Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 23;67(Pt 12):o3412. doi: 10.1107/S1600536811047982

1-(5,7-Dihy­droxy-2,2-dimethylchroman-6-yl)ethanone

Matthew P Akerman a,*, Zimbili Mkhize a, Fanie R van Heerden a
PMCID: PMC3239049  PMID: 22199897

Abstract

In the title mol­ecule, C13H16O4, the pyran ring is in a half-chair conformation. There is an intra­molecular hydrogen bond involving the ketone O atom and an H atom of a phenol group which forms an S(6) ring. The ketone O atom is also involved in an inter­molecular hydrogen bond with a different phenolic H atom of a symmetry-related mol­ecule, forming C(6) chains along the c-axis direction.

Related literature

For applications of the title compound, see: Kraus et al. (2011); Basabe et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995). For a related structure, see: Chakkaravarthi et al. (2007).graphic file with name e-67-o3412-scheme1.jpg

Experimental

Crystal data

  • C13H16O4

  • M r = 236.26

  • Tetragonal, Inline graphic

  • a = 10.5677 (2) Å

  • c = 21.4244 (5) Å

  • V = 2392.6 (1) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.6 × 0.4 × 0.4 mm

Data collection

  • Oxford Diffraction Xcalibur 2 CCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995) T min = 0.955, T max = 0.962

  • 26011 measured reflections

  • 2366 independent reflections

  • 2046 reflections with I > 2σ(I)

  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.091

  • S = 1.08

  • 2366 reflections

  • 166 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.11 e Å−3

  • Absolute structure: Flack (1983), 931 Friedel pairs

  • Flack parameter: 0.7 (11)

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: WinGX (Farrugia, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536811047982/lh5372sup1.cif

e-67-o3412-sup1.cif (22KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811047982/lh5372Isup2.hkl

e-67-o3412-Isup2.hkl (114KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811047982/lh5372Isup3.mol

Supplementary material file. DOI: 10.1107/S1600536811047982/lh5372Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H102⋯O4i 0.97 (2) 1.77 (2) 2.737 (2) 179 (1)
O3—H103⋯O4 0.86 (2) 1.71 (2) 2.501 (2) 151 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

We would like to thank the University of KwaZulu-Natal for their facilities and Kirsty Stewart for the data collection. We also wish to acknowledge the National Research Foundation of South Africa for their financial support.

supplementary crystallographic information

Comment

The title compound was synthesized as an intermediate in the preparation of flavonoids or other phenolic derivatives and an intermediate for an anti-HIV chromanone (Kraus et al., 2011). It has also been obtained as a side product in the preparation of prenylated flavonoids with antitumour activity (Basabe et al., 2010). The molecular structure of the title compound is shown in Fig. 1. The pyran ring is in a half-chair conformation. There are two types of hydrogen bonds, one intramolecular and one intermolecular. The intramolecular O3—H103···O4 hydrogen bond forms an S(6) ring motif (Bernstein et al., 1995). This hydrogen bond motif is common to molecules which contain derivatized (2-hydroxyphenyl)ethanone structures (Chakkaravarthi et al., 2007). In addition to the intramolecular hydrogen bonding, there is an intermolecular hydrogen bond between the phenolic group and the ketone O atom of an adjacent molecule. This O2—H102···O4i (see Table 1 for symmetry code) hydrogen bond links the molecules to form infinite one-dimensional C(6) chains parallel to the c axis (base vector [0 0 1]). The same ketone oxygen atom therefore accepts two hydrogen bonds, one intermolecular and one intramolecular. The hydrogen bond lengths and bond angles are summarized in Table 1. Fig.2 depicts both the intermolecular and intramolecular hydrogen bonds. The length of intermolecular hydrogen bond is 0.303 Å shorter than the sum of the van der Waals radii. Although the length of hydrogen bonds does not necessarily correlate linearly with bond strength, due to packing constraints in the lattice, it is probable that this very short bond is moderate to strong. This is especially likely considering that the bond angle very closely approaches ideality.

Experimental

To a solution of 6-hydroxy-2,4-dimethoxymethyloxy-3-prenylacetophenone (80 mg, 0.25 mmol) in methanol (20 ml) was added 1.0 M HCl (6 ml). The reaction mixture was refluxed for 1 h before cooling. The solvent was evaporated and the residue purified by column chromatography using hexane:ethyl acetate: 2:1 to afford 1-(5,7-dihydroxy-2,2-dimethylchroman-6-yl)ethanone as yellow crystals (10 mg, 17%): mp 501–502 K;

Refinement

The positions of all hydrogen atoms bonded to C atoms were calculated using the standard riding model of SHELXL97 (Sheldrick, 2008) with C—H(aromatic) and C—H (methylene) distances of 0.93 Å and Uiso = 1.2 Ueq, and CH(methyl) distances of 0.96 Å and Uiso = 1.5Ueq. The phenolic hydrogen atoms were located in the difference Fourier map and allowed to refine isotropically.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 50% probability ellipsoids. Hydrogen atoms have been rendered as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Part of a hydrogen bonded (dashed lines) chain along [001].

Crystal data

C13H16O4 Dx = 1.312 Mg m3
Mr = 236.26 Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41212 Cell parameters from 2366 reflections
Hall symbol: P 4abw 2nw θ = 2.9–26.0°
a = 10.5677 (2) Å µ = 0.10 mm1
c = 21.4244 (5) Å T = 298 K
V = 2392.6 (1) Å3 Needle, colourless
Z = 8 0.6 × 0.4 × 0.4 mm
F(000) = 1008

Data collection

Oxford Diffraction Xcalibur 2 CCD diffractometer 2366 independent reflections
Radiation source: fine-focus sealed tube 2046 reflections with I > 2σ(I)
graphite Rint = 0.047
Detector resolution: 8.4190 pixels mm-1 θmax = 26.0°, θmin = 2.9°
ω scans at fixed θ angles h = −13→13
Absorption correction: multi-scan (SORTAV; Blessing, 1995) k = −13→13
Tmin = 0.955, Tmax = 0.962 l = −26→26
26011 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0593P)2 + 0.0612P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.091 (Δ/σ)max = 0.001
S = 1.08 Δρmax = 0.12 e Å3
2366 reflections Δρmin = −0.11 e Å3
166 parameters Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0094 (18)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 931 Friedel pairs
Secondary atom site location: difference Fourier map Flack parameter: 0.7 (11)

Special details

Experimental. 1H NMR (400 MHz, CD3OD) 1.31 (2x 3H, s, C(CH3)2), 1.78 (2H, t, J = 6.7 Hz, CH2), 2.55 (2H, t, J = 6.7 Hz, CH2), 2.62 (3H, s, COCH3), 5.77 (1H, s, ArH); 13C NMR 15.6 (C(CH3)2), 25.6 (2 × CH2), 31.3 (C(CH3)2), 31.8 (COCH3), 75.3 (C(CH3)2, 94.5 (C-5), 99.9 (C-1), 104.2 (C-3), 160.0, 160.9, 163.3 (C-2,4,6), 203.4 (COCH3); ESITOFMS, m/z 259.0945 [M+Na]+ (calc. for C13H16NaO4 259.0946); IR (KBr) υ 2961 2918 2872 1654 1611 1433 1159 cm-1.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
H102 1.1657 (18) 0.6538 (18) 0.1786 (9) 0.064 (5)*
H103 0.794 (2) 0.877 (2) 0.3250 (10) 0.075 (7)*
O1 0.94129 (10) 0.98280 (11) 0.09038 (5) 0.0540 (3)
O2 1.11831 (12) 0.66838 (11) 0.21655 (5) 0.0563 (3)
C9 0.93675 (14) 0.92341 (14) 0.14598 (6) 0.0410 (3)
O3 0.77624 (12) 0.92148 (12) 0.29235 (6) 0.0619 (3)
C7 1.03346 (13) 0.76254 (13) 0.20884 (7) 0.0390 (3)
O4 0.87361 (12) 0.75511 (12) 0.36008 (5) 0.0611 (4)
C8 1.02635 (13) 0.82754 (14) 0.15389 (7) 0.0403 (3)
H8 1.0815 0.8079 0.1215 0.048*
C4 0.85141 (14) 0.95417 (14) 0.19248 (7) 0.0452 (3)
C6 0.95010 (13) 0.79073 (13) 0.25928 (6) 0.0397 (3)
C12 0.95429 (15) 0.72843 (14) 0.31906 (7) 0.0468 (4)
C5 0.86024 (13) 0.88832 (13) 0.24823 (7) 0.0427 (3)
C1 0.83994 (17) 1.07167 (15) 0.07346 (8) 0.0553 (4)
C2 0.79788 (18) 1.14369 (17) 0.12997 (8) 0.0657 (5)
H2A 0.7282 1.1988 0.1186 0.079*
H2B 0.8670 1.1966 0.1444 0.079*
C3 0.75608 (18) 1.05776 (18) 0.18283 (9) 0.0670 (5)
H3A 0.7474 1.1067 0.2209 0.080*
H3B 0.6743 1.0211 0.1730 0.080*
C13 1.0503 (2) 0.6319 (2) 0.33569 (9) 0.0717 (6)
H13A 1.0384 0.6062 0.3783 0.108*
H13B 1.1334 0.6671 0.3308 0.108*
H13C 1.0412 0.5598 0.3088 0.108*
C10 0.9031 (2) 1.15856 (19) 0.02626 (9) 0.0774 (6)
H10A 0.9746 1.1991 0.0453 0.116*
H10B 0.8437 1.2216 0.0127 0.116*
H10C 0.9307 1.1098 −0.0090 0.116*
C11 0.7364 (2) 0.9942 (2) 0.04359 (11) 0.0801 (6)
H11A 0.7687 0.9537 0.0068 0.120*
H11B 0.6672 1.0485 0.0325 0.120*
H11C 0.7076 0.9311 0.0725 0.120*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0605 (7) 0.0550 (7) 0.0466 (6) 0.0166 (5) −0.0064 (5) 0.0060 (5)
O2 0.0642 (7) 0.0578 (7) 0.0469 (6) 0.0220 (6) 0.0037 (5) 0.0064 (5)
C9 0.0420 (8) 0.0391 (8) 0.0418 (7) 0.0004 (6) −0.0102 (6) −0.0035 (6)
O3 0.0626 (7) 0.0610 (8) 0.0621 (8) 0.0078 (6) 0.0188 (7) −0.0060 (6)
C7 0.0381 (7) 0.0363 (7) 0.0427 (7) 0.0005 (6) −0.0055 (6) −0.0035 (6)
O4 0.0725 (8) 0.0614 (7) 0.0495 (6) −0.0088 (6) 0.0142 (6) 0.0021 (5)
C8 0.0384 (7) 0.0433 (8) 0.0393 (7) 0.0037 (6) −0.0016 (5) −0.0030 (6)
C4 0.0408 (8) 0.0400 (8) 0.0548 (8) 0.0043 (6) −0.0045 (7) −0.0072 (6)
C6 0.0425 (8) 0.0359 (7) 0.0406 (7) −0.0070 (6) −0.0024 (6) −0.0052 (6)
C12 0.0533 (9) 0.0437 (8) 0.0433 (8) −0.0129 (7) −0.0015 (7) −0.0023 (7)
C5 0.0388 (8) 0.0403 (7) 0.0492 (8) −0.0038 (6) 0.0028 (6) −0.0100 (6)
C1 0.0624 (10) 0.0412 (8) 0.0622 (10) 0.0110 (7) −0.0207 (8) 0.0042 (7)
C2 0.0660 (11) 0.0489 (9) 0.0822 (12) 0.0191 (9) −0.0169 (10) −0.0018 (9)
C3 0.0609 (11) 0.0643 (11) 0.0758 (12) 0.0237 (9) −0.0025 (9) −0.0044 (9)
C13 0.0795 (13) 0.0825 (14) 0.0532 (10) 0.0105 (10) 0.0037 (9) 0.0208 (9)
C10 0.0952 (15) 0.0560 (11) 0.0811 (13) 0.0109 (11) −0.0145 (11) 0.0178 (10)
C11 0.0806 (14) 0.0621 (11) 0.0975 (15) 0.0070 (11) −0.0408 (12) −0.0017 (11)

Geometric parameters (Å, °)

O1—C9 1.3471 (18) C1—C2 1.497 (2)
O1—C1 1.4699 (18) C1—C11 1.509 (3)
O2—C7 1.3496 (17) C1—C10 1.520 (3)
O2—H102 0.97 (2) C2—C3 1.517 (3)
C9—C4 1.383 (2) C2—H2A 0.9700
C9—C8 1.397 (2) C2—H2B 0.9700
O3—C5 1.3432 (18) C3—H3A 0.9700
O3—H103 0.86 (2) C3—H3B 0.9700
C7—C8 1.365 (2) C13—H13A 0.9600
C7—C6 1.426 (2) C13—H13B 0.9600
O4—C12 1.2566 (19) C13—H13C 0.9600
C8—H8 0.9300 C10—H10A 0.9600
C4—C5 1.386 (2) C10—H10B 0.9600
C4—C3 1.502 (2) C10—H10C 0.9600
C6—C5 1.422 (2) C11—H11A 0.9600
C6—C12 1.441 (2) C11—H11B 0.9600
C12—C13 1.482 (2) C11—H11C 0.9600
C9—O1—C1 119.33 (12) C1—C2—C3 112.68 (15)
C7—O2—H102 111.0 (11) C1—C2—H2A 109.1
O1—C9—C4 123.42 (14) C3—C2—H2A 109.1
O1—C9—C8 114.90 (12) C1—C2—H2B 109.1
C4—C9—C8 121.68 (13) C3—C2—H2B 109.1
C5—O3—H103 106.8 (14) H2A—C2—H2B 107.8
O2—C7—C8 120.88 (13) C4—C3—C2 110.10 (15)
O2—C7—C6 118.15 (13) C4—C3—H3A 109.6
C8—C7—C6 120.97 (13) C2—C3—H3A 109.6
C7—C8—C9 120.46 (13) C4—C3—H3B 109.6
C7—C8—H8 119.8 C2—C3—H3B 109.6
C9—C8—H8 119.8 H3A—C3—H3B 108.2
C9—C4—C5 117.34 (13) C12—C13—H13A 109.5
C9—C4—C3 120.64 (15) C12—C13—H13B 109.5
C5—C4—C3 121.99 (14) H13A—C13—H13B 109.5
C5—C6—C7 115.98 (13) C12—C13—H13C 109.5
C5—C6—C12 120.00 (13) H13A—C13—H13C 109.5
C7—C6—C12 124.01 (13) H13B—C13—H13C 109.5
O4—C12—C6 119.89 (15) C1—C10—H10A 109.5
O4—C12—C13 116.79 (14) C1—C10—H10B 109.5
C6—C12—C13 123.32 (14) H10A—C10—H10B 109.5
O3—C5—C4 115.54 (14) C1—C10—H10C 109.5
O3—C5—C6 120.90 (14) H10A—C10—H10C 109.5
C4—C5—C6 123.56 (13) H10B—C10—H10C 109.5
O1—C1—C2 109.98 (12) C1—C11—H11A 109.5
O1—C1—C11 106.62 (13) C1—C11—H11B 109.5
C2—C1—C11 113.80 (18) H11A—C11—H11B 109.5
O1—C1—C10 103.32 (15) C1—C11—H11C 109.5
C2—C1—C10 111.17 (15) H11A—C11—H11C 109.5
C11—C1—C10 111.33 (16) H11B—C11—H11C 109.5
C1—O1—C9—C4 −9.6 (2) C9—C4—C5—O3 179.59 (12)
C1—O1—C9—C8 170.94 (13) C3—C4—C5—O3 1.4 (2)
O2—C7—C8—C9 178.90 (13) C9—C4—C5—C6 −1.1 (2)
C6—C7—C8—C9 0.0 (2) C3—C4—C5—C6 −179.29 (14)
O1—C9—C8—C7 178.31 (12) C7—C6—C5—O3 179.24 (13)
C4—C9—C8—C7 −1.2 (2) C12—C6—C5—O3 −1.8 (2)
O1—C9—C4—C5 −177.76 (13) C7—C6—C5—C4 0.0 (2)
C8—C9—C4—C5 1.7 (2) C12—C6—C5—C4 178.93 (13)
O1—C9—C4—C3 0.5 (2) C9—O1—C1—C2 36.82 (19)
C8—C9—C4—C3 179.93 (15) C9—O1—C1—C11 −87.00 (18)
O2—C7—C6—C5 −178.34 (12) C9—O1—C1—C10 155.56 (14)
C8—C7—C6—C5 0.6 (2) O1—C1—C2—C3 −55.9 (2)
O2—C7—C6—C12 2.7 (2) C11—C1—C2—C3 63.6 (2)
C8—C7—C6—C12 −178.32 (13) C10—C1—C2—C3 −169.70 (14)
C5—C6—C12—O4 4.3 (2) C9—C4—C3—C2 −19.4 (2)
C7—C6—C12—O4 −176.84 (14) C5—C4—C3—C2 158.76 (15)
C5—C6—C12—C13 −175.88 (16) C1—C2—C3—C4 47.0 (2)
C7—C6—C12—C13 3.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H102···O4i 0.97 (2) 1.77 (2) 2.737 (2) 179 (1)
O3—H103···O4 0.86 (2) 1.71 (2) 2.501 (2) 151 (2)

Symmetry codes: (i) y+1/2, −x+3/2, z−1/4.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5372).

References

  1. Basabe, P., de Roman, M., Marcos, I. S., Diez, D., Blanco, A., Bodero, O., Mollinedo, F., Sierra, B. G. & Urones, J. G. (2010). Eur. J. Med. Chem. 45, 4258–4269. [DOI] [PubMed]
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  4. Chakkaravarthi, G., Anthonysamy, A., Balasubramanian, S. & Manivannan, V. (2007). Acta Cryst. E63, o4725. [DOI] [PMC free article] [PubMed]
  5. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Kraus, G. A., Mengwasser, J. & Maury, W. (2011). Bioorg. Med. Chem. Lett. 21, 1399–1401. [DOI] [PMC free article] [PubMed]
  8. Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536811047982/lh5372sup1.cif

e-67-o3412-sup1.cif (22KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811047982/lh5372Isup2.hkl

e-67-o3412-Isup2.hkl (114KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811047982/lh5372Isup3.mol

Supplementary material file. DOI: 10.1107/S1600536811047982/lh5372Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES