Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 25;67(Pt 12):o3439. doi: 10.1107/S1600536811049944

N′-(2-Hy­droxy­benzyl­idene)-3-methyl­benzohydrazide

Zeng-Xin Liu a,*
PMCID: PMC3239072  PMID: 22199920

Abstract

The title compound, C15H14N2O2, is the product of the reaction of 2-hy­droxy­benzaldehyde and 3-methyl­benzo­hydrazide. The dihedral angle between the substituted benzene rings is 19.5 (3)° and an intra­molecular O—H⋯N hydrogen bond generates an S(6) ring motif. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds to generate C(4) chains propagating in [001] and C—H⋯O inter­actions to the same O-atom acceptor reinforce the chains.

Related literature

For reference bond lengths, see: Allen et al. (1987). For related structues, see: Horkaew et al. (2011); Fun et al. (2011); Su et al. (2011); Hashemian et al. (2011); Promdet et al. (2011).graphic file with name e-67-o3439-scheme1.jpg

Experimental

Crystal data

  • C15H14N2O2

  • M r = 254.28

  • Monoclinic, Inline graphic

  • a = 11.042 (2) Å

  • b = 13.588 (3) Å

  • c = 8.7936 (15) Å

  • β = 94.406 (2)°

  • V = 1315.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.17 × 0.17 × 0.15 mm

Data collection

  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.985, T max = 0.987

  • 9633 measured reflections

  • 2686 independent reflections

  • 1528 reflections with I > 2σ(I)

  • R int = 0.052

Refinement

  • R[F 2 > 2σ(F 2)] = 0.062

  • wR(F 2) = 0.186

  • S = 1.04

  • 2686 reflections

  • 177 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811049944/hb6528sup1.cif

e-67-o3439-sup1.cif (15.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811049944/hb6528Isup2.hkl

e-67-o3439-Isup2.hkl (131.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811049944/hb6528Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.91 2.624 (2) 146
N2—H2⋯O2i 0.90 (1) 1.91 (1) 2.793 (3) 168 (3)
C7—H7⋯O2i 0.93 2.49 3.229 (2) 137

Symmetry code: (i) Inline graphic.

Acknowledgments

The author thanks the Experimental Center of Linyi University for support.

supplementary crystallographic information

Comment

Recently, the compounds derived from the condensation reaction of carbonyl-containing compounds with substituted benzohydrazides have received considerable attention. In this paper, the title new compound, derived from the reaction of 2-hydroxybenzaldehyde with 3-methylbenzohydrazide, is reported.

The molecule of the compound, Fig. 1, displays a trans-configuration about the C7 ═N1 bond. The torsion angle of C7—N1—N2—C8 is 7.0 (3)°. The dihedral angle between the C1—C6 and C9—C14 benzene rings is 19.5 (3)°, indicating the molecule of the compound is twisted. Overall, the bond distances are within normal values (Allen et al., 1987), and are comparable with those reported in similar compounds (Horkaew et al., 2011; Fun et al., 2011; Su et al., 2011; Hashemian et al., 2011; Promdet et al., 2011). In the crystal, molecules are linked by N—H···O intermolecular hydrogen bonds (Table 1) to form one-dimensional chains along the c axis (Fig. 2).

Experimental

The title compound was synthesized by the reaction of 2-hydroxybenzaldehyde (1 mmol, 0.12 g) with 4-methylbenzohydrazide (1 mmol, 0.15 g) in absolute methanol (30 ml) at ambient condition. Colorless prism-shaped single crystals were obtained by slow evaporation of the solution at room temperature after several days.

Refinement

The amide H atom was located in a difference map and was refined isotropically, with N—H = 0.90 (1) Å. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å for aromatic and CH and 0.96 Å for CH3 atoms, and with O—H = 0.82 Å. The Uiso(H) values were constrained to be 1.5Ueq of C15 and O1 atoms, and 1.2Ueq for the remaining C atoms. A rotating group model was used for the methyl group.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids. The intramolecular O—H···N hydrogen bond is shown as a dashed line.

Fig. 2.

Fig. 2.

The molecular packing of the title compound, showing the N—H···O, O—H···N, and C—H···O hydrogen-bonds (dashed lines).

Crystal data

C15H14N2O2 F(000) = 536
Mr = 254.28 Dx = 1.284 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 11.042 (2) Å Cell parameters from 1290 reflections
b = 13.588 (3) Å θ = 2.4–24.5°
c = 8.7936 (15) Å µ = 0.09 mm1
β = 94.406 (2)° T = 298 K
V = 1315.5 (4) Å3 Prism, colorless
Z = 4 0.17 × 0.17 × 0.15 mm

Data collection

Bruker SMART 1K CCD diffractometer 2686 independent reflections
Radiation source: fine-focus sealed tube 1528 reflections with I > 2σ(I)
graphite Rint = 0.052
ω scan θmax = 26.5°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −13→13
Tmin = 0.985, Tmax = 0.987 k = −17→15
9633 measured reflections l = −10→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.186 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0872P)2 + 0.1389P] where P = (Fo2 + 2Fc2)/3
2686 reflections (Δ/σ)max < 0.001
177 parameters Δρmax = 0.59 e Å3
1 restraint Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.28488 (18) 0.65695 (15) 0.0597 (2) 0.0486 (5)
N2 0.22818 (19) 0.72924 (16) −0.0306 (2) 0.0521 (6)
O1 0.42021 (18) 0.59365 (14) 0.2981 (2) 0.0661 (6)
H1 0.3787 0.6335 0.2473 0.099*
O2 0.22190 (17) 0.83426 (13) 0.16687 (18) 0.0610 (6)
C1 0.3578 (2) 0.49285 (18) 0.0816 (3) 0.0463 (6)
C2 0.4170 (2) 0.50626 (19) 0.2260 (3) 0.0488 (6)
C3 0.4770 (2) 0.4277 (2) 0.2997 (3) 0.0645 (8)
H3 0.5176 0.4367 0.3953 0.077*
C4 0.4765 (3) 0.3370 (2) 0.2314 (4) 0.0701 (9)
H4 0.5163 0.2846 0.2818 0.084*
C5 0.4180 (3) 0.3224 (2) 0.0897 (4) 0.0696 (8)
H5 0.4176 0.2605 0.0445 0.083*
C6 0.3600 (2) 0.39998 (19) 0.0152 (3) 0.0601 (7)
H6 0.3214 0.3903 −0.0814 0.072*
C7 0.2970 (2) 0.57306 (19) −0.0011 (3) 0.0508 (6)
H7 0.2660 0.5630 −0.1013 0.061*
C8 0.2014 (2) 0.81577 (18) 0.0313 (3) 0.0457 (6)
C9 0.1440 (2) 0.89021 (19) −0.0753 (3) 0.0471 (6)
C10 0.1681 (2) 0.98853 (19) −0.0468 (3) 0.0549 (7)
H10 0.2194 1.0056 0.0379 0.066*
C11 0.1186 (2) 1.0620 (2) −0.1397 (3) 0.0634 (8)
C12 0.0402 (3) 1.0358 (3) −0.2601 (3) 0.0768 (10)
H12 0.0048 1.0844 −0.3233 0.092*
C13 0.0125 (3) 0.9383 (3) −0.2897 (3) 0.0796 (10)
H13 −0.0418 0.9219 −0.3719 0.095*
C14 0.0652 (2) 0.8645 (2) −0.1976 (3) 0.0617 (8)
H14 0.0476 0.7987 −0.2183 0.074*
C15 0.1510 (3) 1.1678 (2) −0.1097 (5) 0.1026 (13)
H15A 0.1779 1.1969 −0.2006 0.154*
H15B 0.2148 1.1717 −0.0294 0.154*
H15C 0.0809 1.2025 −0.0798 0.154*
H2 0.226 (3) 0.718 (2) −0.1311 (13) 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0553 (12) 0.0510 (13) 0.0390 (12) 0.0021 (10) 0.0003 (9) 0.0082 (10)
N2 0.0706 (14) 0.0517 (13) 0.0332 (11) 0.0040 (11) −0.0023 (10) 0.0029 (10)
O1 0.0816 (14) 0.0590 (13) 0.0556 (12) 0.0063 (10) −0.0080 (10) −0.0021 (10)
O2 0.0881 (13) 0.0607 (12) 0.0324 (10) 0.0018 (9) −0.0064 (9) −0.0003 (8)
C1 0.0501 (14) 0.0469 (15) 0.0427 (15) −0.0014 (11) 0.0093 (11) 0.0031 (11)
C2 0.0543 (14) 0.0473 (16) 0.0455 (15) 0.0020 (12) 0.0085 (11) 0.0005 (12)
C3 0.0666 (18) 0.069 (2) 0.0576 (18) 0.0114 (15) 0.0015 (13) 0.0035 (15)
C4 0.0721 (19) 0.0573 (19) 0.082 (2) 0.0160 (15) 0.0138 (17) 0.0101 (17)
C5 0.0748 (19) 0.0540 (18) 0.082 (2) 0.0016 (15) 0.0173 (17) −0.0099 (16)
C6 0.0688 (18) 0.0511 (17) 0.0603 (18) −0.0028 (13) 0.0039 (14) −0.0046 (14)
C7 0.0592 (15) 0.0535 (17) 0.0396 (14) −0.0043 (12) 0.0029 (11) −0.0007 (13)
C8 0.0514 (14) 0.0506 (16) 0.0345 (14) −0.0042 (11) −0.0006 (11) 0.0025 (12)
C9 0.0482 (14) 0.0589 (17) 0.0344 (13) 0.0035 (11) 0.0038 (10) 0.0039 (12)
C10 0.0514 (14) 0.0579 (17) 0.0555 (17) 0.0001 (12) 0.0045 (12) 0.0047 (14)
C11 0.0569 (16) 0.0629 (19) 0.072 (2) 0.0131 (14) 0.0162 (15) 0.0207 (15)
C12 0.081 (2) 0.090 (3) 0.060 (2) 0.0348 (19) 0.0108 (16) 0.0262 (18)
C13 0.075 (2) 0.111 (3) 0.0500 (18) 0.031 (2) −0.0128 (14) −0.0029 (18)
C14 0.0644 (17) 0.075 (2) 0.0441 (16) 0.0152 (14) −0.0061 (13) −0.0042 (14)
C15 0.083 (2) 0.064 (2) 0.161 (4) 0.0066 (18) 0.016 (2) 0.038 (2)

Geometric parameters (Å, °)

N1—C7 1.270 (3) C6—H6 0.9300
N1—N2 1.382 (3) C7—H7 0.9300
N2—C8 1.338 (3) C8—C9 1.487 (3)
N2—H2 0.895 (10) C9—C14 1.375 (3)
O1—C2 1.345 (3) C9—C10 1.381 (4)
O1—H1 0.8200 C10—C11 1.376 (4)
O2—C8 1.223 (3) C10—H10 0.9300
C1—C6 1.392 (3) C11—C12 1.362 (4)
C1—C2 1.395 (3) C11—C15 1.500 (4)
C1—C7 1.447 (3) C12—C13 1.380 (4)
C2—C3 1.390 (4) C12—H12 0.9300
C3—C4 1.371 (4) C13—C14 1.389 (4)
C3—H3 0.9300 C13—H13 0.9300
C4—C5 1.374 (4) C14—H14 0.9300
C4—H4 0.9300 C15—H15A 0.9600
C5—C6 1.373 (4) C15—H15B 0.9600
C5—H5 0.9300 C15—H15C 0.9600
C7—N1—N2 117.0 (2) O2—C8—C9 120.8 (2)
C8—N2—N1 119.7 (2) N2—C8—C9 116.0 (2)
C8—N2—H2 124.0 (19) C14—C9—C10 119.3 (2)
N1—N2—H2 115.1 (19) C14—C9—C8 122.2 (2)
C2—O1—H1 109.5 C10—C9—C8 118.5 (2)
C6—C1—C2 118.6 (2) C11—C10—C9 122.1 (3)
C6—C1—C7 119.6 (2) C11—C10—H10 118.9
C2—C1—C7 121.8 (2) C9—C10—H10 118.9
O1—C2—C3 117.6 (2) C12—C11—C10 118.1 (3)
O1—C2—C1 122.5 (2) C12—C11—C15 121.0 (3)
C3—C2—C1 119.8 (2) C10—C11—C15 120.9 (3)
C4—C3—C2 120.0 (3) C11—C12—C13 121.1 (3)
C4—C3—H3 120.0 C11—C12—H12 119.5
C2—C3—H3 120.0 C13—C12—H12 119.5
C3—C4—C5 120.9 (3) C12—C13—C14 120.4 (3)
C3—C4—H4 119.6 C12—C13—H13 119.8
C5—C4—H4 119.6 C14—C13—H13 119.8
C6—C5—C4 119.4 (3) C9—C14—C13 118.9 (3)
C6—C5—H5 120.3 C9—C14—H14 120.5
C4—C5—H5 120.3 C13—C14—H14 120.5
C5—C6—C1 121.3 (3) C11—C15—H15A 109.5
C5—C6—H6 119.4 C11—C15—H15B 109.5
C1—C6—H6 119.4 H15A—C15—H15B 109.5
N1—C7—C1 121.6 (2) C11—C15—H15C 109.5
N1—C7—H7 119.2 H15A—C15—H15C 109.5
C1—C7—H7 119.2 H15B—C15—H15C 109.5
O2—C8—N2 123.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.82 1.91 2.624 (2) 146
N2—H2···O2i 0.90 (1) 1.91 (1) 2.793 (3) 168 (3)
C7—H7···O2i 0.93 2.49 3.229 (2) 137

Symmetry codes: (i) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6528).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orphen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Fun, H.-K., Horkaew, J. & Chantrapromma, S. (2011). Acta Cryst. E67, o2644–o2645. [DOI] [PMC free article] [PubMed]
  4. Hashemian, S., Ghaeinee, V. & Notash, B. (2011). Acta Cryst. E67, o171. [DOI] [PMC free article] [PubMed]
  5. Horkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o2985. [DOI] [PMC free article] [PubMed]
  6. Promdet, P., Horkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o3224. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Su, F., Gu, Z.-G. & Lin, J. (2011). Acta Cryst. E67, o1634. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811049944/hb6528sup1.cif

e-67-o3439-sup1.cif (15.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811049944/hb6528Isup2.hkl

e-67-o3439-Isup2.hkl (131.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811049944/hb6528Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES