Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 23;67(Pt 12):o3405–o3406. doi: 10.1107/S1600536811048537

O-Phenyl (tert-butyl­amido)(p-tolyl­amido)­phosphinate

Mehrdad Pourayoubi a,*, Arnold L Rheingold b, Chao Chen b, Fatemeh Karimi Ahmadabad a, Atekeh Tarahhomi a
PMCID: PMC3239044  PMID: 22199892

Abstract

In the title mol­ecule, C17H23N2O2P, the P atom has a distorted tetra­hedral environment. The P—N bond to the tolyl­amido fragment is 1.642 (4) Å while that to the butyl­amido fragment is 1.629 (3) Å. The dihedral angle between the two benzene rings is 82.3 (2)°. In the crystal, adjacent mol­ecules are linked via weak N—H⋯(O)P and N—H⋯N hydrogen-bonding inter­actions into an extended chain parallel to the b axis. The three methyl groups of the tert-butyl­amido substituent are disordered over two sets of sites with equal occupancies. The crystal studied was found to be a non-merohedral twin with the minor twin component = 23.1 (1)%.

Related literature

For background to mixed-amido phosphinates, see: Pourayoubi et al. (2011a ); Sabbaghi et al. (2011). For the sp 2 character of the nitro­gen atom of the P(=O)N unit and also for its low Lewis-base character in acting as a hydrogen-bond acceptor, see: Toghraee et al. (2011); Pourayoubi et al. (2011b ,c ). For a description of the Cambridge Structure Database, see: Allen (2002).graphic file with name e-67-o3405-scheme1.jpg

Experimental

Crystal data

  • C17H23N2O2P

  • M r = 318.34

  • Monoclinic, Inline graphic

  • a = 11.412 (5) Å

  • b = 9.519 (4) Å

  • c = 15.768 (6) Å

  • β = 104.332 (5)°

  • V = 1659.5 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 100 K

  • 0.20 × 0.18 × 0.15 mm

Data collection

  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (TWINABS; Sheldrick, 2008a ) T min = 0.966, T max = 0.974

  • 18075 measured reflections

  • 3860 independent reflections

  • 2497 reflections with I > 2σ(I)

  • R int = 0.087

Refinement

  • R[F 2 > 2σ(F 2)] = 0.089

  • wR(F 2) = 0.203

  • S = 1.08

  • 3860 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: CELL_NOW (Sheldrick, 2008a ) and SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b ); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b ); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b ) and enCIFer (Allen et al., 2004).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811048537/wm2550sup1.cif

e-67-o3405-sup1.cif (21.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811048537/wm2550Isup2.hkl

e-67-o3405-Isup2.hkl (189.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.88 2.32 3.175 (5) 163
N2—H2⋯O1ii 0.88 2.40 3.275 (5) 170

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

Support of this investigation by the Ferdowsi University of Mashhad is gratefully acknowledged.

supplementary crystallographic information

Comment

Following our previous work on the synthesis of mixed-amido phosphinates containing a P(O)(O)(NH)(NH) skeleton (Pourayoubi et al., 2011a), we report here on the synthesis and crystal structure of the title compound, P(O)[OC6H5][NHC6H4(4-CH3)][NHC(CH3)3] (Fig. 1).

The P═O, P—O and P—N bond lengths and P—O—C and P—N—C bond angles are within the expected values (Sabbaghi et al., 2011). The P atom has a distorted tetrahedral conformation with the bond angles in the range of 96.76 (17)° [O2–P1–N2] to 117.03 (17)° [O1–P1–N2]. The P1—N1 bond (with length of 1.642 (4) Å) is slightly longer than the P1—N2 bond (1.629 (3) Å). The dihedral angle between the phenyl rings of the OC6H5 and NHC6H4(4-CH3) moieties is 82.3 (2)°.

In the crystal structure, the molecules are linked by weak N—H···(O)P and N—H···N hydrogen bonding interactions (Table 1) into an extended chain along [010] (Fig. 2). As illustrated for phosphoramidates by Toghraee et al. (2011) and Pourayoubi et al. (2011b,c) by examining all deposited phosphoramidates in the Cambridge Structural Database (CSD, Version 5.32, May 2011 update; Allen, 2002), the N atom of the P(═O)N unit usually adopts an sp2 character (which is reflected in the bond angles at the N atom) and usually does not act as an acceptor in hydrogen bonding interactions. Therefore, the N—H···N—P contact in the crystal packing may rather be attributed to the assembly of the molecules with respect to one another.

Experimental

To a solution of (C6H5O)(4-CH3C6H4NH)P(O)Cl (1.714 mmol) in chloroform, a solution of tert-butylamine (3.428 mmol) in chloroform was added at 273 K. After 5 h stirring, the solvent was removed in vacuum and the solid product was washed with distilled water. Single crystals were obtained from a mixture of CH3CN/CHCl3 at room temperature.

Refinement

The investigated crystal was found to be a two-component rotational twin. The data for both components were integrated using SAINT and scaled with TWINABS. Final refinement was done using a HKLF5 file generated by TWINABS with an appropriate BASF parameter (0.23089 (10)). The three methyl groups of the tert-butyl moiety were refined as being disordered in a 0.5:0.5 ratio. All H atoms were placed geometrically using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL97 (d(C—H) = 0.98 Å for methyl H atoms, d(C—H) = 0.95 Å for aromatic H atoms and d(N—H) = 0.88 Å for amide H atoms, with Uiso(H) = 1.2Ueq(C,N) for aromatic and amide H atoms and Uiso(H) = 1.5Ueq(C) for methyl H atoms).

Figures

Fig. 1.

Fig. 1.

An ORTEP-style plot and atom labeling scheme for the title compound. Displacement ellipsoids are given at 50% probability level and H atoms are drawn as small spheres of arbitrary radius. The disorder of the methyl groups is not shown.

Fig. 2.

Fig. 2.

Partial packing view showing the formation of the chain through the N—H···(O)P and N—H···N hydrogen bonds which are shown as dashed lines. The H atoms not involved in hydrogen bonding have been omitted for the sake of clarity.

Crystal data

C17H23N2O2P F(000) = 680
Mr = 318.34 Dx = 1.274 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2700 reflections
a = 11.412 (5) Å θ = 2.5–27.3°
b = 9.519 (4) Å µ = 0.18 mm1
c = 15.768 (6) Å T = 100 K
β = 104.332 (5)° Block, colourless
V = 1659.5 (12) Å3 0.20 × 0.18 × 0.15 mm
Z = 4

Data collection

Bruker APEX CCD diffractometer 18075 independent reflections
Radiation source: fine-focus sealed tube 2497 reflections with I > 2σ(I)
graphite Rint = 0.087
φ and ω scans θmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan (TWINABS; Sheldrick, 2008a) h = −15→14
Tmin = 0.966, Tmax = 0.974 k = 0→12
3860 measured reflections l = 0→20

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.089 H-atom parameters constrained
wR(F2) = 0.203 w = 1/[σ2(Fo2) + (0.032P)2 + 5.6384P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max < 0.001
3860 reflections Δρmax = 0.36 e Å3
235 parameters Δρmin = −0.42 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0051 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 −0.3828 (4) 0.3138 (7) 0.1636 (3) 0.0484 (14)
H1A −0.4241 0.3213 0.1014 0.073*
H1B −0.4038 0.3950 0.1951 0.073*
H1C −0.4083 0.2273 0.1876 0.073*
C2 −0.2482 (4) 0.3104 (6) 0.1738 (3) 0.0375 (11)
C3 −0.1876 (4) 0.1854 (5) 0.1663 (2) 0.0330 (10)
H3 −0.2329 0.1008 0.1548 0.040*
C4 −0.0631 (4) 0.1802 (5) 0.1750 (2) 0.0293 (9)
H4 −0.0249 0.0933 0.1688 0.035*
C5 0.0049 (3) 0.3026 (5) 0.1927 (2) 0.0264 (9)
C6 −0.0545 (3) 0.4307 (5) 0.1998 (2) 0.0288 (9)
H6 −0.0095 0.5155 0.2113 0.035*
C7 −0.1785 (4) 0.4320 (5) 0.1901 (2) 0.0338 (10)
H7 −0.2174 0.5189 0.1948 0.041*
C8 0.2197 (4) 0.1078 (5) 0.0673 (3) 0.0323 (10)
C9 0.1197 (4) 0.1458 (5) 0.0015 (3) 0.0362 (11)
H9 0.0411 0.1470 0.0118 0.043*
C10 0.1373 (5) 0.1821 (6) −0.0801 (3) 0.0449 (12)
H10 0.0700 0.2084 −0.1261 0.054*
C11 0.2522 (5) 0.1802 (6) −0.0946 (3) 0.0450 (12)
H11 0.2638 0.2068 −0.1500 0.054*
C12 0.3495 (5) 0.1395 (6) −0.0283 (3) 0.0439 (12)
H12 0.4277 0.1364 −0.0391 0.053*
C13 0.3357 (4) 0.1030 (5) 0.0541 (3) 0.0369 (11)
H13 0.4031 0.0757 0.0998 0.044*
C14 0.2211 (4) 0.1101 (5) 0.3984 (2) 0.0286 (9)
C15 0.3531 (8) 0.0707 (13) 0.4489 (6) 0.041 (2) 0.50
H15A 0.3657 −0.0303 0.4432 0.061* 0.50
H15B 0.3653 0.0948 0.5109 0.061* 0.50
H15C 0.4108 0.1231 0.4242 0.061* 0.50
C16 0.1961 (10) 0.2594 (11) 0.4144 (6) 0.038 (2) 0.50
H16A 0.2495 0.3199 0.3905 0.058* 0.50
H16B 0.2105 0.2757 0.4775 0.058* 0.50
H16C 0.1116 0.2811 0.3858 0.058* 0.50
C17 0.1378 (10) 0.0128 (12) 0.4394 (6) 0.043 (2) 0.50
H17A 0.0529 0.0386 0.4154 0.065* 0.50
H17B 0.1588 0.0247 0.5031 0.065* 0.50
H17C 0.1500 −0.0855 0.4251 0.065* 0.50
C15' 0.3377 (8) 0.1837 (13) 0.4350 (5) 0.041 (2) 0.50
H15D 0.4046 0.1256 0.4264 0.062* 0.50
H15E 0.3473 0.2002 0.4977 0.062* 0.50
H15F 0.3378 0.2739 0.4050 0.062* 0.50
C16' 0.1147 (9) 0.2038 (12) 0.4044 (6) 0.042 (2) 0.50
H16D 0.1245 0.2966 0.3802 0.063* 0.50
H16E 0.1123 0.2135 0.4658 0.063* 0.50
H16F 0.0391 0.1613 0.3710 0.063* 0.50
C17' 0.2138 (9) −0.0251 (11) 0.4441 (5) 0.034 (2) 0.50
H17D 0.1421 −0.0773 0.4126 0.051* 0.50
H17E 0.2080 −0.0063 0.5040 0.051* 0.50
H17F 0.2865 −0.0810 0.4457 0.051* 0.50
N1 0.1321 (3) 0.3055 (4) 0.2034 (2) 0.0272 (8)
H1 0.1619 0.3882 0.1951 0.033*
N2 0.2060 (3) 0.0744 (4) 0.3037 (2) 0.0281 (8)
H2 0.1806 −0.0109 0.2871 0.034*
O1 0.3536 (2) 0.2436 (3) 0.24577 (18) 0.0325 (7)
O2 0.2020 (2) 0.0677 (3) 0.14980 (17) 0.0304 (7)
P1 0.23229 (9) 0.17878 (13) 0.22865 (6) 0.0262 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.028 (2) 0.083 (4) 0.036 (2) −0.002 (3) 0.0118 (19) −0.001 (3)
C2 0.024 (2) 0.070 (4) 0.0189 (19) −0.006 (2) 0.0061 (15) −0.004 (2)
C3 0.029 (2) 0.048 (3) 0.0203 (19) −0.008 (2) 0.0044 (16) 0.003 (2)
C4 0.028 (2) 0.037 (2) 0.0229 (19) −0.0024 (19) 0.0063 (15) 0.0036 (19)
C5 0.0230 (19) 0.040 (2) 0.0163 (17) 0.0016 (18) 0.0043 (14) 0.0045 (17)
C6 0.024 (2) 0.041 (3) 0.0214 (19) −0.0008 (18) 0.0050 (15) −0.0012 (18)
C7 0.029 (2) 0.054 (3) 0.0192 (19) 0.008 (2) 0.0083 (16) −0.003 (2)
C8 0.038 (2) 0.038 (3) 0.022 (2) −0.001 (2) 0.0106 (17) −0.0050 (19)
C9 0.036 (2) 0.048 (3) 0.025 (2) 0.000 (2) 0.0081 (17) −0.004 (2)
C10 0.057 (3) 0.053 (3) 0.024 (2) 0.010 (3) 0.009 (2) −0.003 (2)
C11 0.063 (3) 0.051 (3) 0.027 (2) −0.002 (3) 0.022 (2) −0.008 (2)
C12 0.048 (3) 0.055 (3) 0.035 (2) −0.007 (2) 0.023 (2) −0.011 (2)
C13 0.034 (2) 0.045 (3) 0.033 (2) −0.004 (2) 0.0097 (19) −0.008 (2)
C14 0.031 (2) 0.037 (3) 0.0199 (19) 0.0019 (19) 0.0097 (16) −0.0009 (18)
C15 0.038 (5) 0.063 (7) 0.019 (4) 0.001 (5) 0.002 (4) −0.002 (5)
C16 0.047 (6) 0.049 (6) 0.023 (4) 0.000 (5) 0.015 (4) 0.006 (4)
C17 0.057 (7) 0.052 (7) 0.023 (5) −0.018 (6) 0.016 (5) 0.001 (4)
C15' 0.040 (5) 0.066 (7) 0.019 (4) −0.019 (5) 0.009 (4) −0.009 (5)
C16' 0.041 (5) 0.063 (7) 0.024 (4) 0.021 (5) 0.012 (4) −0.004 (4)
C17' 0.040 (5) 0.046 (6) 0.019 (4) 0.002 (5) 0.011 (4) 0.004 (4)
N1 0.0212 (16) 0.038 (2) 0.0229 (16) −0.0022 (15) 0.0067 (13) 0.0015 (15)
N2 0.0318 (18) 0.035 (2) 0.0169 (16) −0.0020 (16) 0.0045 (13) −0.0002 (14)
O1 0.0238 (14) 0.0463 (19) 0.0275 (15) −0.0002 (13) 0.0067 (11) −0.0013 (14)
O2 0.0316 (15) 0.0385 (18) 0.0216 (14) −0.0021 (13) 0.0079 (11) −0.0046 (13)
P1 0.0215 (5) 0.0383 (6) 0.0184 (5) 0.0005 (5) 0.0045 (4) −0.0014 (5)

Geometric parameters (Å, °)

C1—C2 1.506 (6) C14—C17' 1.488 (10)
C1—H1A 0.9800 C14—N2 1.500 (5)
C1—H1B 0.9800 C14—C16' 1.528 (10)
C1—H1C 0.9800 C14—C15 1.565 (10)
C2—C7 1.391 (7) C14—C17 1.576 (10)
C2—C3 1.396 (7) C15—H15A 0.9800
C3—C4 1.394 (5) C15—H15B 0.9800
C3—H3 0.9500 C15—H15C 0.9800
C4—C5 1.390 (6) C16—H16A 0.9800
C4—H4 0.9500 C16—H16B 0.9800
C5—C6 1.413 (6) C16—H16C 0.9800
C5—N1 1.419 (5) C17—H17A 0.9800
C6—C7 1.386 (5) C17—H17B 0.9800
C6—H6 0.9500 C17—H17C 0.9800
C7—H7 0.9500 C15'—H15D 0.9800
C8—C9 1.386 (6) C15'—H15E 0.9800
C8—C13 1.391 (6) C15'—H15F 0.9800
C8—O2 1.417 (5) C16'—H16D 0.9800
C9—C10 1.395 (6) C16'—H16E 0.9800
C9—H9 0.9500 C16'—H16F 0.9800
C10—C11 1.385 (7) C17'—H17D 0.9800
C10—H10 0.9500 C17'—H17E 0.9800
C11—C12 1.379 (7) C17'—H17F 0.9800
C11—H11 0.9500 N1—P1 1.642 (4)
C12—C13 1.392 (6) N1—H1 0.8800
C12—H12 0.9500 N2—P1 1.629 (3)
C13—H13 0.9500 N2—H2 0.8800
C14—C16 1.483 (11) O1—P1 1.478 (3)
C14—C15' 1.487 (10) O2—P1 1.603 (3)
C2—C1—H1A 109.5 N2—C14—C16' 107.3 (4)
C2—C1—H1B 109.5 C16—C14—C15 110.2 (7)
H1A—C1—H1B 109.5 C17'—C14—C15 73.1 (6)
C2—C1—H1C 109.5 N2—C14—C15 108.1 (4)
H1A—C1—H1C 109.5 C16'—C14—C15 142.0 (6)
H1B—C1—H1C 109.5 C16—C14—C17 109.4 (6)
C7—C2—C3 116.9 (4) C15'—C14—C17 133.6 (6)
C7—C2—C1 121.5 (5) N2—C14—C17 110.0 (5)
C3—C2—C1 121.5 (5) C16'—C14—C17 75.4 (6)
C4—C3—C2 122.4 (4) C15—C14—C17 104.6 (6)
C4—C3—H3 118.8 C14—C15—H15A 109.5
C2—C3—H3 118.8 C14—C15—H15B 109.5
C5—C4—C3 119.6 (4) C14—C15—H15C 109.5
C5—C4—H4 120.2 C14—C16—H16A 109.5
C3—C4—H4 120.2 C14—C16—H16B 109.5
C4—C5—C6 119.0 (4) C14—C16—H16C 109.5
C4—C5—N1 122.9 (4) C14—C17—H17A 109.5
C6—C5—N1 118.1 (4) C14—C17—H17B 109.5
C7—C6—C5 119.8 (4) C14—C17—H17C 109.5
C7—C6—H6 120.1 C14—C15'—H15D 109.5
C5—C6—H6 120.1 C14—C15'—H15E 109.5
C6—C7—C2 122.3 (4) H15D—C15'—H15E 109.5
C6—C7—H7 118.9 C14—C15'—H15F 109.5
C2—C7—H7 118.9 H15D—C15'—H15F 109.5
C9—C8—C13 122.3 (4) H15E—C15'—H15F 109.5
C9—C8—O2 118.6 (4) C14—C16'—H16D 109.5
C13—C8—O2 119.0 (4) C14—C16'—H16E 109.5
C8—C9—C10 118.4 (4) H16D—C16'—H16E 109.5
C8—C9—H9 120.8 C14—C16'—H16F 109.5
C10—C9—H9 120.8 H16D—C16'—H16F 109.5
C11—C10—C9 120.5 (4) H16E—C16'—H16F 109.5
C11—C10—H10 119.8 C14—C17'—H17D 109.5
C9—C10—H10 119.8 C14—C17'—H17E 109.5
C12—C11—C10 119.7 (4) H17D—C17'—H17E 109.5
C12—C11—H11 120.1 C14—C17'—H17F 109.5
C10—C11—H11 120.1 H17D—C17'—H17F 109.5
C11—C12—C13 121.5 (5) H17E—C17'—H17F 109.5
C11—C12—H12 119.2 C5—N1—P1 130.2 (3)
C13—C12—H12 119.2 C5—N1—H1 114.9
C8—C13—C12 117.6 (4) P1—N1—H1 114.9
C8—C13—H13 121.2 C14—N2—P1 126.0 (3)
C12—C13—H13 121.2 C14—N2—H2 117.0
C16—C14—C15' 71.0 (7) P1—N2—H2 117.0
C16—C14—C17' 135.3 (6) C8—O2—P1 118.8 (3)
C15'—C14—C17' 111.8 (6) O1—P1—O2 115.41 (16)
C16—C14—N2 114.0 (5) O1—P1—N2 117.03 (17)
C15'—C14—N2 111.4 (4) O2—P1—N2 96.76 (17)
C17'—C14—N2 106.2 (5) O1—P1—N1 107.61 (19)
C15'—C14—C16' 110.4 (7) O2—P1—N1 107.01 (16)
C17'—C14—C16' 109.5 (6) N2—P1—N1 112.47 (17)
C7—C2—C3—C4 0.3 (6) C6—C5—N1—P1 159.1 (3)
C1—C2—C3—C4 179.6 (4) C16—C14—N2—P1 32.5 (6)
C2—C3—C4—C5 0.7 (6) C15'—C14—N2—P1 −45.5 (7)
C3—C4—C5—C6 −1.2 (5) C17'—C14—N2—P1 −167.5 (5)
C3—C4—C5—N1 179.3 (3) C16'—C14—N2—P1 75.5 (6)
C4—C5—C6—C7 0.7 (6) C15—C14—N2—P1 −90.4 (6)
N1—C5—C6—C7 −179.8 (3) C17—C14—N2—P1 155.9 (6)
C5—C6—C7—C2 0.3 (6) C9—C8—O2—P1 −101.8 (4)
C3—C2—C7—C6 −0.8 (6) C13—C8—O2—P1 80.5 (5)
C1—C2—C7—C6 179.9 (4) C8—O2—P1—O1 −51.6 (3)
C13—C8—C9—C10 −1.0 (7) C8—O2—P1—N2 −175.9 (3)
O2—C8—C9—C10 −178.6 (4) C8—O2—P1—N1 68.1 (3)
C8—C9—C10—C11 0.0 (8) C14—N2—P1—O1 54.8 (4)
C9—C10—C11—C12 1.2 (8) C14—N2—P1—O2 177.8 (3)
C10—C11—C12—C13 −1.4 (8) C14—N2—P1—N1 −70.6 (4)
C9—C8—C13—C12 0.7 (7) C5—N1—P1—O1 −170.6 (3)
O2—C8—C13—C12 178.3 (4) C5—N1—P1—O2 64.8 (3)
C11—C12—C13—C8 0.5 (8) C5—N1—P1—N2 −40.3 (4)
C4—C5—N1—P1 −21.4 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···N2i 0.88 2.32 3.175 (5) 163.
N2—H2···O1ii 0.88 2.40 3.275 (5) 170.

Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2550).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  3. Bruker (2005). SAINT and APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  5. Pourayoubi, M., Karimi Ahmadabad, F. & Nečas, M. (2011a). Acta Cryst. E67, o2523. [DOI] [PMC free article] [PubMed]
  6. Pourayoubi, M., Nečas, M. & Negari, M. (2011b). Acta Cryst. C67 Submitted. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Pourayoubi, M., Tarahhomi, A., Saneei, A., Rheingold, A. L. & Golen, J. A. (2011c). Acta Cryst. C67, o265–o272. [DOI] [PubMed]
  8. Sabbaghi, F., Pourayoubi, M., Karimi Ahmadabad, F. & Parvez, M. (2011). Acta Cryst. E67, o1502. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (2008a). CELL_NOW and TWINABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Toghraee, M., Pourayoubi, M. & Divjakovic, V. (2011). Polyhedron, 30, 1680–1690.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811048537/wm2550sup1.cif

e-67-o3405-sup1.cif (21.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811048537/wm2550Isup2.hkl

e-67-o3405-Isup2.hkl (189.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES