Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 25;67(Pt 12):o3436. doi: 10.1107/S1600536811049920

5-[(E)-(5-Bromo-2-hy­droxy­benzyl­idene)amino]-1,3,4-thia­diazole-2(3H)-thione

Hadi Kargar a,*, Reza Kia b,c, Muhammad Nawaz Tahir d,*
PMCID: PMC3239069  PMID: 22199917

Abstract

In the title mol­ecule, C9H6BrN3OS2, the dihedral angle between the benzene ring and the five-membered ring is 5.5 (3)°. An intra­molecular O—H⋯N hydrogen bond forms an S(6) ring motif. In the crystal, N—H⋯S hydrogen bonds link mol­ecules into centrosymmetric dimers creating R 2 2(8) ring motifs. In addition, there are inter­molecular S⋯S [3.430 (2) Å] contacts. The crystal used was a non-merohedral twin with a ratio of 0.113 (3):0.887 (3) for the components.

Related literature

For the biological versatility of thione ligands, see, for example: Kumar et al. (1988); Yadav et al. (1989). For related structures, see: Zhang (2003); Kargar et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995). For van der Waals radii, see: Bondi (1964). For standard bond lengths, see: Allen et al. (1987).graphic file with name e-67-o3436-scheme1.jpg

Experimental

Crystal data

  • C9H6BrN3OS2

  • M r = 316.20

  • Monoclinic, Inline graphic

  • a = 18.3690 (13) Å

  • b = 4.0016 (3) Å

  • c = 16.2877 (13) Å

  • β = 112.660 (4)°

  • V = 1104.82 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.08 mm−1

  • T = 291 K

  • 0.11 × 0.05 × 0.02 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.663, T max = 0.923

  • 10313 measured reflections

  • 2734 independent reflections

  • 1760 reflections with I > 2σ(I)

  • R int = 0.071

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060

  • wR(F 2) = 0.140

  • S = 1.08

  • 2734 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 1.25 e Å−3

  • Δρmin = −0.71 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811049920/lh5379sup1.cif

e-67-o3436-sup1.cif (15.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811049920/lh5379Isup2.hkl

e-67-o3436-Isup2.hkl (134.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811049920/lh5379Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.94 2.664 (7) 147
N3—H3⋯S2i 0.97 2.36 3.327 (5) 173

Symmetry code: (i) Inline graphic.

Acknowledgments

HK thanks PNU for financial support. RK thanks the Islamic Azad University. MNT thanks the GC University of Sargodha, Pakistan for research facilities.

supplementary crystallographic information

Comment

The biological versatility of compounds incorporating a thiadiazole ring is well known (Kumar et al., 1988; Yadav et al., 1989). In continuation of our work on the crystal structure of thione-Schiff base ligands (Kargar et al., 2011), we have determined the crystal structure of the title compound.

The asymmetric unit of the title compound is shown in Fig. 1. The bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to related structures (Kargar et al., 2011; Zhang, 2003).

The dihedral angle between the benzene ring and the five-membered ring is 5.5 (3)°. An intramolecular O—H···N hydrogen bond forms an S(6) ring motif. Intermolecular N—H···S interactions link molecules into centrosymmetric dimers with R22(8) ring motifs (Bernstein et al.,1995). An interesting feature of the crystal structure is the short S1···S1i [3.430 (2)Å; (i) 2 - x, -1/2 + y, 1/2 - z] contact which is shorter than the sum of the Van der Waals radius of S [3.60Å] atoms (Bondi, 1964). The crystal was a non-merohedral twin with a refined BASF ratio of 0.113 (3)/0.887 (3).

Experimental

The title compound was synthesized by adding 5-bromo-salicylaldehyde (1 mmol) to a solution of 5-aminothiophene-2-thiol (1 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for half an hour. The resultant solution was filtered. Yellow single crystals of the title compound suitable for X-ray structure determination were recrystallized from ethanol by slow evaporation of the solvent at room temperature over several days.

Refinement

All hydrogen atoms were positioned geometrically with C—H = 0.93 Å, N—H = 0.97 Å, O—H = 0.82 Å and included in a riding-model approximation with Uiso(H) = 1.2Ueq(C,N) and 1.5 Ueq(O). The crystal was a non-merohedral twin {Twin Law (1 0 0)[5 0 2]} which was treated TwinRotMat routine in PLATON (Spek, 2009) with a refined BASF ratio of 0.113 (3)/0.887 (3).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 40% probability displacement ellipsoids. The dashed line shows an intramolecular hydrogen bond.

Fig. 2.

Fig. 2.

A packing diagram of the title compound viewed along the b-axis showing short intermolecular S···S contacts and centrosymmetric dimers formed by intermolecular N—H···S hydrogen bonds. The dashed lines indicate the intermolecular interactions.

Crystal data

C9H6BrN3OS2 F(000) = 624
Mr = 316.20 Dx = 1.901 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2573 reflections
a = 18.3690 (13) Å θ = 2.5–29.3°
b = 4.0016 (3) Å µ = 4.08 mm1
c = 16.2877 (13) Å T = 291 K
β = 112.660 (4)° Block, yellow
V = 1104.82 (14) Å3 0.11 × 0.05 × 0.02 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 10313 independent reflections
Radiation source: fine-focus sealed tube 1760 reflections with I > 2σ(I)
graphite Rint = 0.071
φ and ω scans θmax = 28.3°, θmin = 1.2°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −24→24
Tmin = 0.663, Tmax = 0.923 k = −5→5
2734 measured reflections l = −21→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0412P)2 + 3.7473P] where P = (Fo2 + 2Fc2)/3
2734 reflections (Δ/σ)max < 0.001
147 parameters Δρmax = 1.25 e Å3
0 restraints Δρmin = −0.71 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.65016 (4) 0.82937 (19) −0.22477 (5) 0.0438 (2)
S1 0.92727 (8) 0.4125 (4) 0.25824 (11) 0.0306 (4)
S2 1.06396 (9) 0.3421 (4) 0.43539 (10) 0.0329 (4)
O1 0.6140 (2) 0.1515 (13) 0.0870 (3) 0.0439 (12)
H1 0.6563 0.1408 0.1296 0.066*
N1 0.7683 (3) 0.2398 (13) 0.1762 (3) 0.0314 (12)
N2 0.8404 (3) 0.0884 (14) 0.3226 (4) 0.0355 (13)
N3 0.9159 (3) 0.1150 (13) 0.3865 (3) 0.0347 (13)
H3 0.9211 −0.0002 0.4408 0.042*
C1 0.6244 (3) 0.3022 (18) 0.0192 (4) 0.0340 (15)
C2 0.6990 (3) 0.4180 (15) 0.0246 (4) 0.0286 (13)
C3 0.7065 (3) 0.5752 (15) −0.0484 (4) 0.0315 (14)
H3A 0.7556 0.6477 −0.0453 0.038*
C4 0.6402 (3) 0.6216 (15) −0.1255 (4) 0.0313 (14)
C5 0.5670 (4) 0.5144 (17) −0.1308 (4) 0.0365 (15)
H5A 0.5229 0.5488 −0.1829 0.044*
C6 0.5587 (3) 0.3570 (17) −0.0598 (4) 0.0367 (15)
H6A 0.5091 0.2864 −0.0642 0.044*
C7 0.7688 (3) 0.3839 (16) 0.1055 (4) 0.0339 (15)
H7A 0.8162 0.4697 0.1066 0.041*
C8 0.8377 (3) 0.2352 (15) 0.2507 (4) 0.0260 (13)
C9 0.9707 (3) 0.2737 (14) 0.3678 (4) 0.0261 (13)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0511 (4) 0.0493 (4) 0.0304 (4) 0.0088 (3) 0.0152 (3) 0.0084 (3)
S1 0.0242 (7) 0.0387 (9) 0.0263 (8) −0.0014 (6) 0.0067 (6) 0.0065 (7)
S2 0.0252 (7) 0.0429 (9) 0.0264 (9) −0.0014 (7) 0.0055 (6) −0.0007 (7)
O1 0.030 (2) 0.065 (3) 0.033 (3) −0.009 (2) 0.008 (2) 0.008 (3)
N1 0.026 (3) 0.039 (3) 0.026 (3) 0.002 (2) 0.006 (2) 0.001 (2)
N2 0.024 (2) 0.051 (3) 0.029 (3) −0.006 (2) 0.006 (2) 0.003 (3)
N3 0.033 (3) 0.047 (3) 0.024 (3) −0.005 (2) 0.010 (2) 0.006 (3)
C1 0.029 (3) 0.053 (4) 0.024 (3) −0.008 (3) 0.014 (3) −0.004 (3)
C2 0.027 (3) 0.031 (3) 0.026 (3) 0.001 (2) 0.008 (3) 0.001 (3)
C3 0.024 (3) 0.041 (4) 0.028 (3) 0.002 (3) 0.008 (3) 0.000 (3)
C4 0.033 (3) 0.032 (3) 0.026 (3) 0.001 (3) 0.007 (3) 0.003 (3)
C5 0.033 (3) 0.044 (4) 0.025 (3) 0.003 (3) 0.003 (3) −0.002 (3)
C6 0.024 (3) 0.045 (4) 0.037 (4) −0.003 (3) 0.008 (3) 0.001 (3)
C7 0.023 (3) 0.042 (4) 0.034 (4) 0.002 (3) 0.007 (3) −0.001 (3)
C8 0.021 (3) 0.033 (3) 0.023 (3) 0.003 (2) 0.007 (2) 0.003 (2)
C9 0.032 (3) 0.026 (3) 0.021 (3) 0.002 (2) 0.010 (3) −0.003 (2)

Geometric parameters (Å, °)

Br1—C4 1.889 (6) C1—C6 1.402 (8)
S1—C9 1.741 (6) C1—C2 1.417 (8)
S1—C8 1.752 (6) C2—C3 1.399 (8)
S2—C9 1.663 (6) C2—C7 1.448 (8)
O1—C1 1.334 (7) C3—C4 1.384 (8)
O1—H1 0.8200 C3—H3A 0.9300
N1—C7 1.292 (8) C4—C5 1.382 (9)
N1—C8 1.381 (7) C5—C6 1.377 (9)
N2—C8 1.293 (8) C5—H5A 0.9300
N2—N3 1.381 (7) C6—H6A 0.9300
N3—C9 1.322 (8) C7—H7A 0.9300
N3—H3 0.9690
C9—S1—C8 89.4 (3) C5—C4—Br1 119.7 (5)
C1—O1—H1 109.5 C3—C4—Br1 119.6 (5)
C7—N1—C8 117.9 (5) C6—C5—C4 120.6 (6)
C8—N2—N3 108.9 (5) C6—C5—H5A 119.7
C9—N3—N2 119.8 (5) C4—C5—H5A 119.7
C9—N3—H3 128.5 C5—C6—C1 120.6 (6)
N2—N3—H3 111.7 C5—C6—H6A 119.7
O1—C1—C6 118.9 (5) C1—C6—H6A 119.7
O1—C1—C2 122.7 (6) N1—C7—C2 123.0 (6)
C6—C1—C2 118.4 (6) N1—C7—H7A 118.5
C3—C2—C1 120.3 (6) C2—C7—H7A 118.5
C3—C2—C7 118.2 (5) N2—C8—N1 120.1 (5)
C1—C2—C7 121.5 (6) N2—C8—S1 114.4 (4)
C4—C3—C2 119.4 (5) N1—C8—S1 125.5 (5)
C4—C3—H3A 120.3 N3—C9—S2 127.4 (5)
C2—C3—H3A 120.3 N3—C9—S1 107.5 (4)
C5—C4—C3 120.8 (6) S2—C9—S1 125.1 (4)
C8—N2—N3—C9 0.2 (8) C8—N1—C7—C2 −177.1 (5)
O1—C1—C2—C3 −179.9 (6) C3—C2—C7—N1 −179.2 (6)
C6—C1—C2—C3 −1.7 (10) C1—C2—C7—N1 1.9 (10)
O1—C1—C2—C7 −1.1 (10) N3—N2—C8—N1 179.3 (5)
C6—C1—C2—C7 177.1 (6) N3—N2—C8—S1 −0.1 (7)
C1—C2—C3—C4 1.1 (9) C7—N1—C8—N2 −178.7 (6)
C7—C2—C3—C4 −177.7 (6) C7—N1—C8—S1 0.6 (8)
C2—C3—C4—C5 −0.1 (9) C9—S1—C8—N2 0.0 (5)
C2—C3—C4—Br1 −179.3 (5) C9—S1—C8—N1 −179.3 (5)
C3—C4—C5—C6 −0.4 (10) N2—N3—C9—S2 178.3 (5)
Br1—C4—C5—C6 178.8 (5) N2—N3—C9—S1 −0.2 (7)
C4—C5—C6—C1 −0.1 (10) C8—S1—C9—N3 0.1 (5)
O1—C1—C6—C5 179.4 (6) C8—S1—C9—S2 −178.4 (4)
C2—C1—C6—C5 1.2 (10)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.82 1.94 2.664 (7) 147
N3—H3···S2i 0.97 2.36 3.327 (5) 173

Symmetry codes: (i) −x+2, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5379).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bondi, A. (1964). J.Phys.Chem., 68, 441–451.
  4. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Kargar, H., Kia, R. & Tahir, M. N. (2011). Acta Cryst. E67, o3311. [DOI] [PMC free article] [PubMed]
  6. Kumar, R., Giri S. & Nizamuddin (1988). J. Indian Chem. Soc., 65, 572–573.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Yadav, L. D. S., Shukla, K. N. & Singh, H. (1989). Indian J. Chem. Sect. B, 28, 78–80.
  10. Zhang, Y.-X. (2003). Acta Cryst. E59, o581–o582.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811049920/lh5379sup1.cif

e-67-o3436-sup1.cif (15.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811049920/lh5379Isup2.hkl

e-67-o3436-Isup2.hkl (134.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811049920/lh5379Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES