Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 25;67(Pt 12):o3422–o3423. doi: 10.1107/S1600536811048653

4-(3-Chloro­phen­yl)-3-[(2,6-difluoro­benz­yl)sulfan­yl]-5-(3,4,5-trimeth­oxy­phen­yl)-4H-1,2,4-triazole

Hoong-Kun Fun a,*,, Safra Izuani Jama Asik a, B Chandrakantha b, Arun M Isloor c, Prakash Shetty d
PMCID: PMC3239058  PMID: 22199906

Abstract

In the title compound, C24H20ClF2N3O3S, the essentially planar triazole ring (r.m.s. deviation = 0.001 Å) forms dihedral angles of 22.35 (10), 68.17 (10) and 42.01 (10)° with the mean planes of the trimeth­oxy­phenyl, chloro­phenyl and difluoro­phenyl rings, respectively. A weak intra­molecular C—H⋯π inter­action occurs. In the crystal, mol­ecules are linked into sheets lying parallel to the bc plane by C—H⋯O and C—H⋯N hydrogen bonds. The crystal packing also features weak C—H⋯π inter­actions.

Related literature

For the pharmacological activity of [1,2,4] triazole derivatives, see: Zhou et al. (2007); Chen et al. (2007); Isloor et al. (2010); Kalluraya et al. (2004); Sunil et al. (2009); Chandrakantha et al. (2010). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-67-o3422-scheme1.jpg

Experimental

Crystal data

  • C24H20ClF2N3O3S

  • M r = 503.94

  • Monoclinic, Inline graphic

  • a = 9.9867 (2) Å

  • b = 21.5140 (3) Å

  • c = 11.9793 (2) Å

  • β = 117.197 (1)°

  • V = 2289.24 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 100 K

  • 0.36 × 0.17 × 0.11 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.896, T max = 0.968

  • 26235 measured reflections

  • 6681 independent reflections

  • 5130 reflections with I > 2σ(I)

  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.110

  • S = 1.03

  • 6681 reflections

  • 310 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811048653/hb6503sup1.cif

e-67-o3422-sup1.cif (23.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811048653/hb6503Isup2.hkl

e-67-o3422-Isup2.hkl (327KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811048653/hb6503Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 and Cg3 are the centroids of the C1–C6 and C9–C14 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O2i 0.95 2.43 3.353 (2) 165
C15—H15B⋯O3ii 0.99 2.54 3.281 (2) 132
C24—H24A⋯N2iii 0.98 2.49 3.189 (2) 128
C20—H20ACg2iv 0.95 2.66 3.543 (2) 154
C1—H1ACg3 0.95 2.85 3.6138 (19) 138

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

HKF and SIJA thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grants (Nos.1001/PFIZIK/811160 and 1001/PFIZIK/ 811151). AMI thanks the Board for Research in Nuclear Sciences, Department of Atomic Energy, and the Government of India for the Young Scientist award.

supplementary crystallographic information

Comment

During the last few decades, a considerable attention has been devoted to the synthesis of [1, 2, 4] triazole derivatives possessing such diverse pharmacological properties as antimicrobial, anti-inflammatory (Zhou et al., 2007), analgesic antitumorial, antihypertensive (Chen et al., 2007), anticonvulsant and antiviral activities (Isloor et al., 2010). Some 1, 2, 4-triazoles are used as DNA cleaving agents and potassium channel activators. Introduction of fluorine atom in these compounds could alter the course of the pharmacological activities (Kalluraya et al., 2004). In particular, introduction of diflurophenyl substituted group in the moiety immensely increases the pharmacological as well liphophilicity effectiveness (Sunil et al., 2009). It is also observed that the amino and mercapto groups in triazoles are readily accessible nucleophilic centers (Chandrakantha et al., 2010).

In the title compound of (I), (Fig. 1), the triazole (N1–N3/C7/C8) ring is essentially planar, with maximum deviation of 0.001 Å for C1 and N2. The dihedral angles between triazole ring and the mean plane of trimethoxyphenyl (C1–C6/C22–C24/O1–O3), chlorophenyl (C9–C14/Cl1), and difluorophenyl groups (C16–C21/F1–F2) are 22.35 (10), 68.17 (10) and 42.01 (10)° respectively.

In the crystal structure of (Fig. 2), the molecules are linked into two-dimensional network parallel to bc plane by C11—H11A···O2, C15—H15B···O3 and C24—H24A···N2 hydrogen bonds. The crystal packing is further stabilized by weak C—H···π interactions (Table 1) with distances of 3.543 (2) and 3.6138 (19) A.

Experimental

To a solution of 4-(3-chloro phenyl)-5-(3,4,5-trimethoxy phenyl) -4H-1,2,4-triazole-3-thiol (1 g, 0.0026 mol) in dry acetonitrile (20 ml) was added potassium carbonate (0.73 g, 0.0053 mol) followed by 2,6-difluorobenzyl bromide (0.58 g, 0.0029 mol) at RT. After the addition, the reaction mixture was stirred at RT for 6h. Reaction mixture was monitored by TLC. After the completion, the reaction mixture was concentrated and purified by column chromatography using pet ether, ethyl acetate as an eluent to afford title compound as colorless solid. Yield: 1.1 g, 84%. M.p. 450-453 K.

Refinement

All the H atoms were positioned geometrically and refined using a riding model with C–H = 0.93–0.99 Å. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Figures

Fig. 1.

Fig. 1.

The structure of the title compound, showing 50% probability displacement ellipsoids. Hydrogen atoms are shown as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The crystal packing, viewed along the a-axis, showing two-dimensional planes parallel to bc plane. Hydrogen atoms that not involved in hydrogen bonding (dashed lines) are omitted for clarity.

Crystal data

C24H20ClF2N3O3S F(000) = 1040
Mr = 503.94 Dx = 1.462 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 7706 reflections
a = 9.9867 (2) Å θ = 2.3–30.0°
b = 21.5140 (3) Å µ = 0.31 mm1
c = 11.9793 (2) Å T = 100 K
β = 117.197 (1)° Block, colourless
V = 2289.24 (7) Å3 0.36 × 0.17 × 0.11 mm
Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer 6681 independent reflections
Radiation source: fine-focus sealed tube 5130 reflections with I > 2σ(I)
graphite Rint = 0.039
φ and ω scans θmax = 30.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −13→14
Tmin = 0.896, Tmax = 0.968 k = −30→28
26235 measured reflections l = −16→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0429P)2 + 1.4878P] where P = (Fo2 + 2Fc2)/3
6681 reflections (Δ/σ)max < 0.001
310 parameters Δρmax = 0.43 e Å3
0 restraints Δρmin = −0.33 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.09590 (5) 0.86248 (3) 0.08433 (5) 0.03151 (13)
S1 0.68053 (5) 0.94142 (2) 0.38418 (4) 0.01701 (10)
F1 1.00621 (13) 0.87358 (6) 0.32771 (11) 0.0301 (3)
F2 0.68850 (14) 0.78856 (5) 0.47897 (11) 0.0313 (3)
O1 0.29452 (13) 0.86279 (6) −0.34883 (11) 0.0175 (3)
O2 0.48997 (14) 0.88263 (6) −0.44702 (11) 0.0175 (3)
O3 0.75145 (14) 0.93893 (6) −0.31485 (11) 0.0182 (3)
N1 0.77291 (16) 0.99061 (7) 0.11532 (13) 0.0162 (3)
N2 0.79349 (16) 0.99452 (7) 0.23776 (13) 0.0163 (3)
N3 0.61625 (16) 0.92492 (6) 0.13604 (13) 0.0137 (3)
C1 0.47268 (19) 0.90647 (8) −0.14903 (15) 0.0147 (3)
H1A 0.4059 0.8999 −0.1136 0.018*
C2 0.42908 (18) 0.89043 (8) −0.27358 (15) 0.0146 (3)
C3 0.52434 (19) 0.90190 (8) −0.32781 (15) 0.0139 (3)
C4 0.66518 (19) 0.92956 (8) −0.25484 (15) 0.0143 (3)
C5 0.71188 (18) 0.94367 (8) −0.12895 (15) 0.0146 (3)
H5A 0.8088 0.9609 −0.0791 0.018*
C6 0.61431 (19) 0.93212 (8) −0.07673 (15) 0.0136 (3)
C7 0.66734 (18) 0.94915 (8) 0.05602 (15) 0.0137 (3)
C8 0.69995 (18) 0.95528 (8) 0.24881 (15) 0.0143 (3)
C9 0.50775 (19) 0.87636 (8) 0.11320 (14) 0.0139 (3)
C10 0.5402 (2) 0.81642 (8) 0.09147 (16) 0.0180 (3)
H10A 0.6346 0.8069 0.0944 0.022*
C11 0.4324 (2) 0.77023 (9) 0.06527 (16) 0.0216 (4)
H11A 0.4528 0.7289 0.0494 0.026*
C12 0.2952 (2) 0.78418 (9) 0.06222 (17) 0.0223 (4)
H12A 0.2215 0.7527 0.0442 0.027*
C13 0.2666 (2) 0.84463 (9) 0.08571 (16) 0.0196 (4)
C14 0.37204 (19) 0.89165 (8) 0.11156 (15) 0.0156 (3)
H14A 0.3518 0.9329 0.1276 0.019*
C15 0.8492 (2) 0.89379 (8) 0.47096 (16) 0.0180 (4)
H15A 0.9389 0.9180 0.4825 0.022*
H15B 0.8586 0.8847 0.5553 0.022*
C16 0.84819 (19) 0.83360 (8) 0.40752 (15) 0.0174 (3)
C17 0.9269 (2) 0.82486 (9) 0.33895 (16) 0.0201 (4)
C18 0.9289 (2) 0.76939 (9) 0.28106 (17) 0.0251 (4)
H18A 0.9852 0.7655 0.2354 0.030*
C19 0.8471 (2) 0.71991 (9) 0.29131 (18) 0.0270 (4)
H19A 0.8467 0.6815 0.2521 0.032*
C20 0.7655 (2) 0.72574 (9) 0.35825 (17) 0.0256 (4)
H20A 0.7092 0.6918 0.3657 0.031*
C21 0.7685 (2) 0.78214 (9) 0.41376 (16) 0.0208 (4)
C22 0.2031 (2) 0.84505 (9) −0.29081 (17) 0.0204 (4)
H22A 0.1137 0.8230 −0.3518 0.031*
H22B 0.1720 0.8823 −0.2616 0.031*
H22C 0.2609 0.8178 −0.2193 0.031*
C23 0.3695 (2) 0.91553 (10) −0.54687 (16) 0.0236 (4)
H23A 0.3463 0.8955 −0.6272 0.035*
H23B 0.4001 0.9587 −0.5485 0.035*
H23C 0.2801 0.9148 −0.5331 0.035*
C24 0.8921 (2) 0.97061 (9) −0.24538 (18) 0.0237 (4)
H24A 0.9396 0.9779 −0.2999 0.036*
H24B 0.9586 0.9450 −0.1737 0.036*
H24C 0.8740 1.0105 −0.2151 0.036*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0222 (2) 0.0397 (3) 0.0385 (3) −0.0091 (2) 0.0190 (2) −0.0078 (2)
S1 0.0213 (2) 0.0192 (2) 0.01326 (19) 0.00148 (17) 0.01018 (16) −0.00077 (16)
F1 0.0286 (6) 0.0313 (7) 0.0378 (7) −0.0063 (5) 0.0217 (5) −0.0054 (5)
F2 0.0480 (8) 0.0257 (6) 0.0333 (6) −0.0054 (5) 0.0299 (6) −0.0001 (5)
O1 0.0166 (6) 0.0213 (7) 0.0138 (6) −0.0053 (5) 0.0063 (5) −0.0016 (5)
O2 0.0221 (6) 0.0185 (6) 0.0120 (5) 0.0011 (5) 0.0080 (5) −0.0016 (5)
O3 0.0198 (6) 0.0215 (6) 0.0170 (6) −0.0054 (5) 0.0115 (5) −0.0030 (5)
N1 0.0173 (7) 0.0187 (8) 0.0126 (7) −0.0025 (6) 0.0068 (6) −0.0017 (5)
N2 0.0183 (7) 0.0172 (7) 0.0131 (6) −0.0016 (6) 0.0070 (6) −0.0012 (5)
N3 0.0149 (6) 0.0134 (7) 0.0129 (6) −0.0018 (5) 0.0064 (5) −0.0013 (5)
C1 0.0160 (8) 0.0144 (8) 0.0136 (7) 0.0010 (6) 0.0066 (6) 0.0020 (6)
C2 0.0147 (8) 0.0132 (8) 0.0139 (8) 0.0007 (6) 0.0048 (6) 0.0015 (6)
C3 0.0176 (8) 0.0125 (8) 0.0109 (7) 0.0010 (6) 0.0060 (6) −0.0002 (6)
C4 0.0164 (8) 0.0145 (8) 0.0143 (8) −0.0001 (6) 0.0091 (6) 0.0016 (6)
C5 0.0152 (8) 0.0130 (8) 0.0148 (8) −0.0012 (6) 0.0061 (6) −0.0001 (6)
C6 0.0159 (7) 0.0120 (8) 0.0121 (7) 0.0013 (6) 0.0057 (6) 0.0015 (6)
C7 0.0153 (7) 0.0146 (8) 0.0122 (7) 0.0012 (6) 0.0070 (6) 0.0010 (6)
C8 0.0165 (8) 0.0146 (8) 0.0120 (7) 0.0018 (6) 0.0068 (6) −0.0004 (6)
C9 0.0169 (8) 0.0148 (8) 0.0092 (7) −0.0024 (6) 0.0053 (6) 0.0012 (6)
C10 0.0200 (8) 0.0157 (8) 0.0161 (8) 0.0013 (7) 0.0066 (7) 0.0005 (7)
C11 0.0283 (10) 0.0138 (8) 0.0188 (8) −0.0022 (7) 0.0074 (7) 0.0004 (7)
C12 0.0261 (9) 0.0193 (9) 0.0190 (9) −0.0098 (7) 0.0082 (7) 0.0005 (7)
C13 0.0194 (8) 0.0248 (10) 0.0157 (8) −0.0039 (7) 0.0091 (7) 0.0001 (7)
C14 0.0189 (8) 0.0155 (8) 0.0135 (8) −0.0013 (6) 0.0084 (6) −0.0003 (6)
C15 0.0219 (9) 0.0170 (9) 0.0122 (8) 0.0002 (7) 0.0052 (7) −0.0004 (6)
C16 0.0190 (8) 0.0162 (8) 0.0125 (8) 0.0018 (7) 0.0034 (6) 0.0006 (6)
C17 0.0185 (8) 0.0215 (9) 0.0184 (8) −0.0004 (7) 0.0068 (7) 0.0001 (7)
C18 0.0259 (10) 0.0288 (11) 0.0206 (9) 0.0078 (8) 0.0105 (8) −0.0015 (8)
C19 0.0343 (11) 0.0197 (10) 0.0210 (9) 0.0074 (8) 0.0075 (8) −0.0015 (7)
C20 0.0332 (11) 0.0176 (9) 0.0217 (9) 0.0011 (8) 0.0087 (8) 0.0032 (7)
C21 0.0285 (10) 0.0198 (9) 0.0160 (8) 0.0023 (7) 0.0118 (7) 0.0030 (7)
C22 0.0168 (8) 0.0252 (10) 0.0196 (9) −0.0050 (7) 0.0087 (7) −0.0011 (7)
C23 0.0211 (9) 0.0335 (11) 0.0142 (8) 0.0018 (8) 0.0065 (7) 0.0021 (7)
C24 0.0233 (9) 0.0285 (10) 0.0242 (9) −0.0108 (8) 0.0151 (8) −0.0085 (8)

Geometric parameters (Å, °)

Cl1—C13 1.7404 (19) C10—H10A 0.9500
S1—C8 1.7446 (17) C11—C12 1.386 (3)
S1—C15 1.8352 (18) C11—H11A 0.9500
F1—C17 1.357 (2) C12—C13 1.388 (3)
F2—C21 1.355 (2) C12—H12A 0.9500
O1—C2 1.366 (2) C13—C14 1.389 (2)
O1—C22 1.429 (2) C14—H14A 0.9500
O2—C3 1.3714 (19) C15—C16 1.499 (2)
O2—C23 1.436 (2) C15—H15A 0.9900
O3—C4 1.366 (2) C15—H15B 0.9900
O3—C24 1.436 (2) C16—C17 1.385 (3)
N1—C7 1.314 (2) C16—C21 1.386 (3)
N1—N2 1.3875 (19) C17—C18 1.385 (3)
N2—C8 1.310 (2) C18—C19 1.381 (3)
N3—C7 1.378 (2) C18—H18A 0.9500
N3—C8 1.385 (2) C19—C20 1.385 (3)
N3—C9 1.439 (2) C19—H19A 0.9500
C1—C6 1.391 (2) C20—C21 1.377 (3)
C1—C2 1.393 (2) C20—H20A 0.9500
C1—H1A 0.9500 C22—H22A 0.9800
C2—C3 1.397 (2) C22—H22B 0.9800
C3—C4 1.405 (2) C22—H22C 0.9800
C4—C5 1.393 (2) C23—H23A 0.9800
C5—C6 1.400 (2) C23—H23B 0.9800
C5—H5A 0.9500 C23—H23C 0.9800
C6—C7 1.474 (2) C24—H24A 0.9800
C9—C10 1.383 (2) C24—H24B 0.9800
C9—C14 1.386 (2) C24—H24C 0.9800
C10—C11 1.392 (3)
C8—S1—C15 99.14 (8) C14—C13—Cl1 118.74 (14)
C2—O1—C22 116.74 (13) C9—C14—C13 117.84 (16)
C3—O2—C23 115.73 (13) C9—C14—H14A 121.1
C4—O3—C24 116.76 (13) C13—C14—H14A 121.1
C7—N1—N2 107.89 (13) C16—C15—S1 113.79 (12)
C8—N2—N1 107.45 (13) C16—C15—H15A 108.8
C7—N3—C8 104.48 (13) S1—C15—H15A 108.8
C7—N3—C9 128.96 (14) C16—C15—H15B 108.8
C8—N3—C9 126.46 (14) S1—C15—H15B 108.8
C6—C1—C2 119.75 (15) H15A—C15—H15B 107.7
C6—C1—H1A 120.1 C17—C16—C21 114.80 (16)
C2—C1—H1A 120.1 C17—C16—C15 122.94 (16)
O1—C2—C1 123.12 (15) C21—C16—C15 122.26 (16)
O1—C2—C3 116.34 (14) F1—C17—C18 118.26 (17)
C1—C2—C3 120.54 (15) F1—C17—C16 117.97 (16)
O2—C3—C2 122.08 (15) C18—C17—C16 123.77 (18)
O2—C3—C4 118.62 (15) C19—C18—C17 118.37 (18)
C2—C3—C4 119.10 (15) C19—C18—H18A 120.8
O3—C4—C5 123.91 (15) C17—C18—H18A 120.8
O3—C4—C3 115.34 (14) C18—C19—C20 120.65 (18)
C5—C4—C3 120.70 (15) C18—C19—H19A 119.7
C4—C5—C6 119.21 (15) C20—C19—H19A 119.7
C4—C5—H5A 120.4 C21—C20—C19 118.10 (18)
C6—C5—H5A 120.4 C21—C20—H20A 121.0
C1—C6—C5 120.63 (15) C19—C20—H20A 121.0
C1—C6—C7 122.13 (15) F2—C21—C20 118.68 (17)
C5—C6—C7 117.23 (15) F2—C21—C16 117.01 (16)
N1—C7—N3 109.96 (14) C20—C21—C16 124.31 (18)
N1—C7—C6 123.75 (15) O1—C22—H22A 109.5
N3—C7—C6 126.29 (15) O1—C22—H22B 109.5
N2—C8—N3 110.22 (14) H22A—C22—H22B 109.5
N2—C8—S1 126.26 (13) O1—C22—H22C 109.5
N3—C8—S1 123.52 (13) H22A—C22—H22C 109.5
C10—C9—C14 122.02 (16) H22B—C22—H22C 109.5
C10—C9—N3 119.47 (15) O2—C23—H23A 109.5
C14—C9—N3 118.49 (15) O2—C23—H23B 109.5
C9—C10—C11 118.98 (17) H23A—C23—H23B 109.5
C9—C10—H10A 120.5 O2—C23—H23C 109.5
C11—C10—H10A 120.5 H23A—C23—H23C 109.5
C12—C11—C10 120.31 (17) H23B—C23—H23C 109.5
C12—C11—H11A 119.8 O3—C24—H24A 109.5
C10—C11—H11A 119.8 O3—C24—H24B 109.5
C11—C12—C13 119.34 (17) H24A—C24—H24B 109.5
C11—C12—H12A 120.3 O3—C24—H24C 109.5
C13—C12—H12A 120.3 H24A—C24—H24C 109.5
C12—C13—C14 121.50 (17) H24B—C24—H24C 109.5
C12—C13—Cl1 119.76 (14)
C7—N1—N2—C8 0.07 (18) C9—N3—C8—N2 176.61 (15)
C22—O1—C2—C1 −5.8 (2) C7—N3—C8—S1 −179.61 (12)
C22—O1—C2—C3 173.75 (15) C9—N3—C8—S1 −3.0 (2)
C6—C1—C2—O1 177.28 (15) C15—S1—C8—N2 −76.25 (16)
C6—C1—C2—C3 −2.3 (2) C15—S1—C8—N3 103.35 (15)
C23—O2—C3—C2 71.3 (2) C7—N3—C9—C10 65.5 (2)
C23—O2—C3—C4 −113.93 (18) C8—N3—C9—C10 −110.22 (19)
O1—C2—C3—O2 −4.5 (2) C7—N3—C9—C14 −113.38 (19)
C1—C2—C3—O2 175.11 (15) C8—N3—C9—C14 70.9 (2)
O1—C2—C3—C4 −179.25 (15) C14—C9—C10—C11 1.0 (2)
C1—C2—C3—C4 0.3 (2) N3—C9—C10—C11 −177.84 (15)
C24—O3—C4—C5 −6.1 (2) C9—C10—C11—C12 −0.6 (3)
C24—O3—C4—C3 176.26 (15) C10—C11—C12—C13 −0.1 (3)
O2—C3—C4—O3 4.8 (2) C11—C12—C13—C14 0.4 (3)
C2—C3—C4—O3 179.76 (15) C11—C12—C13—Cl1 −179.09 (14)
O2—C3—C4—C5 −172.94 (15) C10—C9—C14—C13 −0.7 (2)
C2—C3—C4—C5 2.0 (2) N3—C9—C14—C13 178.12 (14)
O3—C4—C5—C6 −179.94 (15) C12—C13—C14—C9 0.0 (3)
C3—C4—C5—C6 −2.4 (2) Cl1—C13—C14—C9 179.49 (12)
C2—C1—C6—C5 1.9 (2) C8—S1—C15—C16 −63.03 (14)
C2—C1—C6—C7 −179.10 (15) S1—C15—C16—C17 100.76 (18)
C4—C5—C6—C1 0.4 (2) S1—C15—C16—C21 −79.58 (19)
C4—C5—C6—C7 −178.63 (15) C21—C16—C17—F1 179.26 (15)
N2—N1—C7—N3 −0.04 (19) C15—C16—C17—F1 −1.1 (3)
N2—N1—C7—C6 −179.95 (15) C21—C16—C17—C18 −0.5 (3)
C8—N3—C7—N1 0.00 (18) C15—C16—C17—C18 179.14 (17)
C9—N3—C7—N1 −176.45 (16) F1—C17—C18—C19 −179.36 (16)
C8—N3—C7—C6 179.90 (16) C16—C17—C18—C19 0.4 (3)
C9—N3—C7—C6 3.5 (3) C17—C18—C19—C20 −0.2 (3)
C1—C6—C7—N1 −156.64 (17) C18—C19—C20—C21 0.1 (3)
C5—C6—C7—N1 22.4 (2) C19—C20—C21—F2 179.65 (17)
C1—C6—C7—N3 23.5 (3) C19—C20—C21—C16 −0.2 (3)
C5—C6—C7—N3 −157.48 (16) C17—C16—C21—F2 −179.45 (15)
N1—N2—C8—N3 −0.08 (19) C15—C16—C21—F2 0.9 (3)
N1—N2—C8—S1 179.57 (12) C17—C16—C21—C20 0.4 (3)
C7—N3—C8—N2 0.05 (18) C15—C16—C21—C20 −179.24 (17)

Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C1–C6 and C9–C14 rings, respectively.
D—H···A D—H H···A D···A D—H···A
C11—H11A···O2i 0.95 2.43 3.353 (2) 165
C15—H15B···O3ii 0.99 2.54 3.281 (2) 132
C24—H24A···N2iii 0.98 2.49 3.189 (2) 128
C20—H20A···Cg2iv 0.95 2.66 3.543 (2) 154
C1—H1A···Cg3 0.95 2.85 3.6138 (19) 138

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) x, y, z+1; (iii) −x+2, −y+2, −z; (iv) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6503).

References

  1. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chandrakantha, B., Shetty, P., Nambiyar, V., Isloor, N. & Isloor, A. M. (2010). Eur. J. Med. Chem. 45, 1206–1210. [DOI] [PubMed]
  3. Chen, C. J., Song, B. A., Yang, S., Xu, G. F., Bhadury, P. S., Jin, L. H., Hu, D. Y., Li, Q. Z., Liu, F., Xue, W., Lu, P. & Chen, Z. (2007). Bioorg. Med. Chem. 15, 3981–3989. [DOI] [PubMed]
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  5. Isloor, A. M., Kalluraya, B. & Pai, K. S. (2010). Eur. J. Med. Chem. 45, 825–830. [DOI] [PubMed]
  6. Kalluraya, B., Jagadeesha, R. L. & Isloor, A. M. (2004). Indian J. Heterocycl. Chem. 13, 245–248.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Sunil, D., Isloor, A. M. & Shetty, P. (2009). Der Pharma Chem. 1, 19–26.
  10. Zhou, S. N., Zhang, L. X., Zhang, A. J., Sheng, J. S. & Zhang, H. L. (2007). J. Heterocycl. Chem. 44, 1019–1022.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811048653/hb6503sup1.cif

e-67-o3422-sup1.cif (23.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811048653/hb6503Isup2.hkl

e-67-o3422-Isup2.hkl (327KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811048653/hb6503Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES