Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 25;67(Pt 12):o3440. doi: 10.1107/S1600536811050057

Isonicotinamide–2-naphthoic acid (1/1)

Lee G Madeley a, Demetrius C Levendis a, Andreas Lemmerer a,*
PMCID: PMC3239073  PMID: 22199921

Abstract

In the title 1:1 adduct, C6H6N2O·C11H8O2, the amide group is slightly twisted out of the plane of the aromatic ring, with a C—C—C—N torsion angle of 25.11 (19)°, whereas the carb­oxy­lic acid group is approximately coplanar with the bicylic ring system, with a C—C—C—O torsion angle of 10.9 (2)°. The amide groups from two isonicotinamide mol­ecules form a dimer via N—H⋯O hydrogen bonds. In addition, the 2-naphthanoic acid mol­ecule is hydrogen bonded to the pyridine unit of an isonicotinamide mol­ecule via an O—H⋯N hydrogen bond. This gives rise to a centrosymmetric four-mol­ecule chain, which is cross-linked by further N—H⋯O hydrogen bonds from the amide group.

Related literature

For related compounds, see: Lemmerer et al. (2008); Aakeröy et al. (2002); Báthori et al. (2010). The carb­oxy­lic acid–pyridine hydrogen bond is an often used supra­molecular synthon, see: Aakeröy & Beatty (2001). graphic file with name e-67-o3440-scheme1.jpg

Experimental

Crystal data

  • C6H6N2O·C11H8O2

  • M r = 294.3

  • Monoclinic, Inline graphic

  • a = 8.6665 (17) Å

  • b = 23.752 (5) Å

  • c = 7.3793 (15) Å

  • β = 110.33 (3)°

  • V = 1424.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.48 × 0.45 × 0.08 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: integration (XPREP; Bruker, 2007) T min = 0.956, T max = 0.993

  • 7507 measured reflections

  • 2605 independent reflections

  • 2130 reflections with I > 2σ(I)

  • R int = 0.055

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.119

  • S = 1.01

  • 2605 reflections

  • 211 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus and XPREP (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811050057/fj2462sup1.cif

e-67-o3440-sup1.cif (21.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811050057/fj2462Isup2.hkl

e-67-o3440-Isup2.hkl (125.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811050057/fj2462Isup3.mol

Supplementary material file. DOI: 10.1107/S1600536811050057/fj2462Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1S⋯O1i 0.904 (19) 2.012 (19) 2.914 (2) 176 (2)
N1—H1A⋯O3ii 0.862 (18) 2.123 (18) 2.9755 (17) 170 (2)
O2—H2⋯N2 1.05 (3) 1.56 (3) 2.5999 (18) 170 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the University of the Witwaters­rand, which is thanked for providing the infrastructure required to do this work.

supplementary crystallographic information

Comment

This co-crystal is part of a larger crystal engineering project involving carboxylic acids and the anti-tuberculosis agent isoniazid. In this project, the pyridine N atom of either nicotinamide, isonicotinamide or isoniazid acts as a hydrogen bond acceptor for carboxylic acid group protons. The carboxylic acid-pyridine hydrogen bond is an often used supramolecular synthon (Aakeröy et al., 2001; Aakeröy et al., 2002; Lemmerer et al., 2008). The co-crystal former ability of isonicotinamide and nicotinamide was investigated by performing density functional theory calculations in a related study (Báthori et al., 2010).

The asymmetric unit of (I) consists of one molecule of isonicotinamide and one molecule of 2-naphthanoic acid, sitting on general positions (Fig. 1). The asymmetric unit is connected by a O—H···N hydrogen bond. The combination of O—H···N and N—H···O hydrogen bonds gives rise to centrosymmetric 4-molecule chains, which are cross-linked by the N—H···O hydrogen bonds (Fig. 2).

Experimental

The compound was prepared by dissolving equimolar amounts of isonicotinamide (0.218 g) and 2-naphthanoic acid (0.308 g) in distilled methanol (15 ml). The mixture was stirred at room temperature under a standard atmosphere for 24 h. Colourless crystals were grown by slow evaporation at ambient conditions from the methanol solvent over a few days.

Refinement

The C-bound H atoms were geometrically placed (aromatic C—H bond lengths of 0.95 Å), and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound and O-bound H atoms were located in the difference Fourier map and coordinates refined freely as well as their isotropic displacement parameters.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the co-crystal showing the atomic numbering scheme. Displacement ellipsoids are shown at the 50% probability level.

Fig. 2.

Fig. 2.

Hydrogen bonding diagram of the co-crystal. Intermolecular N—H···O and O—H···O hydrogen bonds are shown as dashed red lines forming centrosymmetric 4-molecule chains.

Crystal data

C6H6N2O·C11H8O2 F(000) = 616
Mr = 294.3 Dx = 1.372 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5555 reflections
a = 8.6665 (17) Å θ = 1–27.5°
b = 23.752 (5) Å µ = 0.10 mm1
c = 7.3793 (15) Å T = 173 K
β = 110.33 (3)° Block, colourless
V = 1424.4 (5) Å3 0.48 × 0.45 × 0.08 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 2130 reflections with I > 2σ(I)
ω scans Rint = 0.055
Absorption correction: integration (XPREP; Bruker, 2007) θmax = 25.5°, θmin = 3.0°
Tmin = 0.956, Tmax = 0.993 h = −10→10
7507 measured reflections k = −28→27
2605 independent reflections l = −8→7

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0731P)2 + 0.1531P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.119 (Δ/σ)max < 0.001
S = 1.01 Δρmax = 0.21 e Å3
2605 reflections Δρmin = −0.20 e Å3
211 parameters

Special details

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 2004)
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 1.10423 (17) 0.44738 (6) 0.71685 (18) 0.0248 (3)
C2 1.08405 (18) 0.40155 (6) 0.59333 (19) 0.0281 (3)
H2A 1.1769 0.3829 0.5809 0.034*
C3 0.92709 (18) 0.38371 (7) 0.48958 (19) 0.0325 (4)
H3 0.9143 0.3518 0.4079 0.039*
C4 0.81087 (18) 0.45238 (7) 0.6185 (2) 0.0329 (4)
H4 0.7157 0.4703 0.627 0.039*
C5 0.96357 (17) 0.47215 (6) 0.7311 (2) 0.0292 (3)
H5 0.9727 0.5025 0.8179 0.035*
C6 1.26979 (17) 0.47009 (6) 0.83740 (19) 0.0271 (3)
N1 1.39399 (17) 0.46082 (6) 0.77495 (19) 0.0324 (3)
H1S 1.496 (2) 0.4727 (7) 0.846 (2) 0.036 (4)*
H1A 1.375 (2) 0.4460 (8) 0.663 (3) 0.042 (5)*
N2 0.79178 (15) 0.40878 (6) 0.49762 (16) 0.0335 (3)
O1 1.28451 (13) 0.49617 (5) 0.98726 (14) 0.0371 (3)
C7 0.23811 (17) 0.35294 (6) 0.12753 (18) 0.0257 (3)
C8 0.25613 (18) 0.30807 (6) 0.00900 (19) 0.0301 (3)
H8 0.363 0.2962 0.0172 0.036*
C9 0.12123 (18) 0.28196 (6) −0.11624 (19) 0.0313 (4)
H9 0.1354 0.2517 −0.1931 0.038*
C10 −0.03974 (17) 0.29913 (6) −0.13394 (19) 0.0267 (3)
C11 −0.18280 (19) 0.27324 (7) −0.2630 (2) 0.0350 (4)
H11 −0.1722 0.2426 −0.3407 0.042*
C12 −0.33562 (19) 0.29162 (7) −0.2774 (2) 0.0382 (4)
H12 −0.4301 0.2737 −0.3652 0.046*
C13 −0.35493 (19) 0.33669 (7) −0.1639 (2) 0.0355 (4)
H13 −0.4621 0.3489 −0.1745 0.043*
C14 −0.21997 (17) 0.36309 (6) −0.0382 (2) 0.0289 (3)
H14 −0.2341 0.3938 0.0371 0.035*
C15 −0.05903 (16) 0.34512 (6) −0.01926 (18) 0.0243 (3)
C16 0.08343 (17) 0.37060 (6) 0.11132 (18) 0.0246 (3)
H16 0.0717 0.4008 0.19 0.03*
C17 0.38436 (18) 0.38080 (6) 0.2707 (2) 0.0302 (3)
O2 0.52342 (13) 0.36681 (6) 0.25195 (16) 0.0444 (3)
H2 0.624 (3) 0.3858 (10) 0.359 (3) 0.085 (7)*
O3 0.37325 (13) 0.41309 (5) 0.39438 (14) 0.0404 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0286 (8) 0.0233 (7) 0.0214 (6) −0.0021 (6) 0.0072 (6) 0.0041 (5)
C2 0.0270 (8) 0.0301 (8) 0.0269 (7) −0.0037 (6) 0.0091 (6) −0.0028 (6)
C3 0.0341 (9) 0.0365 (9) 0.0271 (7) −0.0082 (7) 0.0109 (6) −0.0049 (6)
C4 0.0282 (8) 0.0393 (9) 0.0319 (8) 0.0055 (7) 0.0112 (6) 0.0092 (7)
C5 0.0339 (8) 0.0251 (8) 0.0288 (7) 0.0010 (6) 0.0112 (6) 0.0022 (6)
C6 0.0298 (8) 0.0236 (8) 0.0252 (7) −0.0030 (6) 0.0061 (6) 0.0005 (6)
N1 0.0279 (7) 0.0398 (8) 0.0278 (6) −0.0076 (6) 0.0076 (5) −0.0106 (6)
N2 0.0276 (7) 0.0444 (9) 0.0267 (6) −0.0059 (6) 0.0069 (5) 0.0025 (6)
O1 0.0361 (6) 0.0413 (7) 0.0340 (6) −0.0097 (5) 0.0121 (5) −0.0167 (5)
C7 0.0271 (8) 0.0270 (8) 0.0230 (6) −0.0014 (6) 0.0087 (6) 0.0021 (6)
C8 0.0286 (8) 0.0304 (8) 0.0317 (7) 0.0044 (6) 0.0112 (6) −0.0011 (6)
C9 0.0379 (9) 0.0264 (8) 0.0305 (7) 0.0026 (6) 0.0130 (7) −0.0056 (6)
C10 0.0327 (8) 0.0213 (7) 0.0258 (7) −0.0020 (6) 0.0098 (6) 0.0008 (6)
C11 0.0413 (9) 0.0280 (8) 0.0334 (8) −0.0074 (7) 0.0099 (7) −0.0056 (6)
C12 0.0316 (9) 0.0385 (10) 0.0381 (8) −0.0129 (7) 0.0038 (7) −0.0021 (7)
C13 0.0259 (8) 0.0379 (9) 0.0411 (8) 0.0003 (7) 0.0098 (6) 0.0079 (7)
C14 0.0301 (8) 0.0261 (8) 0.0312 (7) 0.0021 (6) 0.0115 (6) 0.0036 (6)
C15 0.0281 (8) 0.0207 (7) 0.0244 (6) −0.0009 (6) 0.0095 (6) 0.0034 (5)
C16 0.0300 (8) 0.0206 (7) 0.0233 (7) −0.0008 (6) 0.0093 (6) −0.0006 (5)
C17 0.0295 (8) 0.0356 (9) 0.0249 (7) −0.0026 (7) 0.0088 (6) 0.0009 (6)
O2 0.0242 (6) 0.0654 (9) 0.0411 (6) −0.0041 (5) 0.0081 (5) −0.0160 (6)
O3 0.0369 (7) 0.0517 (8) 0.0316 (6) −0.0080 (5) 0.0107 (5) −0.0149 (5)

Geometric parameters (Å, °)

C1—C5 1.390 (2) C8—H8 0.95
C1—C2 1.3912 (19) C9—C10 1.415 (2)
C1—C6 1.501 (2) C9—H9 0.95
C2—C3 1.376 (2) C10—C11 1.415 (2)
C2—H2A 0.95 C10—C15 1.4269 (19)
C3—N2 1.335 (2) C11—C12 1.363 (2)
C3—H3 0.95 C11—H11 0.95
C4—N2 1.339 (2) C12—C13 1.405 (2)
C4—C5 1.378 (2) C12—H12 0.95
C4—H4 0.95 C13—C14 1.366 (2)
C5—H5 0.95 C13—H13 0.95
C6—O1 1.2349 (16) C14—C15 1.4182 (19)
C6—N1 1.3282 (19) C14—H14 0.95
N1—H1S 0.904 (19) C15—C16 1.412 (2)
N1—H1A 0.862 (18) C16—H16 0.95
C7—C16 1.370 (2) C17—O3 1.2215 (17)
C7—C8 1.421 (2) C17—O2 1.3029 (18)
C7—C17 1.493 (2) O2—H2 1.05 (3)
C8—C9 1.362 (2)
C5—C1—C2 117.82 (13) C8—C9—C10 121.18 (13)
C5—C1—C6 119.06 (13) C8—C9—H9 119.4
C2—C1—C6 123.10 (13) C10—C9—H9 119.4
C3—C2—C1 118.72 (14) C11—C10—C9 122.83 (14)
C3—C2—H2A 120.6 C11—C10—C15 118.43 (13)
C1—C2—H2A 120.6 C9—C10—C15 118.73 (13)
N2—C3—C2 123.51 (14) C12—C11—C10 120.93 (14)
N2—C3—H3 118.2 C12—C11—H11 119.5
C2—C3—H3 118.2 C10—C11—H11 119.5
N2—C4—C5 122.39 (14) C11—C12—C13 120.75 (14)
N2—C4—H4 118.8 C11—C12—H12 119.6
C5—C4—H4 118.8 C13—C12—H12 119.6
C4—C5—C1 119.62 (14) C14—C13—C12 120.20 (14)
C4—C5—H5 120.2 C14—C13—H13 119.9
C1—C5—H5 120.2 C12—C13—H13 119.9
O1—C6—N1 123.36 (14) C13—C14—C15 120.63 (14)
O1—C6—C1 119.40 (13) C13—C14—H14 119.7
N1—C6—C1 117.24 (12) C15—C14—H14 119.7
C6—N1—H1S 119.8 (10) C16—C15—C14 122.37 (13)
C6—N1—H1A 119.9 (12) C16—C15—C10 118.57 (12)
H1S—N1—H1A 120.1 (15) C14—C15—C10 119.06 (13)
C3—N2—C4 117.87 (13) C7—C16—C15 121.72 (13)
C16—C7—C8 119.30 (13) C7—C16—H16 119.1
C16—C7—C17 119.37 (13) C15—C16—H16 119.1
C8—C7—C17 121.32 (13) O3—C17—O2 123.73 (14)
C9—C8—C7 120.47 (13) O3—C17—C7 122.62 (13)
C9—C8—H8 119.8 O2—C17—C7 113.65 (13)
C7—C8—H8 119.8 C17—O2—H2 111.5 (13)
C5—C1—C2—C3 1.1 (2) C15—C10—C11—C12 −0.2 (2)
C6—C1—C2—C3 179.67 (12) C10—C11—C12—C13 −0.2 (2)
C1—C2—C3—N2 1.5 (2) C11—C12—C13—C14 0.6 (2)
N2—C4—C5—C1 1.7 (2) C12—C13—C14—C15 −0.6 (2)
C2—C1—C5—C4 −2.6 (2) C13—C14—C15—C16 −178.83 (12)
C6—C1—C5—C4 178.77 (12) C13—C14—C15—C10 0.2 (2)
C5—C1—C6—O1 23.6 (2) C11—C10—C15—C16 179.24 (12)
C2—C1—C6—O1 −155.01 (14) C9—C10—C15—C16 −1.78 (19)
C5—C1—C6—N1 −156.32 (13) C11—C10—C15—C14 0.13 (19)
C2—C1—C6—N1 25.11 (19) C9—C10—C15—C14 179.11 (12)
C2—C3—N2—C4 −2.4 (2) C8—C7—C16—C15 0.5 (2)
C5—C4—N2—C3 0.8 (2) C17—C7—C16—C15 −178.93 (11)
C16—C7—C8—C9 −1.5 (2) C14—C15—C16—C7 −179.74 (12)
C17—C7—C8—C9 177.85 (13) C10—C15—C16—C7 1.2 (2)
C7—C8—C9—C10 0.9 (2) C16—C7—C17—O3 11.1 (2)
C8—C9—C10—C11 179.69 (13) C8—C7—C17—O3 −168.30 (14)
C8—C9—C10—C15 0.8 (2) C16—C7—C17—O2 −169.70 (13)
C9—C10—C11—C12 −179.09 (14) C8—C7—C17—O2 10.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1S···O1i 0.904 (19) 2.012 (19) 2.914 (2) 176 (2)
N1—H1A···O3ii 0.862 (18) 2.123 (18) 2.9755 (17) 170 (2)
O2—H2···N2 1.05 (3) 1.56 (3) 2.5999 (18) 170 (2)

Symmetry codes: (i) −x+3, −y+1, −z+2; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2462).

References

  1. Aakeröy, C. B. & Beatty, A. M. (2001). Aust. J. Chem. 54, 409–421.
  2. Aakeröy, C. B., Beatty, A. M. & Helfrich, B. A. (2002). J. Am. Chem. Soc. 124, 14425–14432. [DOI] [PubMed]
  3. Báthori, N. B., Lemmerer, A., Venter, G. A., Bourne, S. A. & Caira, M. R. (2010). Cryst. Growth Des. 11, 75–87.
  4. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  5. Bruker (2007). APEX2, SAINT-Plus and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  8. Lemmerer, A., Báthori, N. B. & Bourne, S. A. (2008). Acta Cryst. B64, 780–790. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811050057/fj2462sup1.cif

e-67-o3440-sup1.cif (21.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811050057/fj2462Isup2.hkl

e-67-o3440-Isup2.hkl (125.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811050057/fj2462Isup3.mol

Supplementary material file. DOI: 10.1107/S1600536811050057/fj2462Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES