Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 25;67(Pt 12):o3424. doi: 10.1107/S1600536811049725

(1E,2E)-1,2-Bis[1-(3-chloro­phen­yl)ethyl­idene]hydrazine

Hoong-Kun Fun a,*,, Patcharaporn Jansrisewangwong b, Chatchanok Karalai b, Suchada Chantrapromma b,§
PMCID: PMC3239059  PMID: 22199907

Abstract

The title mol­ecule, C16H14Cl2N2, lies on an inversion center. The dihedral angle between the symmetry-related benzene rings is 0.02 (11)°. The mean plane of the central C(meth­yl)—C=N—N=C—C(meth­yl) unit forms a dihedral angle of 5.57 (12)° with the symmetry-unique benzene ring.

Related literature

For background to the biological activity and fluorescent properties of hydrazones, see: Li et al. (2009); Qin et al. (2009). For related structures see: Chantrapromma et al. (2010); Fun et al. (2010, 2011); Jansrisewangwong et al. (2010); Nilwanna et al. (2011). For standard bond-length data, see: Allen et al. (1987).graphic file with name e-67-o3424-scheme1.jpg

Experimental

Crystal data

  • C16H14Cl2N2

  • M r = 305.19

  • Monoclinic, Inline graphic

  • a = 10.7796 (18) Å

  • b = 5.2725 (9) Å

  • c = 15.3427 (18) Å

  • β = 121.540 (8)°

  • V = 743.2 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 297 K

  • 0.31 × 0.15 × 0.11 mm

Data collection

  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.880, T max = 0.957

  • 7616 measured reflections

  • 1970 independent reflections

  • 1469 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.180

  • S = 1.09

  • 1970 reflections

  • 92 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811049725/lh5380sup1.cif

e-67-o3424-sup1.cif (14KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811049725/lh5380Isup2.hkl

e-67-o3424-Isup2.hkl (97KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811049725/lh5380Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

PJ thanks the Graduate School and the Crystal Materials Research Unit, Prince of Songkla University, for financial support. The authors thank the Prince of Songkla University and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

supplementary crystallographic information

Comment

Due to the interesting applications of hydrazones with respect to their antibacterial, antiviral and antioxidant (Li et al., 2009) as well as fluorescent properties (Qin et al., 2009), we have synthesized a series of hydrazones in order to study these activities and have reported some of these crystal structures (Chantrapromma et al., 2010; Fun et al., 2010,2011; Jansrisewangwong et al., 2010; Nilwanna et al., 2011). As part of our on-going research on the medicinal chemistry of hydrazones, the title compound (I) was synthesized and its biological activities will be reported elsewhere. However, it does not possess fluorescent property.

The molecular structure of (I) is shown in Fig. 1. The asymmetric unit contains half a molecule and the complete molecule is generated by a crystallographic inversion center at -x, 1-y, 2-z. The molecule exists in an E,E configuration with respect to the two ethylidene C═N bonds [1.279 (3) Å] and the torsion angle N1A–N1–C7–C1 = 179.8 (2)°. The molecule is essentially planar with the dihedral angle between the two benzene rings of 0.02 (11)°. The diethylidenehydrazine moiety (C7/C8/N1/N1A/C7A/C8A) is planar with the r.m.s of 0.0015 (2) Å. This central C(methyl)—C═N—N═C—C(methyl) mean plane makes the dihedral angle of 5.57 (12)° with the adjacent benzene rings. The bond distances are within the normal range (Allen et al., 1987) and are comparable with the related structures (Chantrapromma et al., 2010; Fun et al., 2010; 2011; Jansrisewangwong et al., 2010; Nilwanna et al., 2011).

Although no clasical hydrogen bonds or weak interactions were observed in the crystal structure, the crystal packing is shown in Fig. 2.

Experimental

The title compound (I) was synthesized by mixing a solution (1:2 molar ratio) of hydrazine hydrate (0.10 ml, 2 mmol) and 3-chloroacetophenone (0.50 ml, 4 mmol) in ethanol (20 ml). The resulting solution was refluxed for 7 h, yielding the yellow crystalline solid. The resultant solid was filtered off and washed with methanol. Yellow block-shaped single crystals of the title compound suitable for x-ray structure determination were recrystalized from acetone by slow evaporation of the solvent at room temperature over several days, Mp. 356-358 K.

Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C-H) = 0.93 Å for aromatic and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 1.92 Å from H8B and the deepest hole is located at 0.70 Å from Cl1.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 50% probability displacement ellipsoids. Atoms with suffix A were generated by symmetry code -x, 1-y, 2-z.

Fig. 2.

Fig. 2.

The crystal packing of (I). No clasical hydrogen bonds nor weak interactions are observed in the crystal structure

Crystal data

C16H14Cl2N2 F(000) = 316
Mr = 305.19 Dx = 1.364 Mg m3
Monoclinic, P21/c Melting point = 356–358 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 10.7796 (18) Å Cell parameters from 1970 reflections
b = 5.2725 (9) Å θ = 2.2–29.0°
c = 15.3427 (18) Å µ = 0.43 mm1
β = 121.540 (8)° T = 297 K
V = 743.2 (2) Å3 Block, yellow
Z = 2 0.31 × 0.15 × 0.11 mm

Data collection

Bruker APEX DUO CCD area-detector diffractometer 1970 independent reflections
Radiation source: sealed tube 1469 reflections with I > 2σ(I)
graphite Rint = 0.028
φ and ω scans θmax = 29.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −14→14
Tmin = 0.880, Tmax = 0.957 k = −7→6
7616 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0951P)2 + 0.2508P] where P = (Fo2 + 2Fc2)/3
1970 reflections (Δ/σ)max = 0.001
92 parameters Δρmax = 0.46 e Å3
0 restraints Δρmin = −0.41 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.49474 (7) 0.23824 (14) 0.85934 (6) 0.0708 (3)
N1 0.0247 (2) 0.5365 (4) 0.96753 (14) 0.0543 (5)
C1 0.1907 (2) 0.4809 (4) 0.91400 (14) 0.0413 (4)
C2 0.3036 (2) 0.3431 (4) 0.91724 (16) 0.0460 (5)
H2A 0.3438 0.2045 0.9607 0.055*
C3 0.3550 (2) 0.4148 (4) 0.85517 (16) 0.0478 (5)
C4 0.2988 (2) 0.6198 (5) 0.78983 (17) 0.0527 (6)
H4A 0.3353 0.6655 0.7490 0.063*
C5 0.1869 (3) 0.7552 (4) 0.78659 (19) 0.0535 (6)
H5A 0.1476 0.8939 0.7430 0.064*
C6 0.1324 (2) 0.6875 (4) 0.84733 (16) 0.0468 (5)
H6A 0.0565 0.7801 0.8438 0.056*
C7 0.1350 (2) 0.4107 (4) 0.98120 (15) 0.0426 (4)
C8 0.2087 (3) 0.2056 (6) 1.0585 (2) 0.0711 (8)
H8A 0.1613 0.1850 1.0964 0.107*
H8B 0.3088 0.2501 1.1045 0.107*
H8C 0.2034 0.0496 1.0245 0.107*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0653 (4) 0.0831 (5) 0.0902 (5) 0.0089 (3) 0.0590 (4) −0.0068 (3)
N1 0.0601 (11) 0.0663 (12) 0.0567 (10) 0.0214 (9) 0.0445 (9) 0.0206 (9)
C1 0.0438 (10) 0.0463 (10) 0.0414 (9) 0.0004 (8) 0.0276 (8) −0.0015 (8)
C2 0.0470 (10) 0.0503 (11) 0.0487 (10) 0.0038 (9) 0.0306 (9) −0.0020 (9)
C3 0.0459 (10) 0.0571 (13) 0.0518 (11) −0.0052 (9) 0.0335 (9) −0.0125 (9)
C4 0.0611 (13) 0.0609 (14) 0.0530 (11) −0.0129 (11) 0.0415 (11) −0.0081 (10)
C5 0.0604 (13) 0.0577 (14) 0.0507 (12) 0.0002 (10) 0.0347 (11) 0.0068 (9)
C6 0.0466 (10) 0.0547 (12) 0.0473 (10) 0.0046 (9) 0.0302 (9) 0.0048 (9)
C7 0.0471 (10) 0.0470 (11) 0.0435 (9) 0.0054 (8) 0.0305 (8) 0.0023 (8)
C8 0.0766 (17) 0.0858 (19) 0.0761 (16) 0.0374 (15) 0.0574 (15) 0.0370 (15)

Geometric parameters (Å, °)

Cl1—C3 1.743 (2) C4—C5 1.380 (3)
N1—C7 1.279 (3) C4—H4A 0.9300
N1—N1i 1.406 (3) C5—C6 1.383 (3)
C1—C2 1.395 (3) C5—H5A 0.9300
C1—C6 1.399 (3) C6—H6A 0.9300
C1—C7 1.486 (3) C7—C8 1.491 (3)
C2—C3 1.382 (3) C8—H8A 0.9600
C2—H2A 0.9300 C8—H8B 0.9600
C3—C4 1.380 (3) C8—H8C 0.9600
C7—N1—N1i 113.9 (2) C4—C5—H5A 119.6
C2—C1—C6 118.78 (18) C6—C5—H5A 119.6
C2—C1—C7 120.47 (19) C5—C6—C1 120.5 (2)
C6—C1—C7 120.74 (18) C5—C6—H6A 119.8
C3—C2—C1 119.3 (2) C1—C6—H6A 119.8
C3—C2—H2A 120.3 N1—C7—C1 115.82 (18)
C1—C2—H2A 120.3 N1—C7—C8 124.68 (19)
C4—C3—C2 122.2 (2) C1—C7—C8 119.49 (18)
C4—C3—Cl1 119.20 (16) C7—C8—H8A 109.5
C2—C3—Cl1 118.63 (18) C7—C8—H8B 109.5
C5—C4—C3 118.4 (2) H8A—C8—H8B 109.5
C5—C4—H4A 120.8 C7—C8—H8C 109.5
C3—C4—H4A 120.8 H8A—C8—H8C 109.5
C4—C5—C6 120.9 (2) H8B—C8—H8C 109.5
C6—C1—C2—C3 0.3 (3) C2—C1—C6—C5 −0.6 (3)
C7—C1—C2—C3 −178.95 (19) C7—C1—C6—C5 178.6 (2)
C1—C2—C3—C4 0.2 (3) N1i—N1—C7—C1 179.8 (2)
C1—C2—C3—Cl1 −179.32 (16) N1i—N1—C7—C8 −0.5 (4)
C2—C3—C4—C5 −0.4 (3) C2—C1—C7—N1 −175.2 (2)
Cl1—C3—C4—C5 179.15 (17) C6—C1—C7—N1 5.6 (3)
C3—C4—C5—C6 0.0 (4) C2—C1—C7—C8 5.1 (3)
C4—C5—C6—C1 0.5 (4) C6—C1—C7—C8 −174.1 (2)

Symmetry codes: (i) −x, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5380).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chantrapromma, S., Jansrisewangwong, P. & Fun, H.-K. (2010). Acta Cryst. E66, o2994–o2995. [DOI] [PMC free article] [PubMed]
  4. Fun, H.-K., Jansrisewangwong, P. & Chantrapromma, S. (2010). Acta Cryst. E66, o2401–o2402. [DOI] [PMC free article] [PubMed]
  5. Fun, H.-K., Jansrisewangwong, P., Karalai, C. & Chantrapromma, S. (2011). Acta Cryst. E67, o1526–o1527. [DOI] [PMC free article] [PubMed]
  6. Jansrisewangwong, P., Chantrapromma, S. & Fun, H.-K. (2010). Acta Cryst. E66, o2170. [DOI] [PMC free article] [PubMed]
  7. Li, Y., Yang, Z.-Y. & Wang, M.-F. (2009). Eur. J. Med. Chem 44, 4585–4595. [DOI] [PubMed]
  8. Nilwanna, B., Chantrapromma, S., Jansrisewangwong, P. & Fun, H.-K. (2011). Acta Cryst. E67, o3084–o3085. [DOI] [PMC free article] [PubMed]
  9. Qin, D.-D., Yang, Z.-Y. & Qi, G.-F. (2009). Spectrochim. Acta Part A, 74, 415–420. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811049725/lh5380sup1.cif

e-67-o3424-sup1.cif (14KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811049725/lh5380Isup2.hkl

e-67-o3424-Isup2.hkl (97KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811049725/lh5380Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES