Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 19;67(Pt 12):o3386–o3387. doi: 10.1107/S1600536811048306

(2R)-4-[(9H-Fluoren-9-ylmeth­oxy)carbon­yl]-2-methyl­piperazin-1-ium chloride

Anne Ertan a,*, Parhalad Sharma b, Dokka Nagaraju b, K Deepthi b, Sulur G Manjunatha b
PMCID: PMC3239028  PMID: 22199876

Abstract

The synthesis of the title salt, C20H23N2O2 +·Cl, was carried out with a precursor of known absolute configuration (R) and the X-ray analysis confirmed that the product retained the absolute configuration. In the crystal, the dominant packing motif is a chain running along [010] generated by N—H⋯Cl hydrogen bonding. C—H⋯O and C—H⋯Cl inter­actions are also observed.

Related literature

For the use of piperazine and substituted piperazines as good linkers to pharmacophores in attempts to obtain compounds with desired pharmacokinetic and pharmacological properties, see: Cho et al. (2010); Wang et al. (2009). For packing coefficients, see: Kitaigorodskij (1973).graphic file with name e-67-o3386-scheme1.jpg

Experimental

Crystal data

  • C20H23N2O2 +·Cl

  • M r = 358.85

  • Monoclinic, Inline graphic

  • a = 8.3492 (3) Å

  • b = 7.4954 (2) Å

  • c = 14.9246 (3) Å

  • β = 90.6740 (18)°

  • V = 933.93 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 K

  • 0.28 × 0.20 × 0.08 mm

Data collection

  • Nonius KappaCCD diffractometer

  • 4227 measured reflections

  • 4221 independent reflections

  • 3684 reflections with I > 2σ(I)

  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.086

  • S = 1.03

  • 4221 reflections

  • 227 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.15 e Å−3

  • Absolute structure: Flack (1983), 1922 Friedel pairs

  • Flack parameter: −0.04 (5)

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: initial refinement: maXus (MacKay et al., 2000); final refinement: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and ORTEPII (Johnson, 1976); software used to prepare material for publication: PLATON and ACD/Labs (ACD, 2011).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811048306/kp2361sup1.cif

e-67-o3386-sup1.cif (25KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811048306/kp2361Isup2.hkl

e-67-o3386-Isup2.hkl (206.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811048306/kp2361Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1i 1.06 2.08 3.117 (2) 165
N1—H1B⋯Cl1ii 0.88 2.26 3.135 (2) 171
C2—H2B⋯O8iii 0.96 2.41 3.316 (2) 157
C21—H21⋯O8iv 0.98 2.54 3.469 (2) 158
C22—H22⋯Cl1 0.96 2.72 3.622 (2) 157

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

Thanks to the Pharmaceutical Development Team in Bangalore for providing the material for single-crystal X-ray investigation. The authors also thank Jaikumar Keshavan and other members of AstraZeneca for all their support. This refers to ATP NO 11/0793.

supplementary crystallographic information

Comment

Piperazine and substituted piperazines are good linkers to pharmacophores to bring out drug substance with desired pharmacokinetics and pharmacological properties (Cho et al., 2010; Wang et al., 2009). In this context there is a great need in selective mono N-protectected piperazines and efficient synthetic procedures for their preparation. As a part of our research in drug development we were in need of selective mono protection of 2-methylpiperazines. We could develop a simple procedure for the mono N-protection of 2-methylpiperazine with F-moc. The chromatographic and spectroscopic analysis indicated that the process is highly regioselective to give the mono protected product but the same techniques were inadequate to elucidate the structure (Fig. 1, Scheme I & II, ACD/Labs,1994–2011), therefore single-crystal technique was employed. The X-ray investigation of the title compound was undertaken to verify the structure and confirm the absolute stereochemistry of the intermediate made in the course of synthesis (Fig. 2). The absolute configuration around the chiral carbon atom C6 was determined to be 6R, which was expected from the synthesis using a precursor of R-configuration. The Flack's x parameter (Flack, 1983) was refined to -0.04 (5). The molecule has four hetero-atoms of which only one is protonated, the N1 atom. This potential H-bond donor participates in intermolecular H-bond interaction with the chloride ion (Table 1, Fig. 3), linking the molecules into infinite chain by N—H···Cl (chloride) interactions along the [0 1 0] direction (Fig. 3). Themolecules are efficiently packed, with no residual void for solvent inclusion (Fig. 4). The packing coefficient of I, calculated by PLATON, is 66.7% (Kitaigorodskij, 1973), reflecting an efficient molecular packing arrangement.

Experimental

The chemicals used for the synthesis are purchased from: (R)-2-methyl piperazine from Manjing Gaungtong Pharmaceutical & Chemical Co. Ltd. and F-moc chloride from Spectrochem India Ltd.

Preparation of (2R)-4-[(9H-fluoren-9-ylmethoxy)carbonyl]-2- methylpiperazine-1-ium chloride

A solution of F-moc chloride (11.6 g, 0.0449 mol) in acetone (100 mL) was added drop wise to a solution of 2(R)-methyl piperazine (5.0 g, 0.0499 mol) in acetone (75 mL) at 2893 K over a period of 1.7 h. The temperature of the reaction mass was raised from 295 to 298 K and was allowed to stir for 1.5 h. The resulting solid was collected by filtration and washed with acetone to give 9.89 g (yield: 55.2% w/w) of the title compound as a white solid in form of hydrochloride salt. HPLC purity >98% and M+1: 323, melting point: 412 K (DSC thermogram).

Crystallization process

The single-crystal of (2R)-4-[(9H-fluoren-9-ylmethoxy)carbonyl]-2- methylpiperazin-1-ium chloride has been grown using vapour diffusion method: (2R)-4-[(9H-fluoren-9-ylmethoxy)carbonyl]-2-methylpiperazine-1-ium chloride (0.5 g) is dissolved in methanol (20 mL) in a small vial, which is placed inside a larger vial containing a small volume of a heptane (100 mL) in which the sample is insoluble. The larger vial is then sealed but the smaller one is open for the second solvent to intrude. The unit is kept as such for a period of 72 h. The obtained solid was collected by filtration and examined under microscope. A large block-shaped crystal of compound I, grown from methanol/heptane, was used for single-crystal X-ray diffraction experiment.

Refinement

Data collection, structure solution and refinement:

Diffraction data for compound 1 was collected at RT using a Nonius Kappa-CCD diffractometer (Nonius, 1998), with graphite-monochromated Mo Kα radiation (0.71073 Å). Details of X-ray experiment are summarized in Supplementary Material. The structure was solved by direct methods (Altomare et al., 1999, SIR97) and refined with F2 against all reflections. The title compound 1 had one molecule in the asymmetric unit. The absolute configuration at the chiral C6 carbon atom was determined to be R. The number of Friedel pairs measured was 1922. All non-H atoms were anisotropically refined. Although identified in late difference Fourier maps, the aromatic- and methyl-H atoms were calculated due to poor bond angles and constrained to ideal geometry positions with distance 0.96-0.98 Å, from the parent atoms. The H1A and H1B atoms, found from difference Fourier map, were refined a few cycles with isotropic displacement parameters but were constrained in the final cycles of refinement to 1.06 and 0.86 Å from their parent atoms. Due to the fact that both these H-atoms are involved in H-bonds, the refined positions were kept in the final structure model. The H atoms were refined using a riding model, with Uiso(H) = 1.2Ueq(C). Six low integer reflections shadowed by the beam stop were omitted from the final calculations. The highest residual electron density peak was located close to carbon C11 atom and the deepest hole close to carbon C10 atom. The original structure model was obtained (Altomare, SIR97) and refined initially within maXus software suite (MacKay et al., 2000) but the final refinement of the structure was done with SHELXL97 (Sheldrick, 2008).

Figures

Fig. 1.

Fig. 1.

Scheme I and II showing the two possible mono protected products, not possible to elucidate their structures by chromatographic or spectroscopic analysis.

Fig. 2.

Fig. 2.

View of the title compound showing the atom-labelling scheme. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level. ORTEPII (Johnson, 1976).

Fig. 3.

Fig. 3.

Part of the molecular H-bond scheme with the molecules joined as chains containg equivalent symmetry translated units along the [1 0 0] direction. Dotted lines indicate H-bond interactions. The view is along the [1 0 0] direction. PLATON (Spek, 2009).

Fig. 4.

Fig. 4.

Spacefill packing diagram of the molecules in the unit cell along the [1 0 0] direction reflecting an efficient molecular packing arrangement. PLATON (Spek, 2009).

Crystal data

C20H23N2O2+·Cl F(000) = 380
Mr = 358.85 Dx = 1.276 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 2263 reflections
a = 8.3492 (3) Å θ = 1.0–27.5°
b = 7.4954 (2) Å µ = 0.22 mm1
c = 14.9246 (3) Å T = 293 K
β = 90.6740 (18)° Block, colourless
V = 933.93 (5) Å3 0.28 × 0.20 × 0.08 mm
Z = 2

Data collection

Nonius KappaCCD diffractometer 3684 reflections with I > 2σ(I)
Radiation source: fine-focus Rint = 0.022
graphite θmax = 27.5°, θmin = 3.0°
φ and ω scans with κ offsets h = −10→10
4227 measured reflections k = −9→9
4221 independent reflections l = −19→19

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.037P)2 + 0.176P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.086 (Δ/σ)max < 0.001
S = 1.03 Δρmax = 0.16 e Å3
4221 reflections Δρmin = −0.15 e Å3
227 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
1 restraint Extinction coefficient: 0.075 (4)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 1922 Friedel pairs
Secondary atom site location: difference Fourier map Flack parameter: −0.04 (5)

Special details

Experimental. Crystals were crystallized from methanol/heptane by vapour diffusion.Number of collected frames: 212 Number of repeats: 1 Crystal-Detector distance (mm): 30 Exposure time (sec) per frame: 5 Phi-rotation (°) step: 2
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O8 0.44893 (17) 0.0878 (2) 0.65110 (9) 0.0556 (5)
O9 0.61979 (15) 0.06962 (17) 0.76938 (8) 0.0404 (4)
N1 0.86676 (19) −0.2463 (2) 0.55195 (9) 0.0431 (5)
N4 0.61615 (18) −0.1517 (3) 0.66869 (10) 0.0468 (5)
C2 0.7114 (2) −0.1768 (3) 0.51533 (12) 0.0512 (6)
C3 0.5787 (2) −0.2213 (3) 0.57921 (13) 0.0540 (7)
C5 0.7678 (2) −0.2172 (3) 0.70499 (11) 0.0438 (6)
C6 0.9062 (2) −0.1750 (3) 0.64313 (11) 0.0397 (5)
C7 1.0634 (2) −0.2547 (3) 0.67673 (14) 0.0532 (7)
C8 0.5532 (2) 0.0098 (3) 0.69198 (11) 0.0398 (5)
C10 0.5939 (2) 0.2555 (2) 0.78753 (11) 0.0380 (5)
C11 0.70593 (19) 0.3087 (2) 0.86403 (10) 0.0336 (5)
C12 0.6628 (2) 0.2475 (2) 0.95797 (11) 0.0358 (5)
C13 0.5230 (2) 0.2774 (3) 1.00485 (13) 0.0446 (6)
C14 0.5175 (3) 0.2224 (3) 1.09407 (13) 0.0529 (7)
C15 0.6472 (3) 0.1385 (3) 1.13435 (13) 0.0571 (7)
C16 0.7860 (3) 0.1070 (3) 1.08760 (13) 0.0514 (7)
C17 0.7936 (2) 0.1632 (2) 0.99900 (11) 0.0389 (5)
C18 0.9257 (2) 0.1579 (2) 0.93493 (11) 0.0370 (5)
C19 1.0795 (2) 0.0892 (3) 0.94323 (15) 0.0504 (7)
C20 1.1808 (2) 0.0990 (3) 0.87068 (16) 0.0555 (7)
C21 1.1300 (2) 0.1765 (3) 0.79113 (15) 0.0528 (7)
C22 0.9768 (2) 0.2495 (3) 0.78302 (12) 0.0429 (5)
C23 0.87605 (19) 0.2402 (2) 0.85559 (11) 0.0349 (5)
Cl1 0.82783 (6) 0.33785 (7) 0.55846 (3) 0.0512 (2)
H1A 0.95740 −0.20530 0.50700 0.0520*
H1B 0.86370 −0.36370 0.54900 0.0520*
H2A 0.71940 −0.04950 0.50940 0.0620*
H2B 0.68890 −0.22870 0.45770 0.0620*
H3A 0.56490 −0.34840 0.58130 0.0650*
H3B 0.48160 −0.16670 0.55770 0.0650*
H5A 0.78820 −0.16100 0.76180 0.0520*
H5B 0.76240 −0.34420 0.71300 0.0520*
H6 0.91990 −0.04800 0.63970 0.0480*
H7A 1.08780 −0.20780 0.73520 0.0640*
H7B 1.14880 −0.22650 0.63670 0.0640*
H7C 1.05130 −0.38190 0.68040 0.0640*
H10A 0.61530 0.32520 0.73510 0.0460*
H10B 0.48460 0.27250 0.80490 0.0460*
H11 0.71090 0.45300 0.85770 0.0400*
H13 0.43480 0.33540 0.97510 0.0540*
H14 0.42200 0.24030 1.12820 0.0640*
H15 0.64190 0.10180 1.19590 0.0690*
H16 0.87520 0.04880 1.11640 0.0620*
H19 1.11280 0.03880 0.99960 0.0610*
H20 1.28690 0.04980 0.87390 0.0670*
H21 1.20490 0.17560 0.74120 0.0630*
H22 0.94320 0.30910 0.72900 0.0510*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O8 0.0442 (8) 0.0714 (10) 0.0508 (7) 0.0151 (7) −0.0161 (6) −0.0121 (7)
O9 0.0444 (7) 0.0403 (7) 0.0363 (6) 0.0044 (6) −0.0068 (5) −0.0027 (5)
N1 0.0498 (9) 0.0414 (8) 0.0382 (8) −0.0015 (7) 0.0020 (6) −0.0056 (7)
N4 0.0417 (8) 0.0550 (9) 0.0435 (8) 0.0051 (8) −0.0024 (6) −0.0121 (8)
C2 0.0568 (12) 0.0583 (12) 0.0383 (8) 0.0044 (10) −0.0124 (8) −0.0084 (9)
C3 0.0476 (11) 0.0600 (13) 0.0542 (11) 0.0000 (9) −0.0064 (9) −0.0203 (10)
C5 0.0476 (10) 0.0462 (12) 0.0375 (9) 0.0095 (8) 0.0009 (7) −0.0003 (7)
C6 0.0433 (9) 0.0379 (9) 0.0378 (8) 0.0011 (8) −0.0045 (7) −0.0016 (8)
C7 0.0459 (11) 0.0595 (12) 0.0541 (11) 0.0070 (10) −0.0048 (9) 0.0006 (10)
C8 0.0344 (9) 0.0496 (11) 0.0355 (8) −0.0001 (8) 0.0007 (7) −0.0041 (8)
C10 0.0345 (9) 0.0386 (9) 0.0407 (9) 0.0062 (7) −0.0036 (7) −0.0001 (8)
C11 0.0320 (8) 0.0346 (10) 0.0340 (8) 0.0027 (7) −0.0021 (6) −0.0003 (6)
C12 0.0392 (9) 0.0299 (8) 0.0384 (8) −0.0017 (7) 0.0004 (7) −0.0035 (7)
C13 0.0439 (10) 0.0404 (10) 0.0497 (10) −0.0027 (8) 0.0080 (8) −0.0064 (8)
C14 0.0638 (13) 0.0478 (12) 0.0476 (11) −0.0169 (10) 0.0196 (9) −0.0120 (9)
C15 0.0811 (16) 0.0547 (13) 0.0357 (9) −0.0228 (12) 0.0046 (10) 0.0017 (9)
C16 0.0641 (13) 0.0472 (12) 0.0425 (10) −0.0114 (10) −0.0101 (9) 0.0081 (8)
C17 0.0441 (10) 0.0325 (8) 0.0399 (9) −0.0059 (7) −0.0046 (7) 0.0014 (7)
C18 0.0365 (9) 0.0302 (8) 0.0440 (9) 0.0007 (7) −0.0061 (7) −0.0009 (7)
C19 0.0427 (11) 0.0424 (11) 0.0659 (12) 0.0049 (9) −0.0119 (9) 0.0038 (9)
C20 0.0333 (10) 0.0463 (12) 0.0866 (16) 0.0063 (9) −0.0055 (10) −0.0070 (11)
C21 0.0379 (10) 0.0565 (12) 0.0641 (13) −0.0028 (9) 0.0104 (9) −0.0160 (10)
C22 0.0392 (9) 0.0469 (10) 0.0425 (9) −0.0032 (8) 0.0013 (7) −0.0044 (8)
C23 0.0323 (8) 0.0325 (8) 0.0397 (8) 0.0004 (7) −0.0030 (6) −0.0025 (7)
Cl1 0.0585 (3) 0.0495 (3) 0.0457 (2) 0.0006 (2) 0.0055 (2) −0.0020 (2)

Geometric parameters (Å, °)

O8—C8 1.208 (2) C19—C20 1.384 (3)
O9—C8 1.353 (2) C20—C21 1.384 (3)
O9—C10 1.436 (2) C21—C22 1.395 (3)
N1—C2 1.495 (2) C22—C23 1.381 (2)
N1—C6 1.495 (2) C2—H2A 0.9600
N4—C3 1.464 (3) C2—H2B 0.9600
N4—C5 1.457 (2) C3—H3A 0.9600
N4—C8 1.366 (3) C3—H3B 0.9600
N1—H1A 1.0600 C5—H5A 0.9600
N1—H1B 0.8800 C5—H5B 0.9600
C2—C3 1.508 (3) C6—H6 0.9600
C5—C6 1.521 (2) C7—H7A 0.9600
C6—C7 1.522 (3) C7—H7B 0.9600
C10—C11 1.521 (2) C7—H7C 0.9600
C11—C23 1.517 (2) C10—H10A 0.9600
C11—C12 1.522 (2) C10—H10B 0.9600
C12—C17 1.397 (2) C11—H11 1.0900
C12—C13 1.386 (2) C13—H13 0.9600
C13—C14 1.395 (3) C14—H14 0.9600
C14—C15 1.384 (3) C15—H15 0.9600
C15—C16 1.380 (3) C16—H16 0.9600
C16—C17 1.390 (3) C19—H19 0.9600
C17—C18 1.469 (2) C20—H20 0.9600
C18—C23 1.394 (2) C21—H21 0.9800
C18—C19 1.388 (2) C22—H22 0.9600
Cl1···N1i 3.1353 (16) H1B···H3A 2.5500
Cl1···C22 3.6222 (19) H2A···H6 2.5500
Cl1···N1ii 3.1167 (16) H2A···Cl1 3.1300
Cl1···H2A 3.1300 H2B···O8vii 2.4100
Cl1···H22 2.7200 H3A···H1B 2.5500
Cl1···H1Bi 2.2600 H3A···H5B 2.5500
Cl1···H1Aii 2.0800 H3B···O8 2.3800
Cl1···H7Bii 2.9600 H3B···Cl1vii 3.0900
Cl1···H3Biii 3.0900 H5A···H14x 2.5300
O8···C2iii 3.316 (2) H5A···H7A 2.5600
O9···C22 3.276 (2) H5A···O9 2.2300
O8···H10B 2.6900 H5B···H7C 2.4800
O8···H2Biii 2.4100 H5B···H3A 2.5500
O8···H21iv 2.5400 H6···H2A 2.5500
O8···H10A 2.5700 H7A···H5A 2.5600
O8···H3B 2.3800 H7A···C21 3.0200
O9···H5A 2.2300 H7B···H1A 2.5000
N1···N4 2.829 (2) H7B···Cl1v 2.9600
N1···Cl1v 3.1167 (16) H7C···H1B 2.5000
N1···Cl1vi 3.1353 (16) H7C···H5B 2.4800
N4···N1 2.829 (2) H7C···H22vi 2.5900
C2···O8vii 3.316 (2) H10A···O8 2.5700
C17···C19viii 3.470 (3) H10B···O8 2.6900
C19···C17ix 3.470 (3) H10B···C21iv 3.0500
C22···O9 3.276 (2) H10B···H20iv 2.5700
C22···Cl1 3.6222 (19) H10B···C15xii 3.1000
C5···H14x 2.9800 H10B···C13 3.0000
C10···H22 3.0800 H10B···C20iv 3.0200
C11···H19viii 3.0600 H11···C14xii 2.8700
C12···H19viii 2.9400 H11···H14xii 2.4300
C13···H10B 3.0000 H13···C16xii 2.8900
C14···H20viii 2.9800 H13···C15xii 2.8800
C14···H11x 2.8700 H14···H5Axii 2.5300
C15···H13x 2.8800 H14···H11x 2.4300
C15···H10Bx 3.1000 H14···C5xii 2.9800
C16···H13x 2.8900 H16···C22ix 2.9600
C16···H19 3.0800 H19···C11ix 3.0600
C17···H19viii 2.9200 H19···C12ix 2.9400
C18···H19viii 3.0400 H19···C16 3.0800
C20···H10Bxi 3.0200 H19···C18ix 3.0400
C21···H10Bxi 3.0500 H19···C17ix 2.9200
C21···H7A 3.0200 H20···C14ix 2.9800
C22···H16viii 2.9600 H20···H10Bxi 2.5700
H1A···Cl1v 2.0800 H21···O8xi 2.5400
H1A···H7B 2.5000 H22···H7Ci 2.5900
H1B···H7C 2.5000 H22···Cl1 2.7200
H1B···Cl1vi 2.2600 H22···C10 3.0800
C8—O9—C10 114.92 (14) C3—C2—H2B 110.00
C2—N1—C6 112.89 (14) H2A—C2—H2B 109.00
C3—N4—C5 113.24 (16) N4—C3—H3A 110.00
C3—N4—C8 117.98 (16) N4—C3—H3B 109.00
C5—N4—C8 122.64 (17) C2—C3—H3A 109.00
C2—N1—H1B 108.00 C2—C3—H3B 109.00
C6—N1—H1A 109.00 H3A—C3—H3B 109.00
C2—N1—H1A 107.00 N4—C5—H5A 109.00
H1A—N1—H1B 106.00 N4—C5—H5B 110.00
C6—N1—H1B 114.00 C6—C5—H5A 108.00
N1—C2—C3 109.43 (15) C6—C5—H5B 109.00
N4—C3—C2 110.33 (15) H5A—C5—H5B 109.00
N4—C5—C6 111.56 (15) N1—C6—H6 109.00
C5—C6—C7 112.14 (15) C5—C6—H6 109.00
N1—C6—C5 108.51 (14) C7—C6—H6 108.00
N1—C6—C7 109.85 (16) C6—C7—H7A 109.00
O9—C8—N4 110.82 (15) C6—C7—H7B 111.00
O8—C8—O9 123.88 (19) C6—C7—H7C 109.00
O8—C8—N4 125.26 (17) H7A—C7—H7B 110.00
O9—C10—C11 107.66 (13) H7A—C7—H7C 109.00
C10—C11—C12 117.54 (13) H7B—C7—H7C 109.00
C12—C11—C23 101.91 (12) O9—C10—H10A 110.00
C10—C11—C23 114.66 (13) O9—C10—H10B 109.00
C11—C12—C13 128.75 (15) C11—C10—H10A 111.00
C13—C12—C17 120.70 (16) C11—C10—H10B 110.00
C11—C12—C17 110.36 (14) H10A—C10—H10B 110.00
C12—C13—C14 118.12 (18) C10—C11—H11 103.00
C13—C14—C15 121.0 (2) C12—C11—H11 113.00
C14—C15—C16 121.04 (19) C23—C11—H11 107.00
C15—C16—C17 118.5 (2) C12—C13—H13 119.00
C12—C17—C16 120.66 (17) C14—C13—H13 123.00
C16—C17—C18 130.86 (17) C13—C14—H14 120.00
C12—C17—C18 108.42 (14) C15—C14—H14 119.00
C17—C18—C23 108.85 (14) C14—C15—H15 120.00
C19—C18—C23 120.38 (16) C16—C15—H15 119.00
C17—C18—C19 130.77 (16) C15—C16—H16 120.00
C18—C19—C20 118.94 (19) C17—C16—H16 121.00
C19—C20—C21 120.64 (17) C18—C19—H19 119.00
C20—C21—C22 120.70 (18) C20—C19—H19 122.00
C21—C22—C23 118.58 (17) C19—C20—H20 121.00
C11—C23—C22 128.88 (15) C21—C20—H20 119.00
C18—C23—C22 120.72 (15) C20—C21—H21 117.00
C11—C23—C18 110.40 (14) C22—C21—H21 122.00
N1—C2—H2A 109.00 C21—C22—H22 121.00
N1—C2—H2B 110.00 C23—C22—H22 120.00
C3—C2—H2A 109.00
C10—O9—C8—O8 −17.4 (2) C11—C12—C13—C14 −173.75 (18)
C10—O9—C8—N4 164.52 (14) C17—C12—C13—C14 0.6 (3)
C8—O9—C10—C11 −167.41 (13) C11—C12—C17—C16 175.50 (16)
C6—N1—C2—C3 −57.2 (2) C11—C12—C17—C18 −2.04 (17)
C2—N1—C6—C5 55.8 (2) C13—C12—C17—C16 0.2 (3)
C2—N1—C6—C7 178.70 (16) C13—C12—C17—C18 −177.31 (16)
C5—N4—C3—C2 −57.0 (2) C12—C13—C14—C15 −0.7 (3)
C8—N4—C3—C2 96.2 (2) C13—C14—C15—C16 0.1 (3)
C3—N4—C5—C6 56.7 (2) C14—C15—C16—C17 0.7 (3)
C8—N4—C5—C6 −95.1 (2) C15—C16—C17—C12 −0.8 (3)
C3—N4—C8—O8 12.5 (3) C15—C16—C17—C18 176.07 (18)
C3—N4—C8—O9 −169.49 (15) C12—C17—C18—C19 179.93 (18)
C5—N4—C8—O8 163.05 (18) C12—C17—C18—C23 0.59 (18)
C5—N4—C8—O9 −19.0 (2) C16—C17—C18—C19 2.7 (3)
N1—C2—C3—N4 55.6 (2) C16—C17—C18—C23 −176.61 (18)
N4—C5—C6—N1 −54.2 (2) C17—C18—C19—C20 178.81 (18)
N4—C5—C6—C7 −175.72 (18) C23—C18—C19—C20 −1.9 (3)
O9—C10—C11—C12 −74.83 (17) C17—C18—C23—C11 1.10 (18)
O9—C10—C11—C23 44.87 (17) C17—C18—C23—C22 −178.39 (16)
C10—C11—C12—C13 −56.5 (2) C19—C18—C23—C11 −178.32 (16)
C10—C11—C12—C17 128.77 (15) C19—C18—C23—C22 2.2 (3)
C23—C11—C12—C13 177.33 (17) C18—C19—C20—C21 0.2 (3)
C23—C11—C12—C17 2.55 (16) C19—C20—C21—C22 1.3 (3)
C10—C11—C23—C18 −130.26 (14) C20—C21—C22—C23 −1.0 (3)
C10—C11—C23—C22 49.2 (2) C21—C22—C23—C11 179.91 (18)
C12—C11—C23—C18 −2.18 (16) C21—C22—C23—C18 −0.7 (3)
C12—C11—C23—C22 177.26 (17)

Symmetry codes: (i) x, y+1, z; (ii) −x+2, y+1/2, −z+1; (iii) −x+1, y+1/2, −z+1; (iv) x−1, y, z; (v) −x+2, y−1/2, −z+1; (vi) x, y−1, z; (vii) −x+1, y−1/2, −z+1; (viii) −x+2, y+1/2, −z+2; (ix) −x+2, y−1/2, −z+2; (x) −x+1, y−1/2, −z+2; (xi) x+1, y, z; (xii) −x+1, y+1/2, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···Cl1v 1.06 2.08 3.117 (2) 165.
N1—H1B···Cl1vi 0.88 2.26 3.135 (2) 171.
C2—H2B···O8vii 0.96 2.41 3.316 (2) 157.
C3—H3B···O8 0.96 2.38 2.778 (3) 104.
C5—H5A···O9 0.96 2.23 2.665 (2) 106.
C21—H21···O8xi 0.98 2.54 3.469 (2) 158.
C22—H22···Cl1 0.96 2.72 3.622 (2) 157.

Symmetry codes: (v) −x+2, y−1/2, −z+1; (vi) x, y−1, z; (vii) −x+1, y−1/2, −z+1; (xi) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2361).

References

  1. ACD (2011). ACD/Labs Advanced Chemistry Development Inc., Toronto, Ontario, Canada.
  2. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  3. Cho, Y. S., Borland, M., Brain, C., Chen, C. H.-T., Cheng, H., Chopra, R., Chung, K., Groarke, J., He, G., Hou, Y., Kim, S., Kovats, S., Lu, Y., OReilly, M., Shen, J., Smith, T., Trakshel, G., Vogtle, M., Xu, M., Xu, M. & Sung, M. J. (2010). J. Med. Chem. 53, 7938–57. [DOI] [PubMed]
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Johnson, C. K. (1976). ORTEPII Oak Ridge National Laboratory, Tennessee, USA
  6. Kitaigorodskij, A. I. (1973). In Molecular Crystals and Molecules New York: Academic Press.
  7. MacKay, S., Edwards, C., Henderson, A., Gilmore, C., Stewart, N., Shankland, K. & Donald, A. (2000). The maXus program package. Chemistry Department, The University, Glasgow, Scotland, MacScience Co., Japan, and Nonius BV, The Netherlands.
  8. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  9. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter, Jr & R. M. Sweet, pp. 307–326, New York: Academic Press.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Wang, T., Yin, Z., Zhang, Z., Bender, J. A., Yang, Z., Johnson, G., Yang, Z., Zadjura, L. M., Arienzo, C. J., DiGiugno Parker, D., Gesenberg, C., Yamanaka, G. A., Gong, Y.-F., Ho, H.-T., Fang, H., Zhou, N., McAuliffe, B. V., Eggers, B. J., Fan, L., Nowicka-Sans, B., Dicker, I. B., Gao, Q., Colonno, R. J., Lin, P.-F., Meanwell, N. A. & Kadow, J. F. (2009). J. Med. Chem. 52, 7778–7787. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811048306/kp2361sup1.cif

e-67-o3386-sup1.cif (25KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811048306/kp2361Isup2.hkl

e-67-o3386-Isup2.hkl (206.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811048306/kp2361Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES