + (0.0685P)2 + 1.3566P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
2808 reflections Δρmax = 0.59 e Å3
131 parameters Δρmin = −0.49 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0228 (17)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.2770 (5) 0.1032 (4) 0.2246 (2) 0.0474 (11)
C2 0.3680 (5) 0.0161 (4) 0.2178 (2) 0.0507 (12)
C3 0.4296 (4) −0.0219 (3) 0.2794 (2) 0.0454 (10)
C4 0.4025 (4) 0.0242 (3) 0.3456 (2) 0.0462 (10)
H4 0.4468 −0.0027 0.3860 0.055*
C5 0.3112 (4) 0.1097 (3) 0.3540 (2) 0.0422 (10)
C6 0.2493 (5) 0.1482 (3) 0.2924 (2) 0.0473 (11)
H2 0.1878 0.2054 0.2960 0.057*
C7 0.2094 (6) 0.1487 (4) 0.1612 (3) 0.0656 (14)
H7 0.1509 0.2073 0.1680 0.079*
C8 0.2802 (5) 0.1613 (4) 0.4275 (2) 0.0526 (12)
C9 0.1367 (8) 0.1334 (7) 0.4478 (4) 0.136 (3)
H9A 0.1272 0.1358 0.4992 0.204*
H9B 0.1153 0.0610 0.4308 0.204*
H9C 0.0770 0.1857 0.4262 0.204*
C10 0.3682 (8) 0.1149 (6) 0.4877 (3) 0.104 (2)
H10A 0.4604 0.1319 0.4780 0.156*
H10B 0.3570 0.0367 0.4901 0.156*
H10C 0.3423 0.1471 0.5328 0.156*
C11 0.3014 (10) 0.2826 (5) 0.4242 (3) 0.131 (4)
H11A 0.3899 0.2977 0.4063 0.196*
H11B 0.2919 0.3133 0.4716 0.196*
H11C 0.2362 0.3149 0.3926 0.196*
O1 0.2253 (5) 0.1147 (3) 0.1006 (2) 0.0919 (14)
O2 0.3953 (4) −0.0316 (3) 0.15377 (18) 0.0749 (10)
H2A 0.3523 −0.0009 0.1219 0.112*
Br1 0.55350 (5) −0.13980 (4) 0.27226 (4) 0.0729 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.050 (3) 0.052 (2) 0.040 (2) −0.012 (2) 0.001 (2) −0.0048 (19)
C2 0.050 (3) 0.056 (2) 0.047 (3) −0.017 (2) 0.013 (2) −0.012 (2)
C3 0.041 (2) 0.0376 (19) 0.057 (3) −0.0019 (17) 0.005 (2) −0.0125 (18)
C4 0.046 (2) 0.045 (2) 0.047 (3) −0.004 (2) −0.005 (2) −0.0026 (19)
C5 0.047 (3) 0.042 (2) 0.038 (2) −0.0035 (18) 0.001 (2) −0.0045 (16)
C6 0.052 (3) 0.043 (2) 0.047 (3) 0.001 (2) 0.000 (2) −0.0012 (17)
C7 0.073 (4) 0.076 (3) 0.048 (3) −0.003 (3) −0.010 (3) 0.002 (2)
C8 0.065 (3) 0.057 (3) 0.036 (2) 0.010 (2) 0.007 (3) −0.0029 (19)
C9 0.095 (5) 0.231 (10) 0.081 (5) −0.019 (6) 0.037 (5) −0.059 (5)
C10 0.142 (7) 0.119 (5) 0.052 (3) 0.040 (5) −0.007 (4) −0.004 (3)
C11 0.276 (12) 0.059 (3) 0.057 (3) 0.006 (5) −0.001 (5) −0.017 (3)
O1 0.111 (4) 0.119 (3) 0.046 (2) −0.009 (3) −0.015 (2) −0.001 (2)
O2 0.080 (2) 0.092 (2) 0.053 (2) −0.007 (2) 0.019 (2) −0.0289 (18)
Br1 0.0566 (4) 0.0588 (4) 0.1033 (6) 0.0078 (2) 0.0097 (3) −0.0204 (3)

Geometric parameters (Å, °)

C1—C6 1.400 (6) C8—C11 1.494 (7)
C1—C2 1.401 (7) C8—C9 1.518 (9)
C1—C7 1.465 (7) C8—C10 1.528 (8)
C2—O2 1.350 (5) C9—H9A 0.9600
C2—C3 1.377 (6) C9—H9B 0.9600
C3—C4 1.377 (6) C9—H9C 0.9600
C3—Br1 1.899 (4) C10—H10A 0.9600
C4—C5 1.392 (6) C10—H10B 0.9600
C4—H4 0.9300 C10—H10C 0.9600
C5—C6 1.381 (6) C11—H11A 0.9600
C5—C8 1.533 (6) C11—H11B 0.9600
C6—H2 0.9300 C11—H11C 0.9600
C7—O1 1.209 (6) O2—H2A 0.8200
C7—H7 0.9300
C6—C1—C2 120.3 (4) C9—C8—C10 106.1 (5)
C6—C1—C7 118.9 (4) C11—C8—C5 109.8 (4)
C2—C1—C7 120.8 (4) C9—C8—C5 108.6 (5)
O2—C2—C3 119.8 (4) C10—C8—C5 112.6 (4)
O2—C2—C1 122.3 (4) C8—C9—H9A 109.5
C3—C2—C1 117.9 (4) C8—C9—H9B 109.5
C4—C3—C2 121.1 (4) H9A—C9—H9B 109.5
C4—C3—Br1 119.8 (4) C8—C9—H9C 109.5
C2—C3—Br1 119.1 (3) H9A—C9—H9C 109.5
C3—C4—C5 122.2 (4) H9B—C9—H9C 109.5
C3—C4—H4 118.9 C8—C10—H10A 109.5
C5—C4—H4 118.9 C8—C10—H10B 109.5
C6—C5—C4 116.9 (4) H10A—C10—H10B 109.5
C6—C5—C8 120.5 (4) C8—C10—H10C 109.5
C4—C5—C8 122.5 (4) H10A—C10—H10C 109.5
C5—C6—C1 121.6 (4) H10B—C10—H10C 109.5
C5—C6—H2 119.2 C8—C11—H11A 109.5
C1—C6—H2 119.2 C8—C11—H11B 109.5
O1—C7—C1 123.9 (5) H11A—C11—H11B 109.5
O1—C7—H7 118.1 C8—C11—H11C 109.5
C1—C7—H7 118.1 H11A—C11—H11C 109.5
C11—C8—C9 111.4 (6) H11B—C11—H11C 109.5
C11—C8—C10 108.3 (5) C2—O2—H2A 109.5
C6—C1—C2—O2 178.4 (4) C4—C5—C6—C1 0.1 (6)
C7—C1—C2—O2 −1.7 (7) C8—C5—C6—C1 179.4 (4)
C6—C1—C2—C3 −0.8 (6) C2—C1—C6—C5 0.8 (7)
C7—C1—C2—C3 179.0 (4) C7—C1—C6—C5 −179.1 (4)
O2—C2—C3—C4 −179.2 (4) C6—C1—C7—O1 −179.1 (5)
C1—C2—C3—C4 0.0 (6) C2—C1—C7—O1 1.0 (8)
O2—C2—C3—Br1 0.7 (6) C6—C5—C8—C11 −53.8 (7)
C1—C2—C3—Br1 180.0 (3) C4—C5—C8—C11 125.4 (6)
C2—C3—C4—C5 0.9 (7) C6—C5—C8—C9 68.3 (6)
Br1—C3—C4—C5 −179.1 (3) C4—C5—C8—C9 −112.5 (6)
C3—C4—C5—C6 −0.9 (6) C6—C5—C8—C10 −174.5 (5)
C3—C4—C5—C8 179.8 (4) C4—C5—C8—C10 4.7 (7)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2A···O1 0.82 1.93 2.650 (6) 145

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5688).

References

  1. Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Dueke-Eze, C. U., Fasina, T. M. & Idika, N. (2010). Afr. J. Pure Appl. Chem. 5, 13–18.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Jesmin, M., Ali, M. M. & Khanam, J. A. (2010). Thai J. Pharm. Sci. 34, 20–31.
  5. Mounika, K., Anupama, B., Pragathi, J. & Gyanakumari, C. (2010). J. Sci. Res. 2, 513-524.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148-155. [DOI] [PMC free article] [PubMed]
  8. Wang, Y., Qiu, Z. & Liang, H. (2010). Acta Cryst. E66, o2218. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811048847/bt5688sup1.cif

e-67-o3375-sup1.cif (15.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811048847/bt5688Isup2.hkl

e-67-o3375-Isup2.hkl (133.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811048847/bt5688Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES