Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 25;67(Pt 12):o3438. doi: 10.1107/S1600536811049932

N′-(4-Meth­oxy­benzyl­idene)-4-methyl­benzohydrazide

Zeng-Xin Liu a,*
PMCID: PMC3239071  PMID: 22199919

Abstract

The title compound, C16H16N2O2, is the product of the reaction of 4-meth­oxy­benzaldehyde and 4-methyl­benzo­hydrazide. The dihedral angle between the substituted benzene rings is 17.6 (3)° and the meth­oxy C atom is almost coplanar with its attached ring [deviation = 0.019 (4) Å]. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming C(4) chains propagating along the b-axis direction.

Related literature

For reference bond lengths, see: Allen et al. (1987). For related strctures, see: Horkaew et al. (2011); Fun et al. (2011); Su et al. (2011); Hashemian et al. (2011); Promdet et al. (2011).graphic file with name e-67-o3438-scheme1.jpg

Experimental

Crystal data

  • C16H16N2O2

  • M r = 268.31

  • Orthorhombic, Inline graphic

  • a = 12.138 (2) Å

  • b = 8.0580 (16) Å

  • c = 29.320 (3) Å

  • V = 2867.7 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.17 × 0.13 × 0.12 mm

Data collection

  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.986, T max = 0.990

  • 20247 measured reflections

  • 3098 independent reflections

  • 1427 reflections with I > 2σ(I)

  • R int = 0.137

Refinement

  • R[F 2 > 2σ(F 2)] = 0.082

  • wR(F 2) = 0.212

  • S = 1.01

  • 3098 reflections

  • 186 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811049932/hb6527sup1.cif

e-67-o3438-sup1.cif (15.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811049932/hb6527Isup2.hkl

e-67-o3438-Isup2.hkl (152.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811049932/hb6527Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.90 (1) 1.97 (1) 2.870 (4) 176 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

The author thanks the Experimental Center of Linyi University for support.

supplementary crystallographic information

Comment

Recently, the compounds derived from the condensation reaction of carbonyl-containing compounds with substituted benzohydrazides have received considerable attention. In this paper, the title new compound, derived from the reaction of 4-methoxybenzaldehyde with 4-methylbenzohydrazide, is reported.

The molecule of the compound, Fig. 1, displays a trans-configuration about the C9 ═N2 bond. The torsion angle of C8—N1—N2—C9 is 2.3 (3)°. The dihedral angle between the C2—C7 and C10—C15 benzene rings is 17.6 (3)°, indicating the molecule of the compound is twisted. Overall, the bond distances are within normal values (Allen et al., 1987), and are comparable with those reported in similar compounds (Horkaew et al., 2011; Fun et al., 2011; Su et al., 2011; Hashemian et al., 2011; Promdet et al., 2011). In the crystal, molecules are linked by N—H···O hydrogen bonds (Table 1) to form C(4) chains along the b axis (Fig. 2).

Experimental

The title compound was synthesized by the reaction of 4-methoxybenzaldehyde (1 mmol, 0.14 g) with 4-methylbenzohydrazide (1 mmol, 0.15 g) in absolute methanol (30 ml) at ambient condition. Colorless prism-shaped single crystals were obtained by slow evaporation of the solution at room temperature after several days.

Refinement

The amide H atom was located in a difference map and was refined isotropically, with N—H = 0.90 (1) Å. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å for aromatic and CH and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The molecular packing of the title compound, showing the N—H···O hydrogen-bonds (dashed lines).

Crystal data

C16H16N2O2 Dx = 1.243 Mg m3
Mr = 268.31 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbca Cell parameters from 883 reflections
a = 12.138 (2) Å θ = 2.2–24.3°
b = 8.0580 (16) Å µ = 0.08 mm1
c = 29.320 (3) Å T = 298 K
V = 2867.7 (8) Å3 Prism, colorless
Z = 8 0.17 × 0.13 × 0.12 mm
F(000) = 1136

Data collection

Bruker SMART 1K CCD diffractometer 3098 independent reflections
Radiation source: fine-focus sealed tube 1427 reflections with I > 2σ(I)
graphite Rint = 0.137
ω scan θmax = 27.0°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −15→15
Tmin = 0.986, Tmax = 0.990 k = −10→10
20247 measured reflections l = −36→36

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.082 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.212 H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0711P)2] where P = (Fo2 + 2Fc2)/3
3098 reflections (Δ/σ)max < 0.001
186 parameters Δρmax = 0.16 e Å3
1 restraint Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.7556 (2) 0.2199 (4) 0.15333 (9) 0.0515 (7)
N2 0.7692 (2) 0.1612 (3) 0.10929 (8) 0.0503 (7)
O1 0.62721 (19) 0.0243 (3) 0.16866 (7) 0.0543 (7)
O2 0.9212 (2) 0.0558 (3) −0.09555 (8) 0.0715 (8)
C1 0.6336 (3) 0.3773 (6) 0.36707 (12) 0.0858 (13)
H1A 0.5711 0.4498 0.3692 0.129*
H1B 0.6987 0.4356 0.3766 0.129*
H1C 0.6224 0.2827 0.3865 0.129*
C2 0.6473 (3) 0.3199 (4) 0.31818 (11) 0.0562 (9)
C3 0.7427 (3) 0.3503 (5) 0.29457 (11) 0.0623 (10)
H3 0.7994 0.4082 0.3088 0.075*
C4 0.7566 (3) 0.2965 (4) 0.25005 (11) 0.0569 (10)
H4 0.8226 0.3169 0.2350 0.068*
C5 0.6726 (3) 0.2127 (4) 0.22787 (10) 0.0465 (8)
C6 0.5756 (3) 0.1825 (5) 0.25146 (11) 0.0571 (10)
H6 0.5185 0.1248 0.2375 0.069*
C7 0.5638 (3) 0.2383 (5) 0.29572 (12) 0.0634 (10)
H7 0.4975 0.2203 0.3108 0.076*
C8 0.6825 (3) 0.1443 (4) 0.18108 (11) 0.0458 (8)
C9 0.8368 (3) 0.2430 (4) 0.08500 (11) 0.0519 (9)
H9 0.8723 0.3346 0.0975 0.062*
C10 0.8597 (3) 0.1963 (4) 0.03814 (11) 0.0465 (8)
C11 0.9435 (3) 0.2702 (4) 0.01397 (11) 0.0574 (10)
H11 0.9854 0.3518 0.0282 0.069*
C12 0.9679 (3) 0.2282 (4) −0.03048 (11) 0.0596 (10)
H12 1.0257 0.2795 −0.0458 0.072*
C13 0.9054 (3) 0.1093 (4) −0.05162 (11) 0.0539 (9)
C14 0.8201 (3) 0.0326 (5) −0.02874 (11) 0.0638 (10)
H14 0.7784 −0.0489 −0.0431 0.077*
C15 0.7972 (3) 0.0773 (4) 0.01531 (11) 0.0578 (10)
H15 0.7386 0.0270 0.0304 0.069*
C16 1.0064 (3) 0.1320 (5) −0.12119 (12) 0.0757 (12)
H16A 0.9913 0.2484 −0.1243 0.114*
H16B 1.0102 0.0819 −0.1509 0.114*
H16C 1.0755 0.1172 −0.1057 0.114*
H1 0.790 (3) 0.316 (3) 0.1592 (11) 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0616 (19) 0.0518 (19) 0.0410 (15) −0.0018 (15) 0.0025 (14) −0.0037 (14)
N2 0.0576 (17) 0.0523 (18) 0.0410 (16) 0.0043 (14) 0.0019 (14) −0.0043 (14)
O1 0.0599 (14) 0.0491 (15) 0.0539 (15) −0.0044 (12) 0.0005 (11) −0.0067 (12)
O2 0.0843 (19) 0.080 (2) 0.0499 (15) −0.0157 (15) 0.0173 (13) −0.0074 (13)
C1 0.091 (3) 0.106 (4) 0.060 (3) 0.003 (3) 0.008 (2) −0.019 (2)
C2 0.065 (2) 0.057 (2) 0.047 (2) 0.0089 (19) −0.0014 (18) 0.0015 (17)
C3 0.067 (3) 0.074 (3) 0.046 (2) −0.008 (2) 0.0000 (19) 0.0008 (19)
C4 0.055 (2) 0.066 (3) 0.049 (2) −0.0078 (18) 0.0022 (17) −0.0012 (19)
C5 0.051 (2) 0.046 (2) 0.0420 (19) 0.0092 (16) 0.0036 (16) 0.0000 (16)
C6 0.047 (2) 0.066 (3) 0.058 (2) 0.0035 (18) −0.0007 (17) −0.0057 (19)
C7 0.053 (2) 0.077 (3) 0.061 (2) 0.010 (2) 0.0118 (18) −0.005 (2)
C8 0.048 (2) 0.042 (2) 0.048 (2) 0.0080 (18) −0.0020 (16) 0.0031 (16)
C9 0.056 (2) 0.051 (2) 0.049 (2) 0.0036 (18) −0.0009 (16) −0.0015 (17)
C10 0.0493 (19) 0.040 (2) 0.050 (2) 0.0008 (16) 0.0016 (16) 0.0028 (16)
C11 0.061 (2) 0.052 (2) 0.059 (2) −0.0082 (18) 0.0001 (19) −0.0059 (18)
C12 0.060 (2) 0.060 (3) 0.059 (2) −0.0115 (19) 0.0126 (18) −0.0009 (19)
C13 0.056 (2) 0.057 (2) 0.049 (2) 0.0008 (18) 0.0017 (18) −0.0012 (18)
C14 0.065 (2) 0.073 (3) 0.053 (2) −0.018 (2) 0.0060 (18) −0.0021 (19)
C15 0.062 (2) 0.062 (3) 0.050 (2) −0.0145 (19) 0.0089 (18) 0.0023 (18)
C16 0.091 (3) 0.084 (3) 0.053 (2) −0.002 (2) 0.024 (2) 0.003 (2)

Geometric parameters (Å, °)

N1—C8 1.349 (4) C6—C7 1.381 (4)
N1—N2 1.385 (3) C6—H6 0.9300
N1—H1 0.899 (10) C7—H7 0.9300
N2—C9 1.271 (4) C9—C10 1.451 (4)
O1—C8 1.233 (4) C9—H9 0.9300
O2—C13 1.372 (4) C10—C11 1.375 (4)
O2—C16 1.418 (4) C10—C15 1.394 (4)
C1—C2 1.515 (5) C11—C12 1.379 (4)
C1—H1A 0.9600 C11—H11 0.9300
C1—H1B 0.9600 C12—C13 1.370 (4)
C1—H1C 0.9600 C12—H12 0.9300
C2—C3 1.371 (5) C13—C14 1.380 (4)
C2—C7 1.376 (5) C14—C15 1.369 (4)
C3—C4 1.385 (4) C14—H14 0.9300
C3—H3 0.9300 C15—H15 0.9300
C4—C5 1.385 (4) C16—H16A 0.9600
C4—H4 0.9300 C16—H16B 0.9600
C5—C6 1.388 (4) C16—H16C 0.9600
C5—C8 1.483 (4)
C8—N1—N2 119.1 (3) O1—C8—C5 121.4 (3)
C8—N1—H1 126 (2) N1—C8—C5 116.3 (3)
N2—N1—H1 115 (2) N2—C9—C10 121.3 (3)
C9—N2—N1 114.9 (3) N2—C9—H9 119.3
C13—O2—C16 117.6 (3) C10—C9—H9 119.3
C2—C1—H1A 109.5 C11—C10—C15 116.9 (3)
C2—C1—H1B 109.5 C11—C10—C9 121.2 (3)
H1A—C1—H1B 109.5 C15—C10—C9 121.9 (3)
C2—C1—H1C 109.5 C10—C11—C12 122.7 (3)
H1A—C1—H1C 109.5 C10—C11—H11 118.7
H1B—C1—H1C 109.5 C12—C11—H11 118.7
C3—C2—C7 117.8 (3) C13—C12—C11 118.7 (3)
C3—C2—C1 121.0 (3) C13—C12—H12 120.7
C7—C2—C1 121.2 (3) C11—C12—H12 120.7
C2—C3—C4 121.5 (3) C12—C13—O2 124.5 (3)
C2—C3—H3 119.3 C12—C13—C14 120.6 (3)
C4—C3—H3 119.3 O2—C13—C14 114.9 (3)
C5—C4—C3 120.4 (3) C15—C14—C13 119.5 (3)
C5—C4—H4 119.8 C15—C14—H14 120.2
C3—C4—H4 119.8 C13—C14—H14 120.2
C4—C5—C6 118.4 (3) C14—C15—C10 121.6 (3)
C4—C5—C8 123.8 (3) C14—C15—H15 119.2
C6—C5—C8 117.7 (3) C10—C15—H15 119.2
C7—C6—C5 119.9 (3) O2—C16—H16A 109.5
C7—C6—H6 120.0 O2—C16—H16B 109.5
C5—C6—H6 120.0 H16A—C16—H16B 109.5
C2—C7—C6 122.0 (3) O2—C16—H16C 109.5
C2—C7—H7 119.0 H16A—C16—H16C 109.5
C6—C7—H7 119.0 H16B—C16—H16C 109.5
O1—C8—N1 122.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.90 (1) 1.97 (1) 2.870 (4) 176 (3)

Symmetry codes: (i) −x+3/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6527).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orphen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Fun, H.-K., Horkaew, J. & Chantrapromma, S. (2011). Acta Cryst. E67, o2644–o2645. [DOI] [PMC free article] [PubMed]
  4. Hashemian, S., Ghaeinee, V. & Notash, B. (2011). Acta Cryst. E67, o171. [DOI] [PMC free article] [PubMed]
  5. Horkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o2985. [DOI] [PMC free article] [PubMed]
  6. Promdet, P., Horkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o3224. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Su, F., Gu, Z.-G. & Lin, J. (2011). Acta Cryst. E67, o1634. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811049932/hb6527sup1.cif

e-67-o3438-sup1.cif (15.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811049932/hb6527Isup2.hkl

e-67-o3438-Isup2.hkl (152.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811049932/hb6527Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES