Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 25;67(Pt 12):o3441. doi: 10.1107/S1600536811049324

(1R,3S)-N-Benzhydryl-2-benzyl-6,7-dimeth­oxy-1-phenyl-1,2,3,4-tetra­hydro­isoquinoline-3-carbothio­amide

Tricia Naicker a, Thavendran Govender a, Hendrick G Kruger b, Glenn E M Maguire b,*
PMCID: PMC3239074  PMID: 22199922

Abstract

The title compound, C38H36N2O2S, has a heterocyclic ring that assumes a half-chair conformation. The phenyl rings of neighbouring mol­ecules align forming alternating chains parallel to [100] within the crystal packing. The absolute stereochemistry of the crystal was confirmed to be R,S at the 1- and 3-positions, respectively, by proton NMR spectroscopy. A single intra­molecular N—H⋯N hydrogen bond is observed.

Related literature

For background to chiral organocatalysts bearing a tetra­hydro­isoquinoline framework and for related structures, see: Naicker et al. (2010, 2011a,b ).graphic file with name e-67-o3441-scheme1.jpg

Experimental

Crystal data

  • C38H36N2O2S

  • M r = 584.75

  • Orthorhombic, Inline graphic

  • a = 9.0463 (1) Å

  • b = 17.6687 (2) Å

  • c = 19.6178 (2) Å

  • V = 3135.64 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 173 K

  • 0.34 × 0.32 × 0.30 mm

Data collection

  • Nonius KappaCCD diffractometer

  • 7464 measured reflections

  • 7464 independent reflections

  • 6545 reflections with I > 2σ(I)

  • R int = 0.013

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.090

  • S = 1.06

  • 7464 reflections

  • 394 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983), 3271 Friedel pairs

  • Flack parameter: −0.07 (5)

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomov et al., 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811049324/hg5134sup1.cif

e-67-o3441-sup1.cif (28KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811049324/hg5134Isup2.hkl

e-67-o3441-Isup2.hkl (365.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811049324/hg5134Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N⋯N1 0.903 (17) 2.139 (16) 2.6548 (15) 115.4 (12)

Acknowledgments

The authors wish to thank Dr Hong Su from the Chemistry Department of the University of Cape Town for her assistance with the crystallographic data collection and refinement.

supplementary crystallographic information

Comment

Chiral organocatalysts bearing a tetrahydroisoquinoline (TIQ) framework have proven to be very successful by our research group (Naicker et al., 2010 and 2011a). The title compound (Fig. 1) is a precursor in the synthesis of these novel chiral organocatalysts. The crystal structure contains a thioamide moiety at the C10 position making it the first example in this class to be reported.

The absolute stereochemistry of the molecule was confirmed to be R,S at C1 and C9 positions respectively by proton NMR spectroscopy.

The N-containing six membered ring assumes a half chair conformation [Q=0.5212 (12) Å, θ= 50.52 (14)° and φ=325.8 (18)°] similar to an analogous structure which has a methyl ester at the C10 position (Naicker et al., 2011b). This heterocyclic ring shape affects the position of the thioamide moiety relative to the phenyl ring at the C1 position. The torsion angle for C1—N1—C9—C10 is -157.6 (1)°. Also, in the analogous structure the torsion angle between C8—N1—C9—C10 is 44.1 (2)° while in the title structure this angle is -18.3 (2)°. This is probably due to the C═S bond which adopts a more planar orientation relative to the TIQ backbone as compared to the C═O bond orientation previously reported in this family of molecules (Naicker et al., 2011b). In addition, the N-benzyl and phenyl ring at C1 exist in a trans orientation along the N1—C9 bond with a dihedral angle of -153.3 (1)°.

The title compound contains four phenyl rings however, no intermolecular C—H···π or π···π interactions are evident. A single intramolecular hydrogen bond between atoms N2—H1N···N1 can be observed. The molecules within the crystal structure line up such that the phenyl rings face each other, this forms alternating chains parallel to the [100] plane (Fig. 2).

Experimental

To a solution of (1R,3S)-N-benzhydryl-2-benzyl-6,7-dimethoxy-1-phenyl-1,2,3,4-tetrahydroisoquinoline-3-carboxamide (0.1 g, 0.02 mmol) in dry THF (20 ml), Lawssons reagent (0.06 g, 0.15 mmol) was added. The mixture was allowed to stir at 50 °C for 16 h under a nitrogen atmosphere. Thereafter the solvent was evaporated in vacuo and the residue purified using silica column chromatography (hexane: ethyl acetate, 50:50, Rf = 0.8) to yield the pure product (0.1 g, 90%) as a yellow solid. M.p. = 458 K

Recrystallization from ethyl acetate at room temperature afforded crystals suitable for X-ray analysis.

Refinement

All non-hydrogen atoms were refined anisotropically. All hydrogen atoms could be found in the difference electron density maps. H1N was thus positioned and refined freely with independent isotropic temperature factors. The other hydrogen atoms were placed with idealized positions and refined as riding on their parents atoms with Uiso = 1.2 or 1.5 x Ueq (C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. Hydrogen atoms have been omitted for clarity.

Fig. 2.

Fig. 2.

A partial projection of the title compound, viewed along the [100] plane.

Crystal data

C38H36N2O2S Dx = 1.239 Mg m3
Mr = 584.75 Melting point: 458 K
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 7464 reflections
a = 9.0463 (1) Å θ = 2.4–27.9°
b = 17.6687 (2) Å µ = 0.14 mm1
c = 19.6178 (2) Å T = 173 K
V = 3135.64 (6) Å3 Block, colourless
Z = 4 0.34 × 0.32 × 0.30 mm
F(000) = 1240

Data collection

Nonius KappaCCD diffractometer 6545 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.013
graphite θmax = 27.9°, θmin = 2.4°
1.2° φ scans and ω scans h = −11→11
7464 measured reflections k = −23→23
7464 independent reflections l = −25→25

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0573P)2 + 0.1291P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
7464 reflections Δρmax = 0.19 e Å3
394 parameters Δρmin = −0.25 e Å3
0 restraints Absolute structure: Flack (1983), 3271 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.07 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.56498 (4) 0.31046 (3) 0.215098 (18) 0.04475 (11)
O1 1.39454 (9) 0.35968 (6) −0.01266 (5) 0.0361 (2)
O2 1.15098 (11) 0.39105 (6) −0.07511 (5) 0.0412 (3)
N1 0.98038 (11) 0.23680 (6) 0.21258 (5) 0.0254 (2)
H1N 0.8629 (19) 0.2485 (9) 0.3066 (8) 0.038 (4)*
N2 0.76795 (13) 0.26373 (7) 0.30274 (5) 0.0300 (2)
C1 1.12804 (13) 0.26381 (7) 0.19152 (6) 0.0258 (2)
H1 1.1954 0.2189 0.1909 0.031*
C2 1.12788 (13) 0.29751 (7) 0.11981 (6) 0.0252 (2)
C3 1.26341 (13) 0.31006 (7) 0.08659 (6) 0.0258 (2)
H3 1.3530 0.2963 0.1087 0.031*
C4 1.26841 (14) 0.34205 (7) 0.02236 (6) 0.0277 (3)
C5 1.13534 (14) 0.36025 (8) −0.01141 (6) 0.0295 (3)
C6 1.00254 (14) 0.34772 (7) 0.02100 (6) 0.0296 (3)
H6 0.9130 0.3605 −0.0015 0.036*
C7 0.99719 (13) 0.31627 (7) 0.08690 (6) 0.0263 (2)
C8 0.84760 (13) 0.30508 (8) 0.12010 (6) 0.0281 (3)
H8A 0.7988 0.2595 0.1012 0.034*
H8B 0.7836 0.3494 0.1111 0.034*
C9 0.87122 (13) 0.29575 (7) 0.19647 (6) 0.0254 (3)
H9 0.9174 0.3443 0.2118 0.030*
C10 0.73303 (14) 0.28667 (7) 0.24034 (6) 0.0273 (3)
C11 0.66652 (15) 0.25452 (8) 0.36016 (6) 0.0307 (3)
H11 0.5659 0.2705 0.3447 0.037*
C12 0.66026 (16) 0.17078 (8) 0.37684 (7) 0.0365 (3)
C13 0.57712 (19) 0.12406 (10) 0.33433 (10) 0.0513 (4)
H13 0.5187 0.1457 0.2991 0.062*
C14 0.5791 (2) 0.04658 (12) 0.34297 (13) 0.0717 (6)
H14 0.5222 0.0151 0.3138 0.086*
C15 0.6627 (3) 0.01513 (11) 0.39351 (13) 0.0783 (7)
H15 0.6639 −0.0383 0.3991 0.094*
C16 0.7452 (3) 0.05997 (12) 0.43635 (10) 0.0724 (7)
H16 0.8025 0.0375 0.4715 0.087*
C17 0.7449 (2) 0.13879 (10) 0.42834 (8) 0.0519 (4)
H17 0.8020 0.1699 0.4578 0.062*
C18 0.71133 (15) 0.30534 (8) 0.41918 (7) 0.0355 (3)
C19 0.62417 (18) 0.30449 (10) 0.47767 (7) 0.0461 (4)
H19 0.5398 0.2725 0.4797 0.055*
C20 0.6594 (2) 0.34981 (12) 0.53304 (9) 0.0596 (5)
H20 0.5989 0.3490 0.5726 0.071*
C21 0.7820 (2) 0.39607 (13) 0.53074 (10) 0.0679 (6)
H21 0.8059 0.4270 0.5688 0.081*
C22 0.8697 (2) 0.39761 (14) 0.47359 (11) 0.0721 (6)
H22 0.9541 0.4296 0.4720 0.087*
C23 0.8343 (2) 0.35184 (11) 0.41767 (9) 0.0533 (4)
H23 0.8953 0.3527 0.3783 0.064*
C24 1.18222 (13) 0.31673 (8) 0.24787 (6) 0.0274 (3)
C25 1.21466 (16) 0.28510 (9) 0.31128 (7) 0.0377 (3)
H25 1.2090 0.2318 0.3171 0.045*
C26 1.25474 (18) 0.32987 (11) 0.36556 (7) 0.0494 (4)
H26 1.2770 0.3073 0.4083 0.059*
C27 1.2627 (2) 0.40751 (11) 0.35813 (8) 0.0525 (4)
H27 1.2896 0.4384 0.3957 0.063*
C28 1.23137 (18) 0.43995 (10) 0.29567 (8) 0.0461 (4)
H28 1.2370 0.4933 0.2902 0.055*
C29 1.19146 (15) 0.39432 (8) 0.24068 (7) 0.0347 (3)
H29 1.1704 0.4169 0.1978 0.042*
C30 0.94220 (15) 0.16198 (7) 0.18354 (6) 0.0311 (3)
H30A 0.9619 0.1621 0.1339 0.037*
H30B 0.8356 0.1519 0.1905 0.037*
C31 1.03199 (15) 0.10040 (7) 0.21717 (7) 0.0313 (3)
C32 1.00795 (17) 0.08224 (8) 0.28514 (7) 0.0369 (3)
H32 0.9328 0.1078 0.3099 0.044*
C33 1.09188 (18) 0.02740 (9) 0.31743 (9) 0.0449 (4)
H33 1.0739 0.0154 0.3639 0.054*
C34 1.20184 (17) −0.00989 (8) 0.28199 (10) 0.0483 (4)
H34 1.2612 −0.0466 0.3044 0.058*
C35 1.22548 (19) 0.00598 (9) 0.21423 (10) 0.0535 (4)
H35 1.2999 −0.0203 0.1896 0.064*
C36 1.13978 (18) 0.06090 (9) 0.18180 (9) 0.0442 (4)
H36 1.1556 0.0713 0.1349 0.053*
C37 1.53137 (14) 0.34969 (9) 0.02154 (7) 0.0368 (3)
H37A 1.5315 0.3794 0.0637 0.055*
H37B 1.6122 0.3667 −0.0080 0.055*
H37C 1.5449 0.2960 0.0325 0.055*
C38 1.01921 (18) 0.40522 (12) −0.11254 (8) 0.0523 (4)
H38A 0.9625 0.3582 −0.1168 0.078*
H38B 1.0446 0.4240 −0.1580 0.078*
H38C 0.9597 0.4432 −0.0886 0.078*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.02261 (15) 0.0813 (3) 0.03029 (17) 0.00153 (17) −0.00103 (14) 0.01267 (18)
O1 0.0218 (4) 0.0640 (6) 0.0226 (4) −0.0016 (4) 0.0025 (3) 0.0056 (5)
O2 0.0294 (5) 0.0712 (7) 0.0230 (5) −0.0013 (5) −0.0009 (4) 0.0162 (5)
N1 0.0222 (5) 0.0317 (5) 0.0222 (5) 0.0003 (4) 0.0004 (4) 0.0019 (4)
N2 0.0229 (5) 0.0445 (6) 0.0227 (5) 0.0020 (5) 0.0021 (4) 0.0030 (4)
C1 0.0216 (6) 0.0343 (6) 0.0215 (6) 0.0009 (5) −0.0017 (5) 0.0020 (5)
C2 0.0250 (6) 0.0323 (6) 0.0183 (5) 0.0005 (5) 0.0010 (5) −0.0018 (5)
C3 0.0208 (5) 0.0355 (6) 0.0212 (5) 0.0016 (5) −0.0012 (5) −0.0014 (5)
C4 0.0243 (6) 0.0380 (6) 0.0208 (6) −0.0013 (5) 0.0024 (5) −0.0020 (5)
C5 0.0281 (6) 0.0423 (7) 0.0180 (5) −0.0022 (5) −0.0009 (5) 0.0035 (5)
C6 0.0243 (6) 0.0422 (7) 0.0224 (6) 0.0009 (5) −0.0038 (5) 0.0040 (5)
C7 0.0231 (6) 0.0353 (6) 0.0204 (5) −0.0001 (5) 0.0004 (5) 0.0007 (5)
C8 0.0219 (6) 0.0407 (7) 0.0216 (6) 0.0018 (5) −0.0007 (5) 0.0039 (5)
C9 0.0200 (5) 0.0355 (6) 0.0207 (6) −0.0001 (5) −0.0004 (4) 0.0021 (5)
C10 0.0238 (6) 0.0351 (6) 0.0230 (6) −0.0022 (5) 0.0002 (5) 0.0013 (5)
C11 0.0255 (6) 0.0458 (8) 0.0206 (6) 0.0015 (6) 0.0038 (5) 0.0012 (5)
C12 0.0341 (7) 0.0478 (8) 0.0275 (6) 0.0034 (6) 0.0126 (6) 0.0038 (6)
C13 0.0409 (9) 0.0509 (9) 0.0622 (11) −0.0062 (7) 0.0103 (8) −0.0039 (8)
C14 0.0596 (12) 0.0533 (11) 0.1023 (18) −0.0122 (9) 0.0277 (13) −0.0074 (12)
C15 0.1006 (17) 0.0443 (10) 0.0899 (16) 0.0067 (11) 0.0567 (15) 0.0114 (11)
C16 0.1033 (17) 0.0658 (12) 0.0480 (10) 0.0370 (13) 0.0324 (12) 0.0247 (10)
C17 0.0691 (11) 0.0576 (9) 0.0289 (7) 0.0223 (9) 0.0124 (7) 0.0087 (7)
C18 0.0349 (7) 0.0471 (8) 0.0244 (6) 0.0062 (6) −0.0002 (5) −0.0011 (6)
C19 0.0486 (9) 0.0604 (9) 0.0294 (7) 0.0029 (8) 0.0071 (7) −0.0055 (7)
C20 0.0639 (11) 0.0822 (13) 0.0326 (8) 0.0110 (10) 0.0034 (8) −0.0154 (8)
C21 0.0647 (12) 0.0924 (14) 0.0466 (10) 0.0085 (11) −0.0098 (9) −0.0324 (10)
C22 0.0525 (11) 0.0978 (15) 0.0660 (13) −0.0125 (10) −0.0053 (10) −0.0334 (12)
C23 0.0420 (9) 0.0742 (11) 0.0438 (9) −0.0045 (8) 0.0056 (7) −0.0170 (8)
C24 0.0192 (5) 0.0433 (7) 0.0198 (6) 0.0003 (5) 0.0000 (4) −0.0005 (5)
C25 0.0329 (7) 0.0549 (8) 0.0254 (6) −0.0070 (6) −0.0057 (6) 0.0076 (6)
C26 0.0445 (9) 0.0813 (12) 0.0225 (6) −0.0125 (8) −0.0070 (6) 0.0035 (7)
C27 0.0495 (9) 0.0759 (12) 0.0322 (8) −0.0116 (9) −0.0053 (7) −0.0157 (8)
C28 0.0455 (8) 0.0502 (8) 0.0427 (9) −0.0019 (7) −0.0066 (7) −0.0112 (7)
C29 0.0319 (7) 0.0438 (7) 0.0284 (7) 0.0000 (6) −0.0050 (5) −0.0002 (6)
C30 0.0314 (6) 0.0367 (7) 0.0252 (6) −0.0026 (5) −0.0017 (5) −0.0004 (5)
C31 0.0324 (7) 0.0307 (6) 0.0307 (6) −0.0050 (5) −0.0009 (5) −0.0019 (5)
C32 0.0453 (8) 0.0353 (7) 0.0300 (7) 0.0008 (6) −0.0027 (6) −0.0012 (6)
C33 0.0562 (10) 0.0364 (7) 0.0421 (8) −0.0038 (7) −0.0116 (8) 0.0052 (6)
C34 0.0419 (8) 0.0338 (7) 0.0693 (11) −0.0036 (6) −0.0122 (8) 0.0103 (7)
C35 0.0433 (9) 0.0411 (8) 0.0762 (12) 0.0069 (7) 0.0152 (9) 0.0040 (8)
C36 0.0484 (9) 0.0402 (7) 0.0439 (8) 0.0014 (7) 0.0117 (7) 0.0035 (7)
C37 0.0231 (6) 0.0587 (9) 0.0285 (6) 0.0000 (6) 0.0012 (5) 0.0009 (6)
C38 0.0369 (8) 0.0890 (12) 0.0310 (7) −0.0062 (8) −0.0069 (6) 0.0259 (8)

Geometric parameters (Å, °)

S1—C10 1.6532 (13) C18—C23 1.383 (2)
O1—C4 1.3679 (15) C18—C19 1.392 (2)
O1—C37 1.4190 (15) C19—C20 1.387 (2)
O2—C5 1.3704 (15) C19—H19 0.9500
O2—C38 1.4223 (17) C20—C21 1.379 (3)
N1—C9 1.4696 (16) C20—H20 0.9500
N1—C1 1.4773 (15) C21—C22 1.374 (3)
N1—C30 1.4804 (16) C21—H21 0.9500
N2—C10 1.3276 (16) C22—C23 1.400 (3)
N2—C11 1.4621 (16) C22—H22 0.9500
N2—H1N 0.903 (17) C23—H23 0.9500
C1—C2 1.5277 (16) C24—C29 1.381 (2)
C1—C24 1.5286 (17) C24—C25 1.3950 (18)
C1—H1 1.0000 C25—C26 1.375 (2)
C2—C7 1.3872 (16) C25—H25 0.9500
C2—C3 1.4061 (17) C26—C27 1.381 (3)
C3—C4 1.3817 (17) C26—H26 0.9500
C3—H3 0.9500 C27—C28 1.382 (2)
C4—C5 1.4111 (18) C27—H27 0.9500
C5—C6 1.3771 (18) C28—C29 1.394 (2)
C6—C7 1.4080 (17) C28—H28 0.9500
C6—H6 0.9500 C29—H29 0.9500
C7—C8 1.5148 (17) C30—C31 1.5096 (19)
C8—C9 1.5223 (16) C30—H30A 0.9900
C8—H8A 0.9900 C30—H30B 0.9900
C8—H8B 0.9900 C31—C36 1.385 (2)
C9—C10 1.5262 (17) C31—C32 1.389 (2)
C9—H9 1.0000 C32—C33 1.384 (2)
C11—C12 1.516 (2) C32—H32 0.9500
C11—C18 1.5202 (19) C33—C34 1.381 (2)
C11—H11 1.0000 C33—H33 0.9500
C12—C17 1.388 (2) C34—C35 1.375 (3)
C12—C13 1.394 (2) C34—H34 0.9500
C13—C14 1.379 (3) C35—C36 1.396 (2)
C13—H13 0.9500 C35—H35 0.9500
C14—C15 1.365 (4) C36—H36 0.9500
C14—H14 0.9500 C37—H37A 0.9800
C15—C16 1.375 (4) C37—H37B 0.9800
C15—H15 0.9500 C37—H37C 0.9800
C16—C17 1.401 (3) C38—H38A 0.9800
C16—H16 0.9500 C38—H38B 0.9800
C17—H17 0.9500 C38—H38C 0.9800
C4—O1—C37 117.50 (10) C23—C18—C11 123.29 (13)
C5—O2—C38 117.01 (11) C19—C18—C11 118.05 (13)
C9—N1—C1 108.58 (9) C20—C19—C18 120.62 (16)
C9—N1—C30 113.17 (10) C20—C19—H19 119.7
C1—N1—C30 113.06 (10) C18—C19—H19 119.7
C10—N2—C11 126.52 (11) C21—C20—C19 120.09 (17)
C10—N2—H1N 113.2 (10) C21—C20—H20 120.0
C11—N2—H1N 120.0 (10) C19—C20—H20 120.0
N1—C1—C2 112.49 (9) C22—C21—C20 120.22 (16)
N1—C1—C24 106.58 (10) C22—C21—H21 119.9
C2—C1—C24 115.33 (10) C20—C21—H21 119.9
N1—C1—H1 107.4 C21—C22—C23 119.72 (19)
C2—C1—H1 107.4 C21—C22—H22 120.1
C24—C1—H1 107.4 C23—C22—H22 120.1
C7—C2—C3 119.32 (10) C18—C23—C22 120.69 (16)
C7—C2—C1 121.50 (10) C18—C23—H23 119.7
C3—C2—C1 119.17 (11) C22—C23—H23 119.7
C4—C3—C2 121.04 (11) C29—C24—C25 118.44 (12)
C4—C3—H3 119.5 C29—C24—C1 123.56 (11)
C2—C3—H3 119.5 C25—C24—C1 117.86 (12)
O1—C4—C3 125.35 (11) C26—C25—C24 121.03 (15)
O1—C4—C5 115.08 (10) C26—C25—H25 119.5
C3—C4—C5 119.57 (11) C24—C25—H25 119.5
O2—C5—C6 125.09 (12) C25—C26—C27 120.22 (15)
O2—C5—C4 115.50 (11) C25—C26—H26 119.9
C6—C5—C4 119.40 (11) C27—C26—H26 119.9
C5—C6—C7 121.15 (11) C26—C27—C28 119.65 (14)
C5—C6—H6 119.4 C26—C27—H27 120.2
C7—C6—H6 119.4 C28—C27—H27 120.2
C2—C7—C6 119.50 (11) C27—C28—C29 119.95 (16)
C2—C7—C8 122.00 (10) C27—C28—H28 120.0
C6—C7—C8 118.49 (11) C29—C28—H28 120.0
C7—C8—C9 108.18 (10) C24—C29—C28 120.71 (13)
C7—C8—H8A 110.1 C24—C29—H29 119.6
C9—C8—H8A 110.1 C28—C29—H29 119.6
C7—C8—H8B 110.1 N1—C30—C31 110.48 (10)
C9—C8—H8B 110.1 N1—C30—H30A 109.6
H8A—C8—H8B 108.4 C31—C30—H30A 109.6
N1—C9—C8 112.50 (10) N1—C30—H30B 109.6
N1—C9—C10 110.78 (10) C31—C30—H30B 109.6
C8—C9—C10 116.83 (10) H30A—C30—H30B 108.1
N1—C9—H9 105.2 C36—C31—C32 118.35 (13)
C8—C9—H9 105.2 C36—C31—C30 121.53 (13)
C10—C9—H9 105.2 C32—C31—C30 120.13 (12)
N2—C10—C9 110.92 (10) C33—C32—C31 121.00 (14)
N2—C10—S1 124.93 (10) C33—C32—H32 119.5
C9—C10—S1 123.89 (9) C31—C32—H32 119.5
N2—C11—C12 107.35 (11) C34—C33—C32 119.92 (16)
N2—C11—C18 110.72 (11) C34—C33—H33 120.0
C12—C11—C18 114.96 (11) C32—C33—H33 120.0
N2—C11—H11 107.9 C35—C34—C33 120.09 (15)
C12—C11—H11 107.9 C35—C34—H34 120.0
C18—C11—H11 107.9 C33—C34—H34 120.0
C17—C12—C13 119.47 (15) C34—C35—C36 119.74 (16)
C17—C12—C11 122.26 (14) C34—C35—H35 120.1
C13—C12—C11 117.97 (14) C36—C35—H35 120.1
C14—C13—C12 120.5 (2) C31—C36—C35 120.86 (15)
C14—C13—H13 119.8 C31—C36—H36 119.6
C12—C13—H13 119.8 C35—C36—H36 119.6
C15—C14—C13 120.0 (2) O1—C37—H37A 109.5
C15—C14—H14 120.0 O1—C37—H37B 109.5
C13—C14—H14 120.0 H37A—C37—H37B 109.5
C14—C15—C16 120.67 (18) O1—C37—H37C 109.5
C14—C15—H15 119.7 H37A—C37—H37C 109.5
C16—C15—H15 119.7 H37B—C37—H37C 109.5
C15—C16—C17 120.2 (2) O2—C38—H38A 109.5
C15—C16—H16 119.9 O2—C38—H38B 109.5
C17—C16—H16 119.9 H38A—C38—H38B 109.5
C12—C17—C16 119.16 (19) O2—C38—H38C 109.5
C12—C17—H17 120.4 H38A—C38—H38C 109.5
C16—C17—H17 120.4 H38B—C38—H38C 109.5
C23—C18—C19 118.66 (14)
C9—N1—C1—C2 −47.06 (13) N2—C11—C12—C13 −76.53 (16)
C30—N1—C1—C2 79.40 (12) C18—C11—C12—C13 159.81 (13)
C9—N1—C1—C24 80.27 (11) C17—C12—C13—C14 −0.3 (2)
C30—N1—C1—C24 −153.27 (10) C11—C12—C13—C14 173.60 (15)
N1—C1—C2—C7 14.37 (17) C12—C13—C14—C15 0.1 (3)
C24—C1—C2—C7 −108.15 (14) C13—C14—C15—C16 0.2 (3)
N1—C1—C2—C3 −165.91 (11) C14—C15—C16—C17 −0.4 (3)
C24—C1—C2—C3 71.57 (14) C13—C12—C17—C16 0.1 (2)
C7—C2—C3—C4 1.25 (18) C11—C12—C17—C16 −173.46 (15)
C1—C2—C3—C4 −178.48 (11) C15—C16—C17—C12 0.2 (3)
C37—O1—C4—C3 −5.03 (19) N2—C11—C18—C23 −1.5 (2)
C37—O1—C4—C5 173.83 (13) C12—C11—C18—C23 120.33 (16)
C2—C3—C4—O1 176.79 (12) N2—C11—C18—C19 178.80 (13)
C2—C3—C4—C5 −2.03 (19) C12—C11—C18—C19 −59.35 (18)
C38—O2—C5—C6 −5.5 (2) C23—C18—C19—C20 0.5 (2)
C38—O2—C5—C4 175.76 (14) C11—C18—C19—C20 −179.80 (15)
O1—C4—C5—O2 1.68 (17) C18—C19—C20—C21 −0.3 (3)
C3—C4—C5—O2 −179.38 (11) C19—C20—C21—C22 0.1 (3)
O1—C4—C5—C6 −177.17 (12) C20—C21—C22—C23 −0.1 (3)
C3—C4—C5—C6 1.76 (19) C19—C18—C23—C22 −0.5 (3)
O2—C5—C6—C7 −179.48 (13) C11—C18—C23—C22 179.80 (17)
C4—C5—C6—C7 −0.7 (2) C21—C22—C23—C18 0.3 (3)
C3—C2—C7—C6 −0.20 (18) N1—C1—C24—C29 −107.96 (13)
C1—C2—C7—C6 179.52 (11) C2—C1—C24—C29 17.67 (17)
C3—C2—C7—C8 −179.26 (12) N1—C1—C24—C25 67.68 (14)
C1—C2—C7—C8 0.47 (19) C2—C1—C24—C25 −166.70 (11)
C5—C6—C7—C2 0.0 (2) C29—C24—C25—C26 0.1 (2)
C5—C6—C7—C8 179.06 (12) C1—C24—C25—C26 −175.77 (13)
C2—C7—C8—C9 17.38 (17) C24—C25—C26—C27 0.4 (2)
C6—C7—C8—C9 −161.69 (11) C25—C26—C27—C28 −0.5 (3)
C1—N1—C9—C8 69.61 (13) C26—C27—C28—C29 0.2 (3)
C30—N1—C9—C8 −56.79 (13) C25—C24—C29—C28 −0.4 (2)
C1—N1—C9—C10 −157.57 (10) C1—C24—C29—C28 175.21 (13)
C30—N1—C9—C10 76.03 (12) C27—C28—C29—C24 0.3 (2)
C7—C8—C9—N1 −52.47 (14) C9—N1—C30—C31 −164.19 (10)
C7—C8—C9—C10 177.76 (10) C1—N1—C30—C31 71.84 (13)
C11—N2—C10—C9 174.98 (12) N1—C30—C31—C36 −111.71 (14)
C11—N2—C10—S1 0.6 (2) N1—C30—C31—C32 68.10 (15)
N1—C9—C10—N2 36.60 (14) C36—C31—C32—C33 1.6 (2)
C8—C9—C10—N2 167.18 (11) C30—C31—C32—C33 −178.21 (13)
N1—C9—C10—S1 −148.92 (10) C31—C32—C33—C34 0.3 (2)
C8—C9—C10—S1 −18.34 (16) C32—C33—C34—C35 −1.7 (2)
C10—N2—C11—C12 113.87 (15) C33—C34—C35—C36 1.2 (3)
C10—N2—C11—C18 −119.91 (14) C32—C31—C36—C35 −2.1 (2)
N2—C11—C12—C17 97.16 (15) C30—C31—C36—C35 177.71 (14)
C18—C11—C12—C17 −26.50 (19) C34—C35—C36—C31 0.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H1N···N1 0.903 (17) 2.139 (16) 2.6548 (15) 115.4 (12)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5134).

References

  1. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  2. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  3. Naicker, T., Arvidsson, P. I., Kruger, H. G., Maguire, G. E. M. & Govender, T. (2011a). Eur. J. Org. Chem. doi:10.1002/ejoc.201100923.
  4. Naicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2011b). Acta Cryst. E67, o1403. [DOI] [PMC free article] [PubMed]
  5. Naicker, T., Petzold, K., Singh, T., Arvidsson, P. I., Kruger, H. G., Maguire, G. E. M. & Govender, T. (2010). Tetrahedron Asymmetry, 21, 2859–2867.
  6. Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  7. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811049324/hg5134sup1.cif

e-67-o3441-sup1.cif (28KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811049324/hg5134Isup2.hkl

e-67-o3441-Isup2.hkl (365.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811049324/hg5134Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES