Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 25;67(Pt 12):o3419. doi: 10.1107/S1600536811049488

2-[(3,5-Dimethyl-1-phenyl-1H-pyrazol-4-yl)methyl­idene]indan-1,3-dione

Abdullah M Asiri a,b, Abdulrahman O Al-Youbi a, Salman A Khan a, M Nawaz Tahir c,*
PMCID: PMC3239055  PMID: 22199903

Abstract

In the title compound, C21H16N2O2, the five-membered heterocyclic ring makes a dihedral angle of 47.06 (6)° with the attached benzene ring, whereas the indan-1,3-dione ring system and the benzene ring are oriented at a dihedral angle of 21.92 (7)°. In the crystal, inversion dimers linked by pairs of C—H⋯O hydrogen bonds generate R 2 2(22) loops. Aromatic π–π stacking inter­actions [centroid–centroid distances = 3.8325 (12)–3.8600 (12) Å] also occur.

Related literature

For background to donor–acceptor chromophores, see: Asiri et al. (2006); Asiri & Khan (2009); Koyuncu et al. (2010); Kulhanek et al. (2011); Wang et al. (2011). For related structures, see: Belyakov et al. (2008); Fun et al. (2010). For graph-set notation, see: Bernstein et al. (1995).graphic file with name e-67-o3419-scheme1.jpg

Experimental

Crystal data

  • C21H16N2O2

  • M r = 328.36

  • Monoclinic, Inline graphic

  • a = 14.6655 (3) Å

  • b = 7.8902 (2) Å

  • c = 28.6651 (7) Å

  • β = 98.251 (1)°

  • V = 3282.61 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.26 × 0.23 × 0.21 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.975, T max = 0.985

  • 12302 measured reflections

  • 2970 independent reflections

  • 2106 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.112

  • S = 1.01

  • 2970 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811049488/hb6509sup1.cif

e-67-o3419-sup1.cif (26.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811049488/hb6509Isup2.hkl

e-67-o3419-Isup2.hkl (142.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811049488/hb6509Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O1i 0.93 2.58 3.377 (3) 145

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors would like to thank the Chemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia, for providing research facilities.

supplementary crystallographic information

Comment

Formation of the donor acceptor chromophores by the nucleophilic addition of an active hydrogen compound to a carbonyl group followed by a dehydration reaction is known as knoevenagel condensation (Asiri & Khan, 2009). Donor acceptor chromophores are applicable in the field of materials science such as third order non-linear optical (NLO) (Asiri et al. 2006), photonic materials and devices, optical limiting (Kulhanek et al. 2011), electrochemical sensing (Koyuncu et al. 2010) and langmuir film (Wang et al. 2011). Due to wide application of donor acceptor chromophores, we are reporting here the synthesiz and crystal structure of the title compound (I), (Fig. 1).

The crystal structures of (II) i.e., 2-(4,5,6,7,8,9-hexahydro-6a-azaphenylen-2-ylmethylene)indan-1,3-dione (Belyakov et al., 2008) and (III) i.e., 4-((E)((3,5-dimethyl- 1-phenyl-1H-pyrazol-4-yl)methylene)amino)-1,5-dimethyl-2-phenyl -1,2-dihydro-3H-pyrazol-3-one have been published which contain the moities present in (I).

In (I), the group A (C1—C9/O1/O2) of indan-1, 3-dione, the heterocyclic five membered ring B (C11/C12/C14/N1/N2) and the benzene ring C (C16—C21) of the aldehyde moiety are planar with r. m. s. deviation of 0.0345, 0.0099 and 0.0035 Å, respectively. The dihedral angle between A/B, A/C and B/C is 39.77 (4), 21.92 (7) and 47.06 (6)°, respectively. The title compound consists of dimers due to intermolecular H-bonds of C—H···O type, where O-atom is of carbonyl and H-atom is of benzene ring. This H-bondings form a R22(22) (Fig. 2) ring motif (Bernstein et al., 1995). There exists π–π interactions between the centroids of the rings of indan-1, 3-dione moieties at the separation of 3.8325 (12)–3.8600 (12) A°.

Experimental

A mixture of 3,5-dimethyl-1-phenylpyrazole-4-carbaldehyde (1.0 g, 5.0 mmol), indan-1, 3-dione (0.73 g, 5.0 mmol) and a few drops of pyridine in ethanol (15 ml) was heated for 3 h. The progress of the reaction was monitored by TLC. The solid that separated from the cooled mixture was collected and recrystallized from a methanol-chloroform mixture to give the yellow prisms of (I).

Yellow: 85%, m.p. 469–470 K.

IR (KBr) νmax cm-1: 3035 (Ar—H), 2859 (C—H), 1663 (C═O), 1578 (C═C).

Refinement

The H-atoms were positioned geometrically (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.5 for methyl and x = 1.2 for aryl H-atoms.

Figures

Fig. 1.

Fig. 1.

View of the title compound with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

The partial packing (PLATON; Spek, 2009) which shows that molecules form dimers with R22(22) ring motif.

Crystal data

C21H16N2O2 F(000) = 1376
Mr = 328.36 Dx = 1.329 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 2106 reflections
a = 14.6655 (3) Å θ = 1.4–25.3°
b = 7.8902 (2) Å µ = 0.09 mm1
c = 28.6651 (7) Å T = 296 K
β = 98.251 (1)° Prism, yellow
V = 3282.61 (13) Å3 0.26 × 0.23 × 0.21 mm
Z = 8

Data collection

Bruker Kappa APEXII CCD diffractometer 2970 independent reflections
Radiation source: fine-focus sealed tube 2106 reflections with I > 2σ(I)
graphite Rint = 0.034
Detector resolution: 8.00 pixels mm-1 θmax = 25.3°, θmin = 1.4°
ω scans h = −17→17
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −6→9
Tmin = 0.975, Tmax = 0.985 l = −34→34
12302 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0522P)2 + 0.9126P] where P = (Fo2 + 2Fc2)/3
2970 reflections (Δ/σ)max < 0.001
228 parameters Δρmax = 0.12 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.07106 (8) 0.30881 (19) 0.11877 (4) 0.0564 (5)
O2 0.23637 (9) 0.04176 (19) 0.00898 (4) 0.0608 (5)
N1 0.34865 (9) 0.1867 (2) 0.23313 (5) 0.0473 (5)
N2 0.25797 (9) 0.1475 (2) 0.23590 (5) 0.0439 (5)
C1 0.17883 (11) 0.1490 (2) 0.07845 (6) 0.0419 (6)
C2 0.09301 (11) 0.2414 (3) 0.08361 (6) 0.0423 (6)
C3 0.03786 (11) 0.2486 (2) 0.03591 (6) 0.0403 (6)
C4 −0.04905 (12) 0.3164 (3) 0.02282 (6) 0.0475 (6)
C5 −0.08681 (13) 0.3072 (3) −0.02408 (7) 0.0537 (7)
C6 −0.03758 (14) 0.2345 (3) −0.05695 (7) 0.0557 (7)
C7 0.04935 (13) 0.1681 (3) −0.04398 (6) 0.0519 (7)
C8 0.08677 (11) 0.1748 (2) 0.00319 (6) 0.0414 (6)
C9 0.17632 (12) 0.1113 (3) 0.02737 (6) 0.0450 (6)
C10 0.25407 (11) 0.1176 (2) 0.11037 (6) 0.0441 (6)
C11 0.26939 (11) 0.1368 (2) 0.16062 (6) 0.0418 (6)
C12 0.35529 (11) 0.1768 (2) 0.18786 (6) 0.0441 (6)
C13 0.44513 (12) 0.2131 (3) 0.17115 (7) 0.0616 (8)
C14 0.20881 (11) 0.1150 (2) 0.19334 (6) 0.0418 (6)
C15 0.11558 (11) 0.0380 (3) 0.18802 (6) 0.0559 (7)
C16 0.22738 (12) 0.1517 (2) 0.28101 (6) 0.0440 (6)
C17 0.14828 (13) 0.2378 (3) 0.28667 (7) 0.0577 (8)
C18 0.12018 (16) 0.2438 (3) 0.33060 (9) 0.0709 (9)
C19 0.17138 (19) 0.1645 (3) 0.36842 (8) 0.0743 (10)
C20 0.25092 (17) 0.0804 (3) 0.36263 (7) 0.0682 (9)
C21 0.27950 (13) 0.0733 (3) 0.31885 (6) 0.0536 (7)
H4 −0.08104 0.36672 0.04493 0.0570*
H5 −0.14557 0.34996 −0.03377 0.0644*
H6 −0.06392 0.23049 −0.08844 0.0668*
H7 0.08189 0.12017 −0.06624 0.0623*
H10 0.30449 0.07647 0.09756 0.0529*
H13A 0.49379 0.20906 0.19738 0.0924*
H13B 0.44309 0.32379 0.15712 0.0924*
H13C 0.45628 0.12989 0.14820 0.0924*
H15A 0.07018 0.12581 0.18772 0.0838*
H15B 0.11146 −0.03737 0.21392 0.0838*
H15C 0.10477 −0.02420 0.15897 0.0838*
H17 0.11393 0.29166 0.26111 0.0693*
H18 0.06657 0.30145 0.33466 0.0850*
H19 0.15205 0.16794 0.39792 0.0891*
H20 0.28568 0.02796 0.38831 0.0818*
H21 0.33335 0.01622 0.31488 0.0643*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0561 (8) 0.0723 (10) 0.0421 (7) 0.0083 (7) 0.0117 (6) −0.0049 (7)
O2 0.0533 (8) 0.0730 (11) 0.0585 (8) 0.0118 (7) 0.0158 (6) −0.0066 (7)
N1 0.0349 (8) 0.0581 (11) 0.0483 (9) −0.0067 (7) 0.0035 (6) −0.0007 (8)
N2 0.0348 (8) 0.0530 (10) 0.0433 (8) −0.0046 (7) 0.0032 (6) 0.0014 (7)
C1 0.0384 (9) 0.0464 (11) 0.0407 (9) −0.0030 (8) 0.0053 (7) 0.0007 (9)
C2 0.0416 (10) 0.0472 (12) 0.0390 (10) −0.0033 (8) 0.0087 (8) 0.0025 (9)
C3 0.0412 (10) 0.0400 (11) 0.0402 (10) −0.0041 (8) 0.0076 (7) 0.0044 (8)
C4 0.0455 (10) 0.0516 (13) 0.0465 (10) 0.0007 (9) 0.0106 (8) 0.0068 (9)
C5 0.0453 (11) 0.0605 (14) 0.0532 (12) 0.0008 (10) −0.0001 (9) 0.0100 (10)
C6 0.0595 (12) 0.0637 (15) 0.0407 (10) −0.0042 (11) −0.0038 (9) 0.0023 (10)
C7 0.0575 (12) 0.0560 (14) 0.0424 (10) −0.0013 (10) 0.0076 (9) −0.0030 (9)
C8 0.0417 (10) 0.0424 (12) 0.0402 (10) −0.0053 (8) 0.0062 (7) 0.0013 (8)
C9 0.0428 (10) 0.0458 (12) 0.0476 (10) −0.0032 (9) 0.0103 (8) −0.0001 (9)
C10 0.0392 (10) 0.0460 (12) 0.0474 (10) −0.0028 (8) 0.0073 (8) −0.0007 (9)
C11 0.0359 (9) 0.0448 (12) 0.0436 (10) −0.0005 (8) 0.0020 (7) 0.0018 (8)
C12 0.0369 (9) 0.0488 (12) 0.0463 (10) −0.0027 (8) 0.0045 (7) 0.0022 (9)
C13 0.0403 (10) 0.0857 (17) 0.0585 (12) −0.0126 (11) 0.0060 (9) 0.0028 (11)
C14 0.0341 (9) 0.0442 (12) 0.0456 (10) −0.0015 (8) 0.0006 (7) 0.0042 (9)
C15 0.0423 (10) 0.0678 (15) 0.0557 (11) −0.0129 (10) 0.0009 (8) 0.0091 (11)
C16 0.0419 (10) 0.0437 (12) 0.0471 (10) −0.0080 (9) 0.0089 (8) −0.0040 (9)
C17 0.0499 (12) 0.0578 (14) 0.0670 (13) −0.0009 (10) 0.0136 (10) 0.0003 (11)
C18 0.0641 (14) 0.0630 (16) 0.0935 (18) −0.0102 (12) 0.0383 (13) −0.0158 (14)
C19 0.1054 (19) 0.0613 (16) 0.0645 (15) −0.0224 (14) 0.0406 (14) −0.0123 (13)
C20 0.0982 (18) 0.0600 (16) 0.0470 (12) −0.0066 (13) 0.0127 (11) −0.0033 (11)
C21 0.0598 (12) 0.0527 (13) 0.0483 (11) 0.0012 (10) 0.0073 (9) −0.0045 (10)

Geometric parameters (Å, °)

O1—C2 1.223 (2) C16—C17 1.374 (3)
O2—C9 1.220 (2) C16—C21 1.380 (3)
N1—N2 1.3787 (19) C17—C18 1.381 (3)
N1—C12 1.318 (2) C18—C19 1.377 (3)
N2—C14 1.350 (2) C19—C20 1.373 (4)
N2—C16 1.429 (2) C20—C21 1.380 (3)
C1—C2 1.480 (2) C4—H4 0.9300
C1—C9 1.489 (2) C5—H5 0.9300
C1—C10 1.351 (2) C6—H6 0.9300
C2—C3 1.487 (2) C7—H7 0.9300
C3—C4 1.384 (2) C10—H10 0.9300
C3—C8 1.388 (2) C13—H13A 0.9600
C4—C5 1.381 (3) C13—H13B 0.9600
C5—C6 1.390 (3) C13—H13C 0.9600
C6—C7 1.379 (3) C15—H15A 0.9600
C7—C8 1.385 (2) C15—H15B 0.9600
C8—C9 1.482 (2) C15—H15C 0.9600
C10—C11 1.434 (2) C17—H17 0.9300
C11—C12 1.419 (2) C18—H18 0.9300
C11—C14 1.392 (2) C19—H19 0.9300
C12—C13 1.493 (2) C20—H20 0.9300
C14—C15 1.484 (2) C21—H21 0.9300
N2—N1—C12 104.58 (13) C17—C18—C19 120.1 (2)
N1—N2—C14 112.65 (13) C18—C19—C20 120.1 (2)
N1—N2—C16 118.54 (13) C19—C20—C21 120.3 (2)
C14—N2—C16 128.77 (14) C16—C21—C20 119.35 (19)
C2—C1—C9 107.17 (14) C3—C4—H4 121.00
C2—C1—C10 130.24 (16) C5—C4—H4 121.00
C9—C1—C10 122.11 (15) C4—C5—H5 120.00
O1—C2—C1 128.67 (16) C6—C5—H5 120.00
O1—C2—C3 124.66 (16) C5—C6—H6 119.00
C1—C2—C3 106.57 (14) C7—C6—H6 119.00
C2—C3—C4 128.51 (16) C6—C7—H7 121.00
C2—C3—C8 109.87 (14) C8—C7—H7 121.00
C4—C3—C8 121.62 (16) C1—C10—H10 115.00
C3—C4—C5 117.97 (17) C11—C10—H10 115.00
C4—C5—C6 120.46 (18) C12—C13—H13A 109.00
C5—C6—C7 121.59 (18) C12—C13—H13B 109.00
C6—C7—C8 118.03 (17) C12—C13—H13C 109.00
C3—C8—C7 120.32 (16) H13A—C13—H13B 109.00
C3—C8—C9 109.58 (15) H13A—C13—H13C 109.00
C7—C8—C9 130.10 (16) H13B—C13—H13C 109.00
O2—C9—C1 126.67 (16) C14—C15—H15A 109.00
O2—C9—C8 126.62 (16) C14—C15—H15B 109.00
C1—C9—C8 106.71 (15) C14—C15—H15C 109.00
C1—C10—C11 130.99 (16) H15A—C15—H15B 109.00
C10—C11—C12 125.10 (15) H15A—C15—H15C 109.00
C10—C11—C14 129.85 (15) H15B—C15—H15C 109.00
C12—C11—C14 105.00 (15) C16—C17—H17 120.00
N1—C12—C11 111.71 (14) C18—C17—H17 120.00
N1—C12—C13 119.87 (15) C17—C18—H18 120.00
C11—C12—C13 128.37 (16) C19—C18—H18 120.00
N2—C14—C11 106.01 (14) C18—C19—H19 120.00
N2—C14—C15 122.38 (15) C20—C19—H19 120.00
C11—C14—C15 130.47 (15) C19—C20—H20 120.00
N2—C16—C17 119.90 (16) C21—C20—H20 120.00
N2—C16—C21 119.37 (16) C16—C21—H21 120.00
C17—C16—C21 120.70 (17) C20—C21—H21 120.00
C16—C17—C18 119.49 (19)
C12—N1—N2—C14 −0.43 (19) C4—C3—C8—C7 0.4 (3)
C12—N1—N2—C16 −178.29 (15) C4—C3—C8—C9 −179.10 (18)
N2—N1—C12—C11 1.86 (19) C3—C4—C5—C6 −1.2 (3)
N2—N1—C12—C13 179.52 (16) C4—C5—C6—C7 0.7 (4)
N1—N2—C14—C11 −1.14 (19) C5—C6—C7—C8 0.3 (3)
N1—N2—C14—C15 167.82 (16) C6—C7—C8—C3 −0.8 (3)
C16—N2—C14—C11 176.44 (16) C6—C7—C8—C9 178.5 (2)
C16—N2—C14—C15 −14.6 (3) C3—C8—C9—O2 −179.0 (2)
N1—N2—C16—C17 130.59 (19) C3—C8—C9—C1 1.0 (2)
N1—N2—C16—C21 −47.4 (2) C7—C8—C9—O2 1.7 (4)
C14—N2—C16—C17 −46.9 (3) C7—C8—C9—C1 −178.41 (19)
C14—N2—C16—C21 135.2 (2) C1—C10—C11—C12 −148.87 (18)
C9—C1—C2—O1 −173.0 (2) C1—C10—C11—C14 34.2 (3)
C9—C1—C2—C3 3.3 (2) C10—C11—C12—N1 179.86 (16)
C10—C1—C2—O1 −0.9 (4) C10—C11—C12—C13 2.4 (3)
C10—C1—C2—C3 175.33 (17) C14—C11—C12—N1 −2.57 (19)
C2—C1—C9—O2 177.3 (2) C14—C11—C12—C13 −180.00 (19)
C2—C1—C9—C8 −2.7 (2) C10—C11—C14—N2 179.55 (16)
C10—C1—C9—O2 4.5 (3) C10—C11—C14—C15 11.8 (3)
C10—C1—C9—C8 −175.48 (16) C12—C11—C14—N2 2.13 (18)
C2—C1—C10—C11 12.2 (3) C12—C11—C14—C15 −165.60 (18)
C9—C1—C10—C11 −176.81 (18) N2—C16—C17—C18 −178.80 (19)
O1—C2—C3—C4 −6.1 (3) C21—C16—C17—C18 −0.9 (3)
O1—C2—C3—C8 173.65 (19) N2—C16—C21—C20 178.66 (19)
C1—C2—C3—C4 177.46 (18) C17—C16—C21—C20 0.7 (3)
C1—C2—C3—C8 −2.8 (2) C16—C17—C18—C19 0.2 (3)
C2—C3—C4—C5 −179.6 (2) C17—C18—C19—C20 0.5 (4)
C8—C3—C4—C5 0.7 (3) C18—C19—C20—C21 −0.7 (4)
C2—C3—C8—C7 −179.42 (18) C19—C20—C21—C16 0.1 (3)
C2—C3—C8—C9 1.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C18—H18···O1i 0.93 2.58 3.377 (3) 145

Symmetry codes: (i) −x, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6509).

References

  1. Asiri, A. M., Bahajaj, A. A., Ismail, I. M. I. & Fatani, N. A. (2006). Dyes Pigments, 71, 103–108.
  2. Asiri, M. A. & Khan, S. A. (2009). Molbank, M635.
  3. Belyakov, S., Kampars, V., Pastors, P. J. & Tokmakov, A. (2008). Acta Cryst. E64, o1200. [DOI] [PMC free article] [PubMed]
  4. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
  5. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  9. Fun, H.-K., Hemamalini, M., Asiri, A. M. & Khan, S. A. (2010). Acta Cryst. E66, o1602–o1603. [DOI] [PMC free article] [PubMed]
  10. Koyuncu, F. B., Koyuncu, S. & Ozdemir, E. (2010). Electrochim. Acta, 55, 4935–4941.
  11. Kulhanek, J., Bures, F., Mikysek, T., Ludvik, J. & Pytela, O. (2011). Dyes Pigments, 90, 48–55. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Wang, H.-Y., Chen, G., Xu, X.-P., Chen, H. & Ji, S.-J. (2011). Dyes Pigments, 88, 358–365.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811049488/hb6509sup1.cif

e-67-o3419-sup1.cif (26.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811049488/hb6509Isup2.hkl

e-67-o3419-Isup2.hkl (142.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811049488/hb6509Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES