Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 23;67(Pt 12):o3413. doi: 10.1107/S1600536811048458

5,8-Dibromo-15-cyano-2,11-dithia­[3.3]paracyclo­phane

Hua Zhang a,*, Wenju Liu a
PMCID: PMC3239050  PMID: 22199898

Abstract

In the title compound [systematic name: 13,15-dibromo-3,10-dithia­tricyclo­[10.2.2.25,8]octa­deca-1(14),5,7,12,15,17-hexa­ene-6-carbonitrile], C17H13Br2NS2, the mean planes of the benzene rings are almost parallel, making a dihedral angle of 1.1 (2)°, and the distance between the ring centroids is 3.294 (3) Å, which is shorter than the normal packing distance of aromatic rings (about 3.4 Å), indicating a strong π–π inter­action. The S atom of one bridging chain is disorderd over two positions with site occupancies of 0.605 (4) and 0.395 (4) for the major and minor components, respectively.

Related literature

For the preparation of the title compound, see: Wang et al. (2006). For related structures, see: Clément et al. (2009); Jin & Lu (2010).graphic file with name e-67-o3413-scheme1.jpg

Experimental

Crystal data

  • C17H13Br2NS2

  • M r = 455.22

  • Triclinic, Inline graphic

  • a = 6.9433 (11) Å

  • b = 9.0591 (14) Å

  • c = 13.888 (2) Å

  • α = 79.825 (2)°

  • β = 85.047 (3)°

  • γ = 76.275 (2)°

  • V = 834.4 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.10 mm−1

  • T = 298 K

  • 0.2 × 0.2 × 0.2 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • 5570 measured reflections

  • 3395 independent reflections

  • 2589 reflections with I > 2σ(I)

  • R int = 0.098

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.152

  • S = 0.99

  • 3395 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 1.39 e Å−3

  • Δρmin = −0.79 e Å−3

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811048458/zq2128sup1.cif

e-67-o3413-sup1.cif (19.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811048458/zq2128Isup2.hkl

e-67-o3413-Isup2.hkl (166.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811048458/zq2128Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Dr Xiang-Gao Meng for the data collection.

supplementary crystallographic information

Comment

The benzene dimer of [2,2]paracyclophane is know to play a significant role in chiral catalysis, molecular electronics, and organic solar cells. However, the [3,3]paracyclophane building blocks, which are synthetically more accessible, have received less attention (Clément et al., 2009; Jin & Lu, 2010). Here we report the crystal structure of the title compound, a novel dithia[3,3]paracyclophane bearing cyano and bromido groups.

In the structure of the title compound, C17H13Br2N1S2, the mean planes of the benzene rings are almost parallel with a dihedral angle of 1.1 (2)° and the distance between the centroids of the rings is 3.294 (3) Å, values obtained by the program PLATON (Spek, 2009), which is shorter than the normal packing distance of aromatic rings (about 3.4 Å), indicates a strong π-π interaction. The S atom of one bridging chain is disorderd over two positions with site occupancies of 0.605 (4) and 0.395 (4) for the major and minor components, respectively.

Experimental

A solution with equimolar amounts of 2,5-dibromo-1,4-bis(mercaptomethyl)benzene (3.26 g, 10 mmol) and 1,4-dibromomethyl-2-cyanobenzene (2.89, 10 mmol) in degassed THF (500 mL) was added dropwise under N2 over 12 hours to a refluxing solution of potassium carbonate (6.9 g, 50 mmol) in EtOH (1.5L). After additional 2 hours at the reflux temperature (473 K), the mixture was cooled down and the solvent was removed. The resulting residue was treated with CH2Cl2 (500 mL) and water (500 mL). The organic phase was separated, and the aqueous phase extracted with CH2Cl2 (three times). The combined organic layers were dried over Na2SO4, then the solvent was removed, and the resulting solid was chromatographed on silica gel using CH2Cl2/petroleum ether (1:1, v/v) as eluent. The product was further purified by recrystallization from toluene (Wang et al., 2006).

Refinement

All H atoms were positioned with idealized geometry using a riding model, with C—H = 0.93Å for aromatic H atoms, with C—H = 0.97 Å for methylene H atoms, and with Uiso(H) = 1.2Ueq(C). The S atom of one bridging chain is disorderd over two positions with site occupancies of 0.605 (4) and 0.395 (4) for the major and minor components, respectively.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing the atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C17H13Br2NS2 Z = 2
Mr = 455.22 F(000) = 448
Triclinic, P1 Dx = 1.812 Mg m3Dm = 1.812 Mg m3Dm measured by not measured
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.9433 (11) Å Cell parameters from 2268 reflections
b = 9.0591 (14) Å θ = 2.6–26.9°
c = 13.888 (2) Å µ = 5.10 mm1
α = 79.825 (2)° T = 298 K
β = 85.047 (3)° Block, colourless
γ = 76.275 (2)° 0.2 × 0.2 × 0.2 mm
V = 834.4 (2) Å3

Data collection

Bruker SMART CCD area-detector diffractometer 2589 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.098
graphite θmax = 26.5°, θmin = 2.6°
phi and ω scans h = −8→8
5570 measured reflections k = −8→11
3395 independent reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152 H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0859P)2] where P = (Fo2 + 2Fc2)/3
3395 reflections (Δ/σ)max < 0.001
209 parameters Δρmax = 1.39 e Å3
0 restraints Δρmin = −0.79 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Br1 0.19006 (10) 0.46219 (7) 0.63111 (4) 0.0629 (2)
Br2 0.19842 (8) −0.21517 (6) 0.88825 (4) 0.0464 (2)
C1 0.1424 (6) 0.2546 (5) 0.8092 (3) 0.0361 (10)
C2 0.1398 (7) 0.1089 (6) 0.8587 (3) 0.0356 (10)
H2 0.0889 0.0972 0.9230 0.043*
C3 0.2114 (7) −0.0199 (5) 0.8146 (3) 0.0339 (10)
C4 0.2923 (7) −0.0096 (6) 0.7187 (3) 0.0369 (11)
C5 0.2780 (7) 0.1387 (6) 0.6673 (4) 0.0415 (11)
H5 0.3207 0.1511 0.6016 0.050*
C6 0.2027 (7) 0.2682 (6) 0.7104 (3) 0.0368 (10)
C7 0.0888 (8) 0.3899 (6) 0.8638 (4) 0.0453 (12)
H7A −0.0409 0.3925 0.8965 0.054*
H7B 0.0795 0.4841 0.8170 0.054*
C8 0.4903 (8) 0.4041 (6) 0.8808 (4) 0.0415 (11)
H8A 0.4578 0.4927 0.8296 0.050*
H8B 0.5828 0.4251 0.9223 0.050*
C9 0.5938 (6) 0.2654 (5) 0.8335 (3) 0.0348 (10)
C10 0.6660 (7) 0.2871 (6) 0.7371 (3) 0.0379 (11)
H10 0.6646 0.3858 0.7037 0.045*
C11 0.7408 (7) 0.1592 (6) 0.6908 (3) 0.0356 (10)
C12 0.7430 (7) 0.0109 (6) 0.7372 (3) 0.0364 (10)
C13 0.6858 (7) −0.0087 (6) 0.8371 (3) 0.0373 (10)
H13 0.6966 −0.1074 0.8724 0.045*
C14 0.6140 (7) 0.1168 (6) 0.8829 (3) 0.0364 (10)
H14 0.5777 0.1013 0.9493 0.044*
C15 0.8063 (8) 0.1878 (7) 0.5885 (4) 0.0468 (12)
C16 0.7960 (8) −0.1264 (6) 0.6838 (4) 0.0482 (13)
H16A 0.9294 −0.1836 0.6994 0.058* 0.395 (4)
H16B 0.7961 −0.0895 0.6138 0.058* 0.395 (4)
H16C 0.8168 −0.2192 0.7323 0.058* 0.605 (4)
H16D 0.9207 −0.1252 0.6467 0.058* 0.605 (4)
C17 0.3949 (8) −0.1478 (7) 0.6717 (4) 0.0516 (14)
H17A 0.4111 −0.1128 0.6019 0.062* 0.395 (4)
H17B 0.3062 −0.2178 0.6798 0.062* 0.395 (4)
H17C 0.3017 −0.1686 0.6305 0.062* 0.605 (4)
H17D 0.4250 −0.2359 0.7234 0.062* 0.605 (4)
N1 0.8583 (9) 0.2087 (7) 0.5092 (4) 0.0690 (15)
S1 0.26512 (19) 0.38462 (15) 0.95384 (9) 0.0416 (3)
S2 0.6293 (3) −0.2551 (2) 0.71362 (17) 0.0475 (7) 0.605 (4)
S2' 0.6129 (6) −0.1365 (5) 0.6023 (2) 0.0512 (11) 0.395 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0747 (5) 0.0392 (4) 0.0662 (4) −0.0073 (3) −0.0055 (3) 0.0078 (3)
Br2 0.0501 (3) 0.0295 (3) 0.0566 (3) −0.0066 (2) 0.0044 (2) −0.0060 (2)
C1 0.025 (2) 0.026 (2) 0.056 (3) 0.0008 (18) −0.0029 (19) −0.012 (2)
C2 0.030 (2) 0.035 (3) 0.043 (2) −0.006 (2) 0.0038 (18) −0.012 (2)
C3 0.030 (2) 0.026 (2) 0.044 (2) −0.0042 (19) 0.0019 (18) −0.007 (2)
C4 0.028 (2) 0.039 (3) 0.046 (3) −0.007 (2) 0.0014 (19) −0.016 (2)
C5 0.035 (3) 0.048 (3) 0.041 (3) −0.007 (2) −0.002 (2) −0.006 (2)
C6 0.031 (2) 0.030 (2) 0.048 (3) −0.0033 (19) −0.0022 (19) −0.006 (2)
C7 0.040 (3) 0.033 (3) 0.060 (3) 0.001 (2) 0.002 (2) −0.016 (2)
C8 0.039 (3) 0.029 (3) 0.056 (3) −0.005 (2) 0.008 (2) −0.016 (2)
C9 0.027 (2) 0.031 (3) 0.046 (3) −0.0044 (19) 0.0043 (18) −0.012 (2)
C10 0.035 (2) 0.031 (3) 0.048 (3) −0.008 (2) 0.001 (2) −0.007 (2)
C11 0.027 (2) 0.039 (3) 0.039 (2) −0.006 (2) 0.0017 (18) −0.008 (2)
C12 0.026 (2) 0.038 (3) 0.044 (3) −0.002 (2) 0.0026 (18) −0.012 (2)
C13 0.032 (2) 0.031 (3) 0.044 (3) 0.000 (2) 0.0033 (19) −0.005 (2)
C14 0.032 (2) 0.037 (3) 0.038 (2) −0.006 (2) 0.0046 (18) −0.006 (2)
C15 0.047 (3) 0.047 (3) 0.044 (3) −0.005 (3) 0.005 (2) −0.012 (2)
C16 0.039 (3) 0.040 (3) 0.066 (3) −0.005 (2) 0.016 (2) −0.023 (3)
C17 0.050 (3) 0.043 (3) 0.066 (3) −0.009 (3) 0.007 (3) −0.027 (3)
N1 0.088 (4) 0.063 (4) 0.055 (3) −0.021 (3) 0.014 (3) −0.009 (3)
S1 0.0478 (7) 0.0338 (7) 0.0433 (7) −0.0065 (6) 0.0111 (5) −0.0165 (5)
S2 0.0434 (12) 0.0253 (11) 0.0718 (15) −0.0028 (9) 0.0121 (10) −0.0163 (10)
S2' 0.056 (2) 0.058 (2) 0.0412 (18) −0.0094 (18) 0.0122 (15) −0.0259 (16)

Geometric parameters (Å, °)

Br1—C6 1.889 (5) C11—C12 1.381 (7)
Br2—C3 1.899 (5) C11—C15 1.451 (7)
C1—C2 1.379 (6) C12—C13 1.401 (7)
C1—C6 1.393 (7) C12—C16 1.515 (7)
C1—C7 1.510 (7) C13—C14 1.370 (7)
C2—C3 1.381 (7) C13—H13 0.9300
C2—H2 0.9300 C14—H14 0.9300
C3—C4 1.397 (6) C15—N1 1.126 (7)
C4—C5 1.391 (7) C16—S2' 1.802 (7)
C4—C17 1.512 (7) C16—S2 1.805 (5)
C5—C6 1.383 (7) C16—H16A 0.9700
C5—H5 0.9300 C16—H16B 0.9700
C7—S1 1.811 (5) C16—H16C 0.9700
C7—H7A 0.9700 C16—H16D 0.9700
C7—H7B 0.9700 C17—S2' 1.737 (6)
C8—C9 1.519 (7) C17—S2 1.774 (6)
C8—S1 1.816 (5) C17—H17A 0.9700
C8—H8A 0.9700 C17—H17B 0.9700
C8—H8B 0.9700 C17—H17C 0.9700
C9—C14 1.380 (7) C17—H17D 0.9700
C9—C10 1.385 (6) S2—H16C 1.4691
C10—C11 1.396 (7) S2—H17D 1.3851
C10—H10 0.9300
C2—C1—C6 117.4 (4) C12—C16—S2' 115.1 (4)
C2—C1—C7 119.6 (4) C12—C16—S2 113.9 (4)
C6—C1—C7 123.0 (4) S2'—C16—S2 56.8 (2)
C1—C2—C3 121.3 (4) C12—C16—H16A 108.8
C1—C2—H2 119.3 S2'—C16—H16A 135.9
C3—C2—H2 119.3 S2—C16—H16A 108.8
C2—C3—C4 121.9 (4) C12—C16—H16B 108.8
C2—C3—Br2 118.2 (3) S2'—C16—H16B 54.2
C4—C3—Br2 119.9 (4) S2—C16—H16B 108.8
C5—C4—C3 115.8 (4) H16A—C16—H16B 107.7
C5—C4—C17 120.5 (4) C12—C16—H16C 108.1
C3—C4—C17 123.7 (5) S2'—C16—H16C 108.4
C6—C5—C4 122.3 (4) S2—C16—H16C 54.4
C6—C5—H5 118.8 H16A—C16—H16C 59.6
C4—C5—H5 118.8 H16B—C16—H16C 143.1
C5—C6—C1 120.6 (4) C12—C16—H16D 108.8
C5—C6—Br1 117.6 (4) S2'—C16—H16D 108.7
C1—C6—Br1 121.7 (4) S2—C16—H16D 137.0
C1—C7—S1 113.7 (4) H16A—C16—H16D 50.1
C1—C7—H7A 108.8 H16B—C16—H16D 60.1
S1—C7—H7A 108.8 H16C—C16—H16D 107.4
C1—C7—H7B 108.8 C4—C17—S2' 117.2 (4)
S1—C7—H7B 108.8 C4—C17—S2 118.4 (4)
H7A—C7—H7B 107.7 S2'—C17—S2 58.5 (2)
C9—C8—S1 115.4 (3) C4—C17—H17A 107.7
C9—C8—H8A 108.4 S2'—C17—H17A 51.6
S1—C8—H8A 108.4 S2—C17—H17A 107.7
C9—C8—H8B 108.4 C4—C17—H17B 107.7
S1—C8—H8B 108.4 S2'—C17—H17B 134.1
H8A—C8—H8B 107.5 S2—C17—H17B 107.7
C14—C9—C10 118.5 (4) H17A—C17—H17B 107.1
C14—C9—C8 121.9 (4) C4—C17—H17C 108.2
C10—C9—C8 119.6 (4) S2'—C17—H17C 108.3
C9—C10—C11 119.2 (4) S2—C17—H17C 132.5
C9—C10—H10 120.4 H17A—C17—H17C 63.7
C11—C10—H10 120.4 H17B—C17—H17C 45.3
C12—C11—C10 122.2 (4) C4—C17—H17D 107.8
C12—C11—C15 120.3 (5) S2'—C17—H17D 107.7
C10—C11—C15 117.3 (4) S2—C17—H17D 50.9
C11—C12—C13 117.2 (4) H17A—C17—H17D 144.4
C11—C12—C16 122.7 (4) H17B—C17—H17D 64.1
C13—C12—C16 120.1 (4) H17C—C17—H17D 107.1
C14—C13—C12 120.3 (4) C7—S1—C8 103.7 (2)
C14—C13—H13 119.8 C17—S2—C16 106.1 (3)
C12—C13—H13 119.8 C17—S2—H16C 135.9
C13—C14—C9 122.0 (4) C16—S2—H17D 134.8
C13—C14—H14 119.0 H16C—S2—H17D 152.9
C9—C14—H14 119.0 C17—S2'—C16 107.8 (3)
N1—C15—C11 179.4 (7)
C6—C1—C2—C3 5.8 (7) C10—C11—C12—C16 171.0 (5)
C7—C1—C2—C3 −171.8 (4) C15—C11—C12—C16 −5.2 (7)
C1—C2—C3—C4 0.9 (7) C11—C12—C13—C14 5.8 (7)
C1—C2—C3—Br2 −179.2 (3) C16—C12—C13—C14 −171.8 (5)
C2—C3—C4—C5 −6.2 (7) C12—C13—C14—C9 0.5 (7)
Br2—C3—C4—C5 174.0 (3) C10—C9—C14—C13 −6.2 (7)
C2—C3—C4—C17 172.2 (5) C8—C9—C14—C13 172.1 (5)
Br2—C3—C4—C17 −7.6 (6) C11—C12—C16—S2' −71.3 (6)
C3—C4—C5—C6 4.9 (7) C13—C12—C16—S2' 106.1 (5)
C17—C4—C5—C6 −173.7 (5) C11—C12—C16—S2 −134.3 (4)
C4—C5—C6—C1 1.8 (7) C13—C12—C16—S2 43.1 (6)
C4—C5—C6—Br1 −179.4 (3) C5—C4—C17—S2' 41.4 (7)
C2—C1—C6—C5 −7.2 (7) C3—C4—C17—S2' −137.1 (5)
C7—C1—C6—C5 170.4 (5) C5—C4—C17—S2 108.4 (5)
C2—C1—C6—Br1 174.1 (3) C3—C4—C17—S2 −70.0 (6)
C7—C1—C6—Br1 −8.4 (6) C1—C7—S1—C8 65.3 (4)
C2—C1—C7—S1 66.7 (5) C9—C8—S1—C7 −70.7 (4)
C6—C1—C7—S1 −110.8 (5) C4—C17—S2—C16 −64.2 (5)
S1—C8—C9—C14 −41.7 (6) S2'—C17—S2—C16 42.0 (3)
S1—C8—C9—C10 136.6 (4) C12—C16—S2—C17 64.3 (5)
C14—C9—C10—C11 5.4 (7) S2'—C16—S2—C17 −41.1 (3)
C8—C9—C10—C11 −172.9 (4) C4—C17—S2'—C16 65.6 (5)
C9—C10—C11—C12 0.9 (7) S2—C17—S2'—C16 −42.6 (3)
C9—C10—C11—C15 177.2 (4) C12—C16—S2'—C17 −60.5 (5)
C10—C11—C12—C13 −6.5 (7) S2—C16—S2'—C17 42.6 (3)
C15—C11—C12—C13 177.3 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2128).

References

  1. Bruker (1999). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Clément, S., Guyard, L., Knorr, M., Däschlein, C. & Strohmann, C. (2009). Acta Cryst. E65, o528. [DOI] [PMC free article] [PubMed]
  3. Jin, G. & Lu, Y. (2010). Acta Cryst. E66, o2144. [DOI] [PMC free article] [PubMed]
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  6. Wang, W., Xu, J., Zhang, X. & Lai, Y. H. (2006). Macromolecules, 39, 7277–7285.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811048458/zq2128sup1.cif

e-67-o3413-sup1.cif (19.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811048458/zq2128Isup2.hkl

e-67-o3413-Isup2.hkl (166.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811048458/zq2128Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES