Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 25;67(Pt 12):o3420. doi: 10.1107/S1600536811049658

(E)-2-(4-Benz­yloxy-2-hy­droxy­benzyl­idene)-N-phenyl­hydrazinecarbothio­amide

K Nisha a, M Sithambaresan b,*, M R Prathapachandra Kurup a
PMCID: PMC3239056  PMID: 22199904

Abstract

The title compound, C21H19N3O2S, exists in the thione form. The configuration about the C=N bond is E. The hydrazinecarbothio­amide unit adopts an almost planar arrangement, with maximum deviations of 0.016 (3) and −0.016 (2) Å for the two thio­urea N atoms. An intra­molecular O—H⋯N hydrogen bond occurs. Weak inter­molecular N—H⋯S, C—H⋯O and C—H⋯π inter­actions are observed in the crystal structure.

Related literature

For applications of hydrazinecarbothio­amide and its derivatives, see: Casas et al. (2000); Lukevics et al. (1995). For the synthesis, see: Joseph et al. (2004). For related hydrazine­carbothio­amide structures, see: Seena et al. (2008). For standard bond lengths, see: Allen et al. (1987).graphic file with name e-67-o3420-scheme1.jpg

Experimental

Crystal data

  • C21H19N3O2S

  • M r = 377.45

  • Monoclinic, Inline graphic

  • a = 24.099 (3) Å

  • b = 16.173 (2) Å

  • c = 9.8370 (11) Å

  • β = 95.906 (7)°

  • V = 3813.5 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.25 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008) T min = 0.945, T max = 0.954

  • 14236 measured reflections

  • 3351 independent reflections

  • 1848 reflections with I > 2σ(I)

  • R int = 0.073

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.148

  • S = 1.01

  • 3351 reflections

  • 256 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811049658/jj2110sup1.cif

e-67-o3420-sup1.cif (26.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811049658/jj2110Isup2.hkl

e-67-o3420-Isup2.hkl (164.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811049658/jj2110Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C16–C21 and C1–C6 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯N1 0.85 (4) 1.99 (4) 2.679 (3) 137 (4)
N2—H2B⋯S1i 0.85 (1) 2.55 (1) 3.392 (3) 170 (3)
C13—H13⋯O1ii 0.93 2.47 3.388 (4) 171
C5—H5⋯Cgiii 0.93 2.80 3.643 (4) 152
C12—H12⋯Cgii 0.93 2.87 3.741 (4) 157

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

KN is thankful to the Council of Scientific and Industrial Research, New Delhi, India, for financial support in the form of a Junior Research Fellowship. The authors are thankful to the Sophisticated Analytical Instrument Facility, Cochin University of Science & Technology, Kochi, India, for providing the single-crystal XRD data.

supplementary crystallographic information

Comment

Derivatives of hydrazinecarbothioamide are an important group of multidentate ligands with potential binding sites available for an extensive diversity of metal ions. A large number of studies have been devoted to the search for derivatives of hydrazinecarbothioamide, which have been used as drugs and have the ability to form complexes (Casas et al., 2000). These compounds find substantial applications in different aspects of modern scientific research (Lukevics et al., 1995).

The title compound (E)-2-[4-(benzyloxy)-2-hydroxybenzylidene]-N-\ phenylhydrazinecarbothioamide is found to exist in an E configuration having N3 and N1 atoms cis to each other with respect to C15–N2 bond (Fig. 1). The S1/C15/N12/N1 torsion-angle [-178.27 (19)°] suggests that the thionyl atom S1 is located trans to the azomethane nitrogen atom N1. The closeness of the C13═S1 bond distance [1.665 (3) Å] to the expected distance of a C═S bond (1.60 Å) (Allen et al., 1987; Seena et al., 2008) indicates that the compound exists in the thione form and it is further confirmed by the N1—N2 and N2—C15 bond distances. The hydrazinecarbothioamide moiety, (N1/N2/N3/C15/S1/C16), is nearly planar with a maximum deviation of 0.016 (3) and -0.016 (2) Å for atoms N3 and N2 from its least squares plane value. The three aromatic rings are twisted with a dihedral angle of 86.43 (17) Å between the least squares plane of the rings C1—C6 and C8—C13, 67.99 (19) Å between rings C1—C6 and C16—C21 and 29.77 (16) Å between rings C8—C13 and C16—C21, respectively.

An O2–H2A···N1 intramolecular hydrogen bond (Table 1), is observed which contributes to the planarity of the N1/C14/C11/C10/O2 group with a maximum deivation of 0.146 (2) Å for atom N1. Weak N—H···S, C—H···O and C—H···Cg π-ring intermolecular interactions (Table 1) are also observed.

Experimental

The title compound was prepared by adapting a reported procedure (Joseph et al., 2004) by refluxing a mixture of methanolic solutions of N-phenylhydrazinecarbothioamide (1.672 g, 10 mmol) and 4-(benzyloxy)-2-hydroxybenzaldehyde (2.282 g, 10 mmol) for four hours after adding 5 drops of acetic acid. Colorless crystals were collected, washed with few drops of methanol and dried over P4O10in vacuo. Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation from its methanolic solution.

Refinement

All H atoms on C were placed in calculated positions, guided by Fourier difference maps, with C—H bond distances 0.93Å (CH) or 0.97Å (CH2). H atoms were assigned as Uiso=1.2Ueq. H3A and H2B hydrogen atoms were located from Fourier diffrence maps and restrained using the DFIX instruction. H2A was located from a Fourier difference map and freely refined.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids are drawn at 50% probability level.

Crystal data

C21H19N3O2S F(000) = 1584
Mr = 377.45 Dx = 1.315 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 1946 reflections
a = 24.099 (3) Å θ = 5.0–28.5°
b = 16.173 (2) Å µ = 0.19 mm1
c = 9.8370 (11) Å T = 296 K
β = 95.906 (7)° Block, colorless
V = 3813.5 (8) Å3 0.30 × 0.25 × 0.25 mm
Z = 8

Data collection

Bruker Kappa APEXII CCD diffractometer 3351 independent reflections
Radiation source: fine-focus sealed tube 1848 reflections with I > 2σ(I)
graphite Rint = 0.073
Detector resolution: 8.33 pixels mm-1 θmax = 25.0°, θmin = 2.5°
ω and φ scan h = −28→28
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) k = −17→19
Tmin = 0.945, Tmax = 0.954 l = −11→11
14236 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148 H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0662P)2 + 0.0863P] where P = (Fo2 + 2Fc2)/3
3351 reflections (Δ/σ)max < 0.001
256 parameters Δρmax = 0.19 e Å3
2 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.49744 (4) 0.63473 (5) 1.03069 (9) 0.0709 (3)
O1 0.76193 (9) 0.36630 (13) 0.4043 (2) 0.0729 (7)
O2 0.65146 (10) 0.57793 (14) 0.5709 (2) 0.0737 (7)
N1 0.59125 (9) 0.53647 (16) 0.7749 (2) 0.0511 (6)
N2 0.55333 (10) 0.54839 (17) 0.8682 (2) 0.0550 (7)
N3 0.57110 (11) 0.68512 (18) 0.8607 (3) 0.0664 (8)
C1 0.79384 (15) 0.3466 (2) 0.1029 (4) 0.0845 (12)
H1 0.7561 0.3571 0.0800 0.101*
C2 0.82307 (18) 0.3021 (3) 0.0138 (4) 0.1015 (14)
H2 0.8051 0.2830 −0.0683 0.122*
C3 0.87770 (18) 0.2865 (3) 0.0463 (5) 0.0936 (13)
H3 0.8974 0.2572 −0.0144 0.112*
C4 0.90424 (15) 0.3129 (3) 0.1665 (5) 0.0871 (12)
H4 0.9418 0.3010 0.1890 0.104*
C5 0.87465 (14) 0.3584 (2) 0.2567 (4) 0.0787 (11)
H5 0.8927 0.3771 0.3391 0.094*
C6 0.81945 (14) 0.3754 (2) 0.2240 (3) 0.0630 (9)
C7 0.78667 (13) 0.4237 (2) 0.3182 (3) 0.0681 (10)
H7A 0.8110 0.4614 0.3730 0.082*
H7B 0.7579 0.4558 0.2658 0.082*
C8 0.72517 (12) 0.3956 (2) 0.4887 (3) 0.0562 (8)
C9 0.70723 (11) 0.47536 (19) 0.4902 (3) 0.0530 (8)
H9 0.7212 0.5143 0.4331 0.064*
C10 0.66811 (11) 0.49850 (19) 0.5768 (3) 0.0496 (7)
C11 0.64668 (11) 0.44162 (19) 0.6633 (3) 0.0493 (7)
C12 0.66643 (13) 0.3615 (2) 0.6596 (3) 0.0701 (10)
H12 0.6529 0.3225 0.7173 0.084*
C13 0.70480 (14) 0.3371 (2) 0.5751 (3) 0.0751 (10)
H13 0.7171 0.2827 0.5752 0.090*
C14 0.60610 (11) 0.4627 (2) 0.7560 (3) 0.0534 (8)
H14 0.5904 0.4205 0.8036 0.064*
C15 0.54245 (11) 0.62420 (19) 0.9143 (3) 0.0513 (7)
C16 0.57073 (14) 0.7713 (2) 0.8776 (3) 0.0637 (9)
C17 0.61716 (16) 0.8131 (3) 0.8441 (3) 0.0847 (11)
H17 0.6475 0.7836 0.8183 0.102*
C18 0.6191 (2) 0.8979 (3) 0.8485 (4) 0.1049 (14)
H18 0.6506 0.9255 0.8248 0.126*
C19 0.5749 (2) 0.9422 (3) 0.8877 (4) 0.1129 (16)
H19 0.5759 0.9996 0.8916 0.135*
C20 0.5290 (2) 0.8994 (3) 0.9210 (4) 0.1051 (14)
H20 0.4988 0.9287 0.9475 0.126*
C21 0.52644 (15) 0.8151 (2) 0.9165 (3) 0.0814 (11)
H21 0.4948 0.7878 0.9396 0.098*
H2A 0.6261 (15) 0.589 (2) 0.621 (4) 0.110 (14)*
H3A 0.5945 (10) 0.665 (2) 0.811 (3) 0.091 (12)*
H2B 0.5385 (10) 0.5062 (10) 0.901 (3) 0.056 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0775 (6) 0.0587 (6) 0.0858 (6) 0.0045 (5) 0.0530 (5) −0.0059 (4)
O1 0.0896 (15) 0.0552 (15) 0.0845 (14) 0.0196 (12) 0.0601 (12) 0.0102 (11)
O2 0.0914 (17) 0.0506 (16) 0.0884 (16) 0.0192 (13) 0.0544 (14) 0.0081 (12)
N1 0.0532 (14) 0.0533 (18) 0.0511 (14) 0.0046 (13) 0.0266 (11) −0.0048 (11)
N2 0.0573 (15) 0.0492 (19) 0.0637 (16) −0.0012 (14) 0.0309 (12) −0.0037 (13)
N3 0.0770 (18) 0.0537 (19) 0.0762 (18) −0.0036 (15) 0.0453 (15) −0.0097 (14)
C1 0.083 (2) 0.090 (3) 0.086 (3) 0.020 (2) 0.035 (2) −0.003 (2)
C2 0.102 (3) 0.119 (4) 0.089 (3) 0.022 (3) 0.040 (2) −0.019 (2)
C3 0.097 (3) 0.091 (3) 0.103 (3) 0.013 (3) 0.063 (3) −0.007 (3)
C4 0.068 (2) 0.084 (3) 0.118 (3) 0.017 (2) 0.051 (2) 0.011 (2)
C5 0.072 (2) 0.085 (3) 0.084 (2) 0.011 (2) 0.0340 (18) 0.0091 (19)
C6 0.075 (2) 0.052 (2) 0.069 (2) 0.0108 (18) 0.0398 (17) 0.0087 (17)
C7 0.077 (2) 0.063 (2) 0.072 (2) 0.0151 (18) 0.0440 (17) 0.0118 (16)
C8 0.0612 (18) 0.051 (2) 0.0612 (18) 0.0105 (16) 0.0308 (15) −0.0032 (15)
C9 0.0587 (18) 0.052 (2) 0.0527 (17) 0.0045 (15) 0.0244 (14) 0.0025 (14)
C10 0.0536 (16) 0.044 (2) 0.0539 (17) 0.0046 (16) 0.0171 (13) −0.0049 (14)
C11 0.0540 (17) 0.046 (2) 0.0511 (17) −0.0008 (15) 0.0226 (13) −0.0017 (13)
C12 0.088 (2) 0.052 (2) 0.079 (2) 0.0073 (19) 0.0501 (18) 0.0112 (16)
C13 0.094 (2) 0.047 (2) 0.094 (2) 0.0149 (19) 0.058 (2) 0.0077 (18)
C14 0.0564 (18) 0.054 (2) 0.0546 (17) 0.0014 (16) 0.0256 (14) −0.0009 (15)
C15 0.0523 (17) 0.047 (2) 0.0569 (17) 0.0016 (16) 0.0181 (13) −0.0051 (15)
C16 0.084 (2) 0.054 (2) 0.0575 (19) −0.0069 (19) 0.0316 (16) −0.0037 (16)
C17 0.107 (3) 0.069 (3) 0.086 (3) −0.011 (2) 0.049 (2) 0.001 (2)
C18 0.146 (4) 0.075 (3) 0.101 (3) −0.032 (3) 0.051 (3) 0.007 (2)
C19 0.180 (5) 0.052 (3) 0.115 (3) −0.011 (3) 0.056 (3) 0.005 (2)
C20 0.147 (4) 0.058 (3) 0.118 (3) 0.005 (3) 0.047 (3) −0.009 (2)
C21 0.099 (3) 0.055 (3) 0.097 (3) 0.000 (2) 0.043 (2) −0.010 (2)

Geometric parameters (Å, °)

S1—C15 1.665 (3) C7—H7A 0.9700
O1—C8 1.360 (3) C7—H7B 0.9700
O1—C7 1.428 (3) C8—C9 1.360 (4)
O2—C10 1.345 (3) C8—C13 1.395 (4)
O2—H2A 0.85 (4) C9—C10 1.386 (3)
N1—C14 1.264 (4) C9—H9 0.9300
N1—N2 1.374 (3) C10—C11 1.388 (4)
N2—C15 1.342 (4) C11—C12 1.382 (4)
N2—H2B 0.8501 (10) C11—C14 1.445 (3)
N3—C15 1.341 (4) C12—C13 1.363 (4)
N3—C16 1.403 (4) C12—H12 0.9300
N3—H3A 0.8501 (11) C13—H13 0.9300
C1—C6 1.366 (5) C14—H14 0.9300
C1—C2 1.382 (4) C16—C21 1.369 (4)
C1—H1 0.9300 C16—C17 1.376 (4)
C2—C3 1.346 (5) C17—C18 1.373 (6)
C2—H2 0.9300 C17—H17 0.9300
C3—C4 1.354 (5) C18—C19 1.372 (6)
C3—H3 0.9300 C18—H18 0.9300
C4—C5 1.403 (5) C19—C20 1.371 (6)
C4—H4 0.9300 C19—H19 0.9300
C5—C6 1.364 (4) C20—C21 1.364 (5)
C5—H5 0.9300 C20—H20 0.9300
C6—C7 1.498 (4) C21—H21 0.9300
C8—O1—C7 118.2 (2) C10—C9—H9 120.0
C10—O2—H2A 114 (3) O2—C10—C9 116.8 (3)
C14—N1—N2 116.6 (2) O2—C10—C11 122.1 (2)
C15—N2—N1 121.3 (2) C9—C10—C11 121.2 (3)
C15—N2—H2B 119.9 (19) C12—C11—C10 117.0 (2)
N1—N2—H2B 118.6 (19) C12—C11—C14 119.7 (3)
C15—N3—C16 132.3 (2) C10—C11—C14 123.3 (3)
C15—N3—H3A 110 (2) C13—C12—C11 123.0 (3)
C16—N3—H3A 117 (2) C13—C12—H12 118.5
C6—C1—C2 121.1 (4) C11—C12—H12 118.5
C6—C1—H1 119.4 C12—C13—C8 118.6 (3)
C2—C1—H1 119.4 C12—C13—H13 120.7
C3—C2—C1 119.8 (4) C8—C13—H13 120.7
C3—C2—H2 120.1 N1—C14—C11 122.4 (3)
C1—C2—H2 120.1 N1—C14—H14 118.8
C2—C3—C4 120.7 (3) C11—C14—H14 118.8
C2—C3—H3 119.7 N3—C15—N2 114.3 (2)
C4—C3—H3 119.7 N3—C15—S1 126.4 (2)
C3—C4—C5 119.5 (4) N2—C15—S1 119.3 (2)
C3—C4—H4 120.2 C21—C16—C17 119.3 (3)
C5—C4—H4 120.2 C21—C16—N3 124.2 (3)
C6—C5—C4 120.2 (4) C17—C16—N3 116.4 (3)
C6—C5—H5 119.9 C18—C17—C16 120.6 (4)
C4—C5—H5 119.9 C18—C17—H17 119.7
C5—C6—C1 118.6 (3) C16—C17—H17 119.7
C5—C6—C7 121.5 (3) C19—C18—C17 120.3 (4)
C1—C6—C7 119.8 (3) C19—C18—H18 119.8
O1—C7—C6 107.9 (3) C17—C18—H18 119.8
O1—C7—H7A 110.1 C20—C19—C18 118.2 (4)
C6—C7—H7A 110.1 C20—C19—H19 120.9
O1—C7—H7B 110.1 C18—C19—H19 120.9
C6—C7—H7B 110.1 C21—C20—C19 122.1 (4)
H7A—C7—H7B 108.4 C21—C20—H20 118.9
O1—C8—C9 124.4 (3) C19—C20—H20 118.9
O1—C8—C13 115.3 (3) C20—C21—C16 119.5 (4)
C9—C8—C13 120.3 (2) C20—C21—H21 120.3
C8—C9—C10 120.0 (3) C16—C21—H21 120.3
C8—C9—H9 120.0
C14—N1—N2—C15 167.7 (3) C10—C11—C12—C13 −0.6 (5)
C6—C1—C2—C3 0.1 (6) C14—C11—C12—C13 −179.8 (3)
C1—C2—C3—C4 1.0 (7) C11—C12—C13—C8 0.1 (6)
C2—C3—C4—C5 −1.2 (6) O1—C8—C13—C12 −178.0 (3)
C3—C4—C5—C6 0.4 (6) C9—C8—C13—C12 0.5 (5)
C4—C5—C6—C1 0.6 (5) N2—N1—C14—C11 −178.5 (2)
C4—C5—C6—C7 179.9 (3) C12—C11—C14—N1 171.9 (3)
C2—C1—C6—C5 −0.9 (6) C10—C11—C14—N1 −7.2 (5)
C2—C1—C6—C7 179.8 (3) C16—N3—C15—N2 177.7 (3)
C8—O1—C7—C6 −173.0 (3) C16—N3—C15—S1 −3.7 (5)
C5—C6—C7—O1 −91.8 (4) N1—N2—C15—N3 0.5 (4)
C1—C6—C7—O1 87.5 (4) N1—N2—C15—S1 −178.3 (2)
C7—O1—C8—C9 4.8 (5) C15—N3—C16—C21 −24.8 (6)
C7—O1—C8—C13 −176.8 (3) C15—N3—C16—C17 159.3 (3)
O1—C8—C9—C10 177.7 (3) C21—C16—C17—C18 −0.5 (5)
C13—C8—C9—C10 −0.7 (5) N3—C16—C17—C18 175.6 (3)
C8—C9—C10—O2 −178.7 (3) C16—C17—C18—C19 0.6 (6)
C8—C9—C10—C11 0.2 (5) C17—C18—C19—C20 −0.5 (7)
O2—C10—C11—C12 179.3 (3) C18—C19—C20—C21 0.2 (7)
C9—C10—C11—C12 0.5 (4) C19—C20—C21—C16 0.0 (6)
O2—C10—C11—C14 −1.5 (5) C17—C16—C21—C20 0.2 (5)
C9—C10—C11—C14 179.6 (3) N3—C16—C21—C20 −175.6 (3)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C16–C21 and C1–C6 rings, respectively.
D—H···A D—H H···A D···A D—H···A
O2—H2A···N1 0.85 (4) 1.99 (4) 2.679 (3) 137 (4)
N2—H2B···S1i 0.85 (1) 2.55 (1) 3.392 (3) 170 (3)
C13—H13···O1ii 0.93 2.47 3.388 (4) 171.
C5—H5···Cgiii 0.93 2.80 3.643 (4) 152
C12—H12···Cgii 0.93 2.87 3.741 (4) 157

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+3/2, −y+1/2, −z+1; (iii) −x+3/2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2110).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  3. Bruker (2004). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Casas, J. S., Garcia-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197–261.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Joseph, M., Suni, V., Kurup, M. R. P., Nethaji, M., Kishore, A. & Bhat, S. G. (2004). Polyhedron, 23, 3069–3080.
  7. Lukevics, E., Jansone, D., Rubina, K., Abele, E., Germane, S., Leite, L., Shymaska, M. & Popelis, J. (1995). Eur. J. Med. Chem. 30, 983–986.
  8. Seena, E. B., Kurup, M. R. P. & Suresh, E. (2008). J. Chem. Crystallogr. 38, 93–96.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811049658/jj2110sup1.cif

e-67-o3420-sup1.cif (26.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811049658/jj2110Isup2.hkl

e-67-o3420-Isup2.hkl (164.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811049658/jj2110Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES