Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 25;67(Pt 12):o3415. doi: 10.1107/S160053681104921X

Ethyl 7-pivaloyl­amino-1,8-naphthyridine-2-carboxyl­ate sesquihydrate

Hoong-Kun Fun a,*,, Madhukar Hemamalini a, Anita Hazra b, Shyamaprosad Goswami b
PMCID: PMC3239052  PMID: 22199900

Abstract

In the title hydrate, C16H19N3O3·1.5H2O, both water mol­ecules are disordered: one over two adjacent sites in a 0.498 (5):0.502 (5) ratio and one lying near a crystallographic twofold axis. The dihedral angle between the pyridine rings of the organic moleucle is 1.47 (6)°. In the crystal, the components are linked by N—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds, forming sheets lying parallel to the ac plane.

Related literature

For further details of heterocyclic esters, see: Listvan et al. (2002); Li et al. (2007); Goswami & Hazra (2009). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-67-o3415-scheme1.jpg

Experimental

Crystal data

  • C16H19N3O3·1.5H2O

  • M r = 656.73

  • Monoclinic, Inline graphic

  • a = 30.7759 (7) Å

  • b = 7.2406 (2) Å

  • c = 16.9271 (4) Å

  • β = 120.009 (1)°

  • V = 3266.32 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.41 × 0.31 × 0.24 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.960, T max = 0.977

  • 16624 measured reflections

  • 3753 independent reflections

  • 3156 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.108

  • S = 1.04

  • 3753 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681104921X/hb6505sup1.cif

e-67-o3415-sup1.cif (20.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681104921X/hb6505Isup2.hkl

e-67-o3415-Isup2.hkl (180.4KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681104921X/hb6505Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N3⋯O2W 0.85 2.39 3.051 (2) 135
N3—H1N3⋯O1WBi 0.85 2.40 3.095 (3) 140
O1WB—H2WB⋯N2 0.86 2.26 3.077 (3) 160
O2W—H1W2⋯N1i 0.83 2.13 2.948 (2) 167
C3—H3A⋯O3 0.93 2.23 2.8230 (17) 121

Symmetry code: (i) Inline graphic.

Acknowledgments

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship. SG and AH thank the CSIR [No. 01 (2292)/09/EMR-II], Government of India, for financial support.

supplementary crystallographic information

Comment

Heterocyclic esters are important synthons for the synthesis of different natural products, antimicrobial agents and pharmaceutical compositions (Listvan et al., 2002; Li et al., 2007). The heterocyclic esters are easily synthesized from their corresponding aldehydes by using thiamine hydrochloride as a catalyst in the presence of triethyl amine and alcohol (Goswami & Hazra, 2009). Herein we report the crystal structure of ethyl-7-pivaloylamino-[1,8]naphthyridine-2-carboxylate.

The asymmetric unit of the title compound, Fig. 1, consists of one ethyl-7-pivaloylamino-[1,8]naphthyridine-2-carboxylate molecule, one disordered water molecule over two orientations with a refined occupany ratio of 0.498 (5) : 0.502 (5) and a half-molecule of water (the O2W atom of the water molecule lies near a twofold axis (symmetry code: -x, y, -z+1/2). The dihedral angle between the two pyridine (N1/C1–C5 : N2/C1,C5–C8) rings is 1.47 (6)°.

In the crystal structure, (Fig. 2), the components are connected via intermolecular N—H···O, O—H···N and C—H···O hydrogen bonds (Table 1) to form two-dimensional networks parallel to the ac-plane.

Experimental

Distilled triethylamine (0.6 ml) was added dropwise to a solution of 7-pivaloylamino-[1,8]naphthyridine-2-carbaldehyde (514 mg, 2 mmol) in dry ethanol. Then thiamine hydrochloride (30 mg, 15 mol) was added and the reaction mixture was refluxed for 2.5 h. Excess ethanol was distilled from the reaction mixture after completion of the reaction. Water was added to the reaction mixture and then extracted with chloroform and the organic layer was dried. The crude product was purified through column chromatography (silica gel, 100–200 mesh) eluting with ethyl acetate in petroleum ether (30%) to afford a colorless solid. Yield: 82%. Mp 168–170°C.

Refinement

All hydrogen atoms were positioned geometrically [N–H = 0.8462 Å; O–H = 0.8078–0.9888 Å; C–H = 0.93–0.97 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C,O). A rotating group model was applied to the methyl groups. One of the water molecule is disordered over two orientations, with an occupany ratio of 0.498 (5) : 0.502 (5). Another water molecule, 02W, lies near a twofold axis with symmetry -x, y, -z+1/2 .

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids. Open bonds reprents disorder components.

Fig. 2.

Fig. 2.

The crystal packing of the title compound (I). H atoms are not involing the hydrogen bond interactions are omitted for clarity.

Crystal data

C16H19N3O3·1.5H2O F(000) = 1400
Mr = 656.73 Dx = 1.335 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 6305 reflections
a = 30.7759 (7) Å θ = 2.9–33.5°
b = 7.2406 (2) Å µ = 0.10 mm1
c = 16.9271 (4) Å T = 100 K
β = 120.009 (1)° Block, colourless
V = 3266.32 (14) Å3 0.41 × 0.31 × 0.24 mm
Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer 3753 independent reflections
Radiation source: fine-focus sealed tube 3156 reflections with I > 2σ(I)
graphite Rint = 0.030
φ and ω scans θmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −39→39
Tmin = 0.960, Tmax = 0.977 k = −9→9
16624 measured reflections l = −21→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0531P)2 + 2.3589P] where P = (Fo2 + 2Fc2)/3
3753 reflections (Δ/σ)max < 0.001
228 parameters Δρmax = 0.34 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.16006 (3) 0.48093 (13) 0.67950 (6) 0.0212 (2)
O2 0.14079 (3) 0.47791 (13) 0.53237 (6) 0.0232 (2)
O3 −0.17328 (4) −0.00262 (19) 0.24944 (7) 0.0422 (3)
N1 −0.02737 (4) 0.20833 (14) 0.37662 (7) 0.0172 (2)
N2 0.04907 (4) 0.32379 (14) 0.48603 (7) 0.0166 (2)
N3 −0.10204 (4) 0.10828 (17) 0.25947 (7) 0.0245 (3)
H1N3 −0.0879 0.1349 0.2290 0.029*
C1 0.00362 (4) 0.25427 (15) 0.46599 (8) 0.0154 (2)
C2 −0.07277 (4) 0.14680 (16) 0.35245 (8) 0.0173 (2)
C3 −0.09081 (4) 0.12125 (17) 0.41469 (8) 0.0186 (2)
H3A −0.1231 0.0774 0.3947 0.022*
C4 −0.05950 (4) 0.16280 (17) 0.50400 (8) 0.0186 (2)
H4A −0.0701 0.1455 0.5462 0.022*
C5 −0.01072 (4) 0.23240 (16) 0.53302 (8) 0.0161 (2)
C6 0.02364 (4) 0.28315 (17) 0.62367 (8) 0.0187 (2)
H6A 0.0154 0.2698 0.6693 0.022*
C7 0.06941 (4) 0.35249 (16) 0.64349 (8) 0.0182 (2)
H7A 0.0928 0.3873 0.7027 0.022*
C8 0.08024 (4) 0.36993 (15) 0.57230 (8) 0.0160 (2)
C9 0.12989 (4) 0.44831 (16) 0.59031 (8) 0.0171 (2)
C10 0.20924 (4) 0.55545 (19) 0.70542 (9) 0.0232 (3)
H10A 0.2061 0.6797 0.6817 0.028*
H10B 0.2258 0.4789 0.6813 0.028*
C11 0.23881 (5) 0.5572 (2) 0.80776 (9) 0.0268 (3)
H11A 0.2718 0.6046 0.8277 0.040*
H11B 0.2413 0.4337 0.8303 0.040*
H11C 0.2222 0.6343 0.8307 0.040*
C12 −0.14904 (4) 0.03205 (16) 0.21292 (8) 0.0180 (2)
C13 −0.16825 (4) −0.01579 (17) 0.11242 (8) 0.0194 (3)
C14 −0.14824 (5) −0.20988 (19) 0.11108 (9) 0.0266 (3)
H14A −0.1603 −0.2964 0.1386 0.040*
H14B −0.1122 −0.2084 0.1447 0.040*
H14C −0.1597 −0.2459 0.0492 0.040*
C15 −0.15098 (5) 0.1224 (2) 0.06522 (9) 0.0285 (3)
H15A −0.1599 0.2452 0.0732 0.043*
H15B −0.1669 0.0943 0.0013 0.043*
H15C −0.1152 0.1144 0.0916 0.043*
C16 −0.22570 (5) −0.02054 (19) 0.06234 (9) 0.0243 (3)
H16A −0.2382 0.0996 0.0645 0.037*
H16B −0.2366 −0.1086 0.0912 0.037*
H16C −0.2383 −0.0557 −0.0001 0.037*
O1WB 0.05785 (9) 0.3977 (4) 0.31552 (15) 0.0289 (7) 0.502 (5)
H1WB 0.0755 0.4935 0.3217 0.035* 0.502 (5)
H2WB 0.0480 0.3869 0.3546 0.035* 0.502 (5)
O1WA 0.04715 (6) 0.4721 (2) 0.32308 (11) 0.0310 (7) 0.498 (5)
H1WA 0.0227 0.4263 0.2743 0.037* 0.498 (5)
H2WA 0.0604 0.4032 0.3761 0.037* 0.498 (5)
O2W −0.01311 (6) 0.0366 (2) 0.23101 (11) 0.0245 (5) 0.50
H1W2 −0.0004 0.0990 0.2065 0.029*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0167 (4) 0.0275 (5) 0.0172 (4) −0.0053 (3) 0.0067 (4) −0.0017 (4)
O2 0.0228 (4) 0.0271 (5) 0.0213 (5) −0.0056 (4) 0.0122 (4) −0.0029 (4)
O3 0.0269 (5) 0.0798 (9) 0.0222 (5) −0.0244 (5) 0.0140 (4) −0.0140 (5)
N1 0.0174 (5) 0.0176 (5) 0.0162 (5) −0.0011 (4) 0.0081 (4) −0.0005 (4)
N2 0.0170 (5) 0.0149 (5) 0.0173 (5) −0.0006 (4) 0.0081 (4) −0.0004 (4)
N3 0.0195 (5) 0.0393 (7) 0.0165 (5) −0.0083 (5) 0.0104 (4) −0.0046 (5)
C1 0.0174 (5) 0.0120 (5) 0.0167 (6) 0.0013 (4) 0.0084 (5) 0.0010 (4)
C2 0.0178 (5) 0.0163 (5) 0.0172 (6) 0.0003 (4) 0.0082 (5) −0.0010 (5)
C3 0.0164 (5) 0.0189 (6) 0.0218 (6) −0.0005 (4) 0.0104 (5) −0.0006 (5)
C4 0.0202 (6) 0.0192 (6) 0.0199 (6) −0.0002 (5) 0.0126 (5) 0.0005 (5)
C5 0.0174 (5) 0.0143 (5) 0.0171 (6) 0.0013 (4) 0.0089 (5) 0.0004 (4)
C6 0.0220 (6) 0.0196 (6) 0.0160 (6) 0.0004 (5) 0.0107 (5) 0.0005 (5)
C7 0.0189 (5) 0.0176 (6) 0.0153 (6) 0.0000 (4) 0.0065 (5) −0.0006 (5)
C8 0.0172 (5) 0.0119 (5) 0.0176 (6) 0.0013 (4) 0.0077 (5) 0.0004 (4)
C9 0.0188 (5) 0.0134 (5) 0.0181 (6) 0.0006 (4) 0.0084 (5) −0.0004 (4)
C10 0.0164 (6) 0.0280 (7) 0.0234 (7) −0.0057 (5) 0.0085 (5) −0.0015 (5)
C11 0.0202 (6) 0.0318 (7) 0.0237 (7) −0.0012 (5) 0.0074 (5) −0.0044 (6)
C12 0.0157 (5) 0.0180 (6) 0.0180 (6) 0.0006 (4) 0.0066 (5) −0.0008 (5)
C13 0.0180 (6) 0.0212 (6) 0.0177 (6) −0.0023 (5) 0.0080 (5) −0.0019 (5)
C14 0.0286 (7) 0.0278 (7) 0.0238 (7) 0.0021 (5) 0.0134 (6) −0.0053 (5)
C15 0.0275 (7) 0.0350 (8) 0.0178 (6) −0.0094 (6) 0.0075 (5) 0.0013 (5)
C16 0.0180 (6) 0.0298 (7) 0.0205 (6) −0.0023 (5) 0.0061 (5) −0.0036 (5)
O1WB 0.0291 (12) 0.0366 (15) 0.0210 (11) 0.0019 (10) 0.0126 (9) 0.0000 (10)
O1WA 0.0325 (13) 0.0350 (16) 0.0315 (12) −0.0090 (11) 0.0204 (10) −0.0005 (11)
O2W 0.0314 (13) 0.0251 (8) 0.0243 (14) −0.0066 (7) 0.0193 (11) −0.0056 (7)

Geometric parameters (Å, °)

O1—C9 1.3397 (15) C11—H11A 0.9600
O1—C10 1.4527 (14) C11—H11B 0.9600
O2—C9 1.2038 (15) C11—H11C 0.9600
O3—C12 1.2097 (15) C12—C13 1.5353 (17)
N1—C2 1.3213 (15) C13—C16 1.5319 (17)
N1—C1 1.3659 (15) C13—C15 1.5321 (17)
N2—C8 1.3278 (15) C13—C14 1.5392 (18)
N2—C1 1.3604 (15) C14—H14A 0.9600
N3—C12 1.3703 (15) C14—H14B 0.9600
N3—C2 1.3958 (15) C14—H14C 0.9600
N3—H1N3 0.8462 C15—H15A 0.9600
C1—C5 1.4170 (16) C15—H15B 0.9600
C2—C3 1.4275 (16) C15—H15C 0.9600
C3—C4 1.3592 (17) C16—H16A 0.9600
C3—H3A 0.9300 C16—H16B 0.9600
C4—C5 1.4182 (16) C16—H16C 0.9600
C4—H4A 0.9300 O1WB—H1WB 0.8550
C5—C6 1.4089 (17) O1WB—H2WB 0.8586
C6—C7 1.3698 (16) O1WB—H1WA 0.9712
C6—H6A 0.9300 O1WB—H2WA 0.9888
C7—C8 1.4073 (16) O1WA—H1WB 0.8984
C7—H7A 0.9300 O1WA—H2WB 0.8078
C8—C9 1.5114 (16) O1WA—H1WA 0.8576
C10—C11 1.5008 (18) O1WA—H2WA 0.9243
C10—H10A 0.9700 O2W—O2Wi 0.739 (3)
C10—H10B 0.9700 O2W—H1W2 0.8319
C9—O1—C10 115.85 (9) C10—C11—H11C 109.5
C2—N1—C1 118.01 (10) H11A—C11—H11C 109.5
C8—N2—C1 117.02 (10) H11B—C11—H11C 109.5
C12—N3—C2 129.00 (10) O3—C12—N3 122.22 (12)
C12—N3—H1N3 117.2 O3—C12—C13 121.68 (11)
C2—N3—H1N3 113.8 N3—C12—C13 116.03 (10)
N2—C1—N1 115.32 (10) C16—C13—C15 109.37 (11)
N2—C1—C5 122.34 (11) C16—C13—C12 108.45 (10)
N1—C1—C5 122.34 (10) C15—C13—C12 112.87 (10)
N1—C2—N3 113.75 (10) C16—C13—C14 109.33 (10)
N1—C2—C3 123.82 (11) C15—C13—C14 110.05 (11)
N3—C2—C3 122.44 (10) C12—C13—C14 106.69 (10)
C4—C3—C2 118.10 (10) C13—C14—H14A 109.5
C4—C3—H3A 121.0 C13—C14—H14B 109.5
C2—C3—H3A 121.0 H14A—C14—H14B 109.5
C3—C4—C5 120.18 (11) C13—C14—H14C 109.5
C3—C4—H4A 119.9 H14A—C14—H14C 109.5
C5—C4—H4A 119.9 H14B—C14—H14C 109.5
C6—C5—C1 118.57 (10) C13—C15—H15A 109.5
C6—C5—C4 123.90 (11) C13—C15—H15B 109.5
C1—C5—C4 117.52 (11) H15A—C15—H15B 109.5
C7—C6—C5 118.82 (11) C13—C15—H15C 109.5
C7—C6—H6A 120.6 H15A—C15—H15C 109.5
C5—C6—H6A 120.6 H15B—C15—H15C 109.5
C6—C7—C8 118.56 (11) C13—C16—H16A 109.5
C6—C7—H7A 120.7 C13—C16—H16B 109.5
C8—C7—H7A 120.7 H16A—C16—H16B 109.5
N2—C8—C7 124.68 (10) C13—C16—H16C 109.5
N2—C8—C9 114.68 (10) H16A—C16—H16C 109.5
C7—C8—C9 120.63 (11) H16B—C16—H16C 109.5
O2—C9—O1 124.63 (11) H1WB—O1WB—H2WB 115.4
O2—C9—C8 124.61 (11) H1WB—O1WB—H1WA 109.0
O1—C9—C8 110.76 (10) H2WB—O1WB—H1WA 83.0
O1—C10—C11 106.88 (10) H1WB—O1WB—H2WA 97.1
O1—C10—H10A 110.3 H1WA—O1WB—H2WA 102.7
C11—C10—H10A 110.3 H1WB—O1WA—H2WB 116.1
O1—C10—H10B 110.3 H1WB—O1WA—H1WA 115.9
C11—C10—H10B 110.3 H2WB—O1WA—H1WA 93.6
H10A—C10—H10B 108.6 H1WB—O1WA—H2WA 98.9
C10—C11—H11A 109.5 H1WA—O1WA—H2WA 118.4
C10—C11—H11B 109.5 O2Wi—O2W—H1W2 81.5
H11A—C11—H11B 109.5
C8—N2—C1—N1 −179.96 (10) C1—N2—C8—C7 −0.23 (17)
C8—N2—C1—C5 0.51 (16) C1—N2—C8—C9 −179.34 (10)
C2—N1—C1—N2 −177.43 (10) C6—C7—C8—N2 0.02 (18)
C2—N1—C1—C5 2.10 (17) C6—C7—C8—C9 179.08 (10)
C1—N1—C2—N3 178.37 (10) C10—O1—C9—O2 −0.67 (17)
C1—N1—C2—C3 −1.63 (17) C10—O1—C9—C8 179.55 (9)
C12—N3—C2—N1 175.30 (12) N2—C8—C9—O2 3.82 (17)
C12—N3—C2—C3 −4.7 (2) C7—C8—C9—O2 −175.33 (12)
N1—C2—C3—C4 0.06 (18) N2—C8—C9—O1 −176.40 (10)
N3—C2—C3—C4 −179.94 (11) C7—C8—C9—O1 4.45 (15)
C2—C3—C4—C5 1.06 (18) C9—O1—C10—C11 −172.58 (10)
N2—C1—C5—C6 −0.57 (17) C2—N3—C12—O3 4.9 (2)
N1—C1—C5—C6 179.93 (10) C2—N3—C12—C13 −172.27 (12)
N2—C1—C5—C4 178.48 (10) O3—C12—C13—C16 26.19 (17)
N1—C1—C5—C4 −1.02 (17) N3—C12—C13—C16 −156.66 (11)
C3—C4—C5—C6 178.40 (12) O3—C12—C13—C15 147.54 (14)
C3—C4—C5—C1 −0.60 (17) N3—C12—C13—C15 −35.32 (15)
C1—C5—C6—C7 0.34 (17) O3—C12—C13—C14 −91.47 (15)
C4—C5—C6—C7 −178.65 (11) N3—C12—C13—C14 85.68 (13)
C5—C6—C7—C8 −0.08 (17)

Symmetry codes: (i) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H1N3···O2W 0.85 2.39 3.051 (2) 135
N3—H1N3···O1WBii 0.85 2.40 3.095 (3) 140
O1WB—H2WB···N2 0.86 2.26 3.077 (3) 160
O2W—H1W2···N1ii 0.83 2.13 2.948 (2) 167
C3—H3A···O3 0.93 2.23 2.8230 (17) 121

Symmetry codes: (ii) −x, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6505).

References

  1. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  3. Goswami, S. & Hazra, A. (2009). Chem. Lett. 38, 484–490.
  4. Li, D. Z., Li, Y., Chen, X. G., Zhu, C. G., Yang, J., Liu, H. Y. & Pan, X. D. (2007). Chin. Chem. Lett. 18, 1335–1338.
  5. Listvan, V. N., Listvan, V. V. & Shekel, A. N. (2002). Chem. Heterocycl. Compd, 38, 1480–1483.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681104921X/hb6505sup1.cif

e-67-o3415-sup1.cif (20.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681104921X/hb6505Isup2.hkl

e-67-o3415-Isup2.hkl (180.4KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681104921X/hb6505Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES