Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 25;67(Pt 12):o3444. doi: 10.1107/S1600536811048987

Methyl 5-(4-hy­droxy-3-meth­oxy­phen­yl)-2-(4-meth­oxy­benzyl­idene)-7-methyl-3-oxo-2,3-dihydro-5H-thia­zolo[3,2-a]pyrimidine-6-carboxyl­ate

H Nagarajaiah a, Noor Shahina Begum a,*
PMCID: PMC3239076  PMID: 22199924

Abstract

In the title compound, C24H22N2O6S, a pyrimidine ring substituted with 4-hy­droxy-3-meth­oxy­phenyl is fused with a thia­zole ring. The 4-hy­droxy-3-meth­oxy­phenyl group is positioned axially to the pyrimidine ring, making a dihedral angle 85.36 (7)°. The pyrimidine ring adopts a twist boat conformation. In the crystal, O—H⋯N inter­actions result in a chain running along the b axis. The carbonyl O atom bonded to the thia­zole ring is involved in two C—H⋯O hydrogen-bond inter­actions forming centrosymmetric dimers; the ten- and six-membered rings resulting from these inter­actions have R 2 2(10) and R 1 2(6) motifs, respectively.

Related literature

For pharmacological properties of pyrimidine derivatives, see: Alam et al. (2010). For related structures, see: Jotani et al. (2010). For graph-set motifs, see: Bernstein et al. (1995).graphic file with name e-67-o3444-scheme1.jpg

Experimental

Crystal data

  • C24H22N2O6S

  • M r = 466.50

  • Triclinic, Inline graphic

  • a = 6.8096 (12) Å

  • b = 9.9343 (18) Å

  • c = 16.246 (3) Å

  • α = 86.816 (3)°

  • β = 85.588 (3)°

  • γ = 81.318 (3)°

  • V = 1082.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 296 K

  • 0.18 × 0.16 × 0.16 mm

Data collection

  • Bruker SMART APEX CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998) T min = 0.966, T max = 0.969

  • 6570 measured reflections

  • 4581 independent reflections

  • 3452 reflections with I > 2σ(I)

  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.069

  • wR(F 2) = 0.279

  • S = 1.33

  • 4581 reflections

  • 303 parameters

  • H-atom parameters constrained

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.62 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811048987/pv2473sup1.cif

e-67-o3444-sup1.cif (22.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811048987/pv2473Isup2.hkl

e-67-o3444-Isup2.hkl (219.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811048987/pv2473Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6⋯N2i 0.82 2.01 2.783 (4) 156
C10—H10⋯O2ii 0.93 2.55 3.425 (4) 156
C12—H12⋯O2ii 0.93 2.67 3.499 (4) 149
C1—H1A⋯O6iii 0.96 2.57 3.444 (5) 152
C17—H17C⋯O2iv 0.96 2.47 3.429 (5) 179

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

NSB is thankful to the University Grants Commission (UGC), India, for financial assistance and the Department of Science and Technology, (DST), India, for the data-collection facility under the IRHPA–DST program.

supplementary crystallographic information

Comment

Pyrimidine derivatives are of interest because of their pharmacological properties (Alam et al., 2010).

The central pyrimidine ring with a chiral C5 atom is significantly puckered and adopts a conformation which is best described as an intermediate between a boat and a screw boat form as seen earlier (Jotani et al., 2010). The atoms C5 and N1 deviate from the mean plane C6/C7/N2/C8 by 0.1024 (3) and -0.0602 (3) Å, respectively, indicating that the conformation of the pyrimidine ring is that of a twisted boat. In the molecule, The fused thiazole-pyrimidine ring is coplanar with benzylidene ring with dihedral angle 5.19 (7)°. The dihedral angle between the thiazolopyrimidine ring and 4-hydroxy-3-methoxy-phenyl group is 85.36 (7)°. The crystal structure is stabilized by a strong intermolecular O—H···N hydrogen bond resulting in a one dimensional chain of molecules along the b axis. The structure is further consolidated by C—H···O type intermolecular interactions, involving carbonyl O2 atom, forming centrosymmetric dimers; the ten and 6 membered rings thus resulting from these interactions can be described as R22(10) and R21(6) motifs in graph-set notations (Bernstein et al., 1995).

Experimental

A mixture of 4-(4-hydroxy-3-methoxy-phenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydro -pyrimidine-5-carboxylic acid methyl ester (0.01 mol), chloroaceticacid (0.01 mol), 4-methoxy benzaldehyde (0.01 mol) and sodium acetate (1.5 g) in a mixture of glacial acetic acid and acetic anhydride (25 ml; 1:1) was refluxed for 8–10 h.The reaction mixture was concentrated and the solid thus obtained was filtered and recrystallized from ethyl acetate to get the title compound. (78% yield, mp 427 K). The compound was recrystallized by slow evaporation of an ethyl acetate-ethanol (3:2) solution, yielding pale yellow single crystals suitable for X-ray diffraction studies.

Refinement

The H atoms were placed at calculated positions in the riding model approximation with O—H = 0.820 Å and C—H = 0.93, 0.96, 0.98 Å, for aryl, methyl and methyne H-atoms, respectively, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C/O) for other H atoms.

Figures

Fig. 1.

Fig. 1.

ORTEP-3 (Farrugia, 1997) view of the title compound, showing 50% probability ellipsoids and the atom numbering scheme.

Fig. 2.

Fig. 2.

A unit cell packing of the title compound showing intermolecular interactions with dotted lines. H-atoms not involved in hydrogen bonding have been excluded for clarity.

Crystal data

C24H22N2O6S V = 1082.1 (3) Å3
Mr = 466.50 Z = 2
Triclinic, P1 F(000) = 488
Hall symbol: -P 1 Dx = 1.432 Mg m3
a = 6.8096 (12) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.9343 (18) Å µ = 0.20 mm1
c = 16.246 (3) Å T = 296 K
α = 86.816 (3)° Block, yellow
β = 85.588 (3)° 0.18 × 0.16 × 0.16 mm
γ = 81.318 (3)°

Data collection

Bruker SMART APEX CCD detector diffractometer 4581 independent reflections
Radiation source: fine-focus sealed tube 3452 reflections with I > 2σ(I)
graphite Rint = 0.018
ω scans θmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 1998) h = −8→8
Tmin = 0.966, Tmax = 0.969 k = −12→10
6570 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.279 H-atom parameters constrained
S = 1.33 w = 1/[σ2(Fo2) + (0.1558P)2] where P = (Fo2 + 2Fc2)/3
4581 reflections (Δ/σ)max < 0.001
303 parameters Δρmax = 0.69 e Å3
0 restraints Δρmin = −0.62 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.15410 (13) 0.32220 (9) 0.29148 (5) 0.0312 (3)
O6 0.0905 (4) −0.4233 (2) 0.13814 (16) 0.0352 (6)
H6 0.0110 −0.4779 0.1447 0.053*
O2 −0.1068 (4) 0.0292 (2) 0.39078 (14) 0.0314 (6)
N1 −0.1155 (4) 0.1703 (3) 0.27435 (16) 0.0257 (6)
O3 −0.6100 (4) 0.0792 (3) 0.16436 (16) 0.0372 (6)
N2 −0.0791 (5) 0.3389 (3) 0.16660 (17) 0.0299 (7)
O1 0.8821 (4) 0.3698 (3) 0.54235 (17) 0.0415 (7)
C6 −0.3314 (5) 0.1959 (3) 0.15964 (19) 0.0263 (7)
O5 −0.2673 (4) −0.3960 (2) 0.22167 (17) 0.0365 (6)
C5 −0.2615 (5) 0.1047 (3) 0.2339 (2) 0.0276 (7)
H5 −0.3765 0.0977 0.2733 0.033*
C19 −0.2694 (5) −0.1507 (3) 0.2295 (2) 0.0276 (7)
H19 −0.3925 −0.1391 0.2593 0.033*
O4 −0.5284 (4) 0.1916 (3) 0.04588 (15) 0.0465 (8)
C21 0.0002 (5) −0.2994 (3) 0.1616 (2) 0.0288 (7)
C18 −0.1708 (5) −0.0377 (3) 0.20939 (19) 0.0264 (7)
C3 −0.0444 (5) 0.1214 (3) 0.3500 (2) 0.0281 (7)
C12 0.4787 (5) 0.1626 (4) 0.5346 (2) 0.0298 (7)
H12 0.4232 0.0936 0.5647 0.036*
C8 −0.0300 (5) 0.2758 (3) 0.2354 (2) 0.0281 (7)
C20 −0.1849 (5) −0.2791 (3) 0.20538 (19) 0.0271 (7)
C22 0.0966 (5) −0.1868 (3) 0.1404 (2) 0.0313 (8)
H22 0.2194 −0.1982 0.1103 0.038*
C2 0.1203 (5) 0.1940 (3) 0.3687 (2) 0.0297 (7)
C10 0.2243 (5) 0.1629 (3) 0.4359 (2) 0.0276 (7)
H10 0.1809 0.0946 0.4709 0.033*
C11 0.3928 (5) 0.2179 (4) 0.4631 (2) 0.0315 (8)
C7 −0.2434 (5) 0.3037 (3) 0.1307 (2) 0.0284 (7)
C14 0.7248 (5) 0.3131 (4) 0.5199 (2) 0.0321 (8)
C23 0.0097 (5) −0.0576 (4) 0.1639 (2) 0.0324 (8)
H23 0.0747 0.0168 0.1487 0.039*
C13 0.6444 (5) 0.2068 (4) 0.5625 (2) 0.0335 (8)
H13 0.7015 0.1654 0.6095 0.040*
C1 −0.3048 (6) 0.4018 (4) 0.0603 (2) 0.0382 (9)
H1A −0.2234 0.3761 0.0112 0.057*
H1B −0.2881 0.4922 0.0735 0.057*
H1C −0.4419 0.3997 0.0514 0.057*
C4 −0.5039 (5) 0.1509 (4) 0.1248 (2) 0.0321 (8)
C15 0.6422 (6) 0.3702 (4) 0.4484 (2) 0.0405 (9)
H15 0.6966 0.4408 0.4194 0.049*
C17 0.9714 (6) 0.3169 (4) 0.6163 (2) 0.0397 (9)
H17A 0.8779 0.3364 0.6630 0.060*
H17B 1.0875 0.3587 0.6223 0.060*
H17C 1.0090 0.2201 0.6135 0.060*
C16 0.4802 (6) 0.3238 (4) 0.4194 (2) 0.0375 (9)
H16 0.4281 0.3623 0.3708 0.045*
C24 −0.4702 (6) −0.3847 (4) 0.2508 (3) 0.0441 (10)
H24A −0.4846 −0.3583 0.3071 0.066*
H24B −0.5158 −0.4710 0.2476 0.066*
H24C −0.5479 −0.3171 0.2173 0.066*
C9 −0.7019 (7) 0.1526 (6) 0.0106 (3) 0.0592 (14)
H9A −0.7048 0.0570 0.0218 0.089*
H9B −0.6936 0.1714 −0.0480 0.089*
H9C −0.8212 0.2037 0.0349 0.089*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0364 (5) 0.0289 (5) 0.0312 (5) −0.0120 (4) −0.0098 (4) 0.0032 (3)
O6 0.0355 (14) 0.0286 (13) 0.0421 (15) −0.0088 (10) 0.0013 (11) −0.0022 (11)
O2 0.0380 (14) 0.0306 (13) 0.0281 (12) −0.0132 (11) −0.0077 (10) 0.0057 (10)
N1 0.0267 (15) 0.0245 (14) 0.0270 (14) −0.0077 (11) −0.0056 (11) 0.0039 (11)
O3 0.0300 (14) 0.0459 (16) 0.0385 (14) −0.0149 (12) −0.0089 (11) 0.0070 (12)
N2 0.0384 (17) 0.0251 (15) 0.0287 (15) −0.0107 (12) −0.0077 (12) 0.0000 (11)
O1 0.0365 (15) 0.0447 (16) 0.0481 (16) −0.0150 (12) −0.0171 (12) −0.0011 (13)
C6 0.0282 (17) 0.0274 (17) 0.0242 (16) −0.0065 (13) −0.0064 (13) 0.0047 (13)
O5 0.0351 (14) 0.0282 (13) 0.0480 (15) −0.0142 (11) 0.0049 (11) −0.0023 (11)
C5 0.0259 (17) 0.0287 (17) 0.0308 (17) −0.0114 (13) −0.0068 (13) 0.0036 (13)
C19 0.0250 (17) 0.0305 (18) 0.0296 (17) −0.0111 (13) −0.0034 (13) 0.0005 (13)
O4 0.0453 (17) 0.070 (2) 0.0309 (14) −0.0285 (15) −0.0194 (12) 0.0146 (13)
C21 0.0297 (18) 0.0279 (17) 0.0298 (17) −0.0072 (13) −0.0065 (13) 0.0030 (13)
C18 0.0270 (17) 0.0288 (17) 0.0250 (16) −0.0072 (13) −0.0089 (12) 0.0029 (13)
C3 0.0309 (18) 0.0264 (17) 0.0276 (17) −0.0049 (14) −0.0067 (13) 0.0002 (13)
C12 0.0302 (18) 0.0326 (18) 0.0280 (17) −0.0071 (14) −0.0057 (13) −0.0014 (14)
C8 0.0279 (18) 0.0255 (16) 0.0308 (17) −0.0032 (13) −0.0015 (13) −0.0030 (13)
C20 0.0340 (19) 0.0248 (17) 0.0253 (16) −0.0122 (14) −0.0055 (13) 0.0009 (13)
C22 0.0272 (18) 0.0269 (18) 0.0398 (19) −0.0058 (13) −0.0019 (14) 0.0028 (14)
C2 0.0319 (19) 0.0269 (17) 0.0324 (17) −0.0098 (14) −0.0022 (14) −0.0064 (14)
C10 0.0296 (18) 0.0292 (18) 0.0258 (16) −0.0086 (14) −0.0056 (13) −0.0011 (13)
C11 0.0317 (19) 0.0308 (18) 0.0329 (18) −0.0074 (14) −0.0018 (14) −0.0001 (14)
C7 0.0281 (18) 0.0276 (17) 0.0303 (17) −0.0035 (13) −0.0096 (13) 0.0007 (13)
C14 0.0293 (19) 0.0285 (18) 0.0396 (19) −0.0040 (14) −0.0073 (14) −0.0034 (15)
C23 0.0272 (18) 0.0298 (18) 0.043 (2) −0.0118 (14) −0.0066 (14) 0.0030 (15)
C13 0.0300 (19) 0.0342 (19) 0.0354 (19) 0.0006 (14) −0.0067 (14) −0.0023 (15)
C1 0.047 (2) 0.0300 (19) 0.039 (2) −0.0091 (16) −0.0150 (17) 0.0093 (16)
C4 0.0279 (18) 0.0346 (19) 0.0338 (18) −0.0040 (14) −0.0063 (14) 0.0029 (15)
C15 0.040 (2) 0.039 (2) 0.046 (2) −0.0174 (17) −0.0140 (17) 0.0082 (17)
C17 0.034 (2) 0.049 (2) 0.039 (2) −0.0080 (17) −0.0112 (16) −0.0030 (17)
C16 0.044 (2) 0.0294 (19) 0.041 (2) −0.0110 (16) −0.0120 (17) 0.0061 (15)
C24 0.035 (2) 0.034 (2) 0.063 (3) −0.0134 (16) 0.0078 (18) −0.0012 (18)
C9 0.048 (3) 0.095 (4) 0.042 (2) −0.032 (3) −0.021 (2) 0.017 (2)

Geometric parameters (Å, °)

S1—C8 1.735 (3) C12—C13 1.387 (5)
S1—C2 1.765 (4) C12—C11 1.388 (5)
O6—C21 1.352 (4) C12—H12 0.9300
O6—H6 0.8200 C22—C23 1.391 (5)
O2—C3 1.210 (4) C22—H22 0.9300
N1—C8 1.376 (4) C2—C10 1.343 (5)
N1—C3 1.391 (4) C10—C11 1.451 (4)
N1—C5 1.479 (4) C10—H10 0.9300
O3—C4 1.215 (4) C11—C16 1.416 (5)
N2—C8 1.292 (4) C7—C1 1.503 (5)
N2—C7 1.398 (4) C14—C15 1.386 (5)
O1—C14 1.364 (4) C14—C13 1.389 (5)
O1—C17 1.427 (4) C23—H23 0.9300
C6—C7 1.350 (5) C13—H13 0.9300
C6—C4 1.479 (5) C1—H1A 0.9600
C6—C5 1.530 (4) C1—H1B 0.9600
O5—C20 1.369 (4) C1—H1C 0.9600
O5—C24 1.416 (4) C15—C16 1.382 (5)
C5—C18 1.518 (5) C15—H15 0.9300
C5—H5 0.9800 C17—H17A 0.9600
C19—C20 1.382 (5) C17—H17B 0.9600
C19—C18 1.404 (4) C17—H17C 0.9600
C19—H19 0.9300 C16—H16 0.9300
O4—C4 1.338 (4) C24—H24A 0.9600
O4—C9 1.463 (4) C24—H24B 0.9600
C21—C20 1.392 (5) C24—H24C 0.9600
C21—C22 1.395 (4) C9—H9A 0.9600
C18—C23 1.378 (5) C9—H9B 0.9600
C3—C2 1.480 (4) C9—H9C 0.9600
C8—S1—C2 91.56 (16) C12—C11—C16 117.3 (3)
C21—O6—H6 109.5 C12—C11—C10 119.2 (3)
C8—N1—C3 116.4 (3) C16—C11—C10 123.6 (3)
C8—N1—C5 121.3 (3) C6—C7—N2 121.8 (3)
C3—N1—C5 122.1 (3) C6—C7—C1 127.0 (3)
C8—N2—C7 117.4 (3) N2—C7—C1 111.2 (3)
C14—O1—C17 117.6 (3) O1—C14—C15 115.0 (3)
C7—C6—C4 125.2 (3) O1—C14—C13 125.7 (3)
C7—C6—C5 122.9 (3) C15—C14—C13 119.3 (3)
C4—C6—C5 111.8 (3) C18—C23—C22 121.2 (3)
C20—O5—C24 118.5 (3) C18—C23—H23 119.4
N1—C5—C18 110.5 (3) C22—C23—H23 119.4
N1—C5—C6 108.4 (2) C12—C13—C14 119.7 (3)
C18—C5—C6 112.2 (3) C12—C13—H13 120.2
N1—C5—H5 108.6 C14—C13—H13 120.2
C18—C5—H5 108.6 C7—C1—H1A 109.5
C6—C5—H5 108.6 C7—C1—H1B 109.5
C20—C19—C18 120.5 (3) H1A—C1—H1B 109.5
C20—C19—H19 119.8 C7—C1—H1C 109.5
C18—C19—H19 119.8 H1A—C1—H1C 109.5
C4—O4—C9 115.8 (3) H1B—C1—H1C 109.5
O6—C21—C20 123.0 (3) O3—C4—O4 123.1 (3)
O6—C21—C22 118.4 (3) O3—C4—C6 122.2 (3)
C20—C21—C22 118.6 (3) O4—C4—C6 114.6 (3)
C23—C18—C19 118.5 (3) C16—C15—C14 121.0 (3)
C23—C18—C5 119.9 (3) C16—C15—H15 119.5
C19—C18—C5 121.6 (3) C14—C15—H15 119.5
O2—C3—N1 123.1 (3) O1—C17—H17A 109.5
O2—C3—C2 127.1 (3) O1—C17—H17B 109.5
N1—C3—C2 109.7 (3) H17A—C17—H17B 109.5
C13—C12—C11 122.2 (3) O1—C17—H17C 109.5
C13—C12—H12 118.9 H17A—C17—H17C 109.5
C11—C12—H12 118.9 H17B—C17—H17C 109.5
N2—C8—N1 126.2 (3) C15—C16—C11 120.5 (3)
N2—C8—S1 121.8 (3) C15—C16—H16 119.7
N1—C8—S1 112.0 (2) C11—C16—H16 119.7
O5—C20—C19 125.4 (3) O5—C24—H24A 109.5
O5—C20—C21 113.7 (3) O5—C24—H24B 109.5
C19—C20—C21 120.9 (3) H24A—C24—H24B 109.5
C23—C22—C21 120.2 (3) O5—C24—H24C 109.5
C23—C22—H22 119.9 H24A—C24—H24C 109.5
C21—C22—H22 119.9 H24B—C24—H24C 109.5
C10—C2—C3 122.8 (3) O4—C9—H9A 109.5
C10—C2—S1 126.9 (3) O4—C9—H9B 109.5
C3—C2—S1 110.3 (2) H9A—C9—H9B 109.5
C2—C10—C11 131.0 (3) O4—C9—H9C 109.5
C2—C10—H10 114.5 H9A—C9—H9C 109.5
C11—C10—H10 114.5 H9B—C9—H9C 109.5
C8—N1—C5—C18 108.8 (3) N1—C3—C2—C10 −176.5 (3)
C3—N1—C5—C18 −65.4 (4) O2—C3—C2—S1 −179.2 (3)
C8—N1—C5—C6 −14.4 (4) N1—C3—C2—S1 3.7 (4)
C3—N1—C5—C6 171.3 (3) C8—S1—C2—C10 177.4 (3)
C7—C6—C5—N1 10.4 (5) C8—S1—C2—C3 −2.8 (3)
C4—C6—C5—N1 −169.6 (3) C3—C2—C10—C11 177.5 (3)
C7—C6—C5—C18 −111.9 (4) S1—C2—C10—C11 −2.7 (6)
C4—C6—C5—C18 68.1 (4) C13—C12—C11—C16 −0.6 (6)
C20—C19—C18—C23 1.1 (5) C13—C12—C11—C10 177.6 (3)
C20—C19—C18—C5 179.0 (3) C2—C10—C11—C12 −177.3 (4)
N1—C5—C18—C23 −51.6 (4) C2—C10—C11—C16 0.8 (6)
C6—C5—C18—C23 69.4 (4) C4—C6—C7—N2 −179.3 (3)
N1—C5—C18—C19 130.5 (3) C5—C6—C7—N2 0.7 (5)
C6—C5—C18—C19 −108.4 (3) C4—C6—C7—C1 2.2 (6)
C8—N1—C3—O2 179.9 (3) C5—C6—C7—C1 −177.8 (3)
C5—N1—C3—O2 −5.6 (5) C8—N2—C7—C6 −9.0 (5)
C8—N1—C3—C2 −2.9 (4) C8—N2—C7—C1 169.7 (3)
C5—N1—C3—C2 171.6 (3) C17—O1—C14—C15 179.0 (3)
C7—N2—C8—N1 4.7 (5) C17—O1—C14—C13 −0.7 (5)
C7—N2—C8—S1 −173.2 (2) C19—C18—C23—C22 −2.0 (5)
C3—N1—C8—N2 −177.3 (3) C5—C18—C23—C22 −179.9 (3)
C5—N1—C8—N2 8.1 (5) C21—C22—C23—C18 0.9 (5)
C3—N1—C8—S1 0.8 (4) C11—C12—C13—C14 2.3 (6)
C5—N1—C8—S1 −173.7 (2) O1—C14—C13—C12 177.3 (3)
C2—S1—C8—N2 179.4 (3) C15—C14—C13—C12 −2.3 (6)
C2—S1—C8—N1 1.2 (3) C9—O4—C4—O3 4.3 (6)
C24—O5—C20—C19 13.4 (5) C9—O4—C4—C6 −178.0 (4)
C24—O5—C20—C21 −167.5 (3) C7—C6—C4—O3 −159.7 (4)
C18—C19—C20—O5 179.9 (3) C5—C6—C4—O3 20.3 (5)
C18—C19—C20—C21 0.8 (5) C7—C6—C4—O4 22.6 (5)
O6—C21—C20—O5 −0.6 (5) C5—C6—C4—O4 −157.4 (3)
C22—C21—C20—O5 178.9 (3) O1—C14—C15—C16 −179.0 (4)
O6—C21—C20—C19 178.6 (3) C13—C14—C15—C16 0.6 (6)
C22—C21—C20—C19 −1.9 (5) C14—C15—C16—C11 1.1 (6)
O6—C21—C22—C23 −179.4 (3) C12—C11—C16—C15 −1.0 (6)
C20—C21—C22—C23 1.0 (5) C10—C11—C16—C15 −179.2 (4)
O2—C3—C2—C10 0.6 (6)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O6—H6···N2i 0.82 2.01 2.783 (4) 156
C10—H10···O2ii 0.93 2.55 3.425 (4) 156
C12—H12···O2ii 0.93 2.67 3.499 (4) 149
C1—H1A···O6iii 0.96 2.57 3.444 (5) 152
C17—H17C···O2iv 0.96 2.47 3.429 (5) 179

Symmetry codes: (i) x, y−1, z; (ii) −x, −y, −z+1; (iii) −x, −y, −z; (iv) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2473).

References

  1. Alam, O., Khan, S. A., Siddiqui, N. & Ahsan, W. (2010). Med. Chem. Res. 19, 1245–1258.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (1998). SMART, SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconcin, USA.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  6. Jotani, M. M., Baldaniya, B. B. & Jasinski, J. P. (2010). Acta Cryst. E66, o599–o600. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON Chemical Crystallography Laboratory, Oxford, England.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811048987/pv2473sup1.cif

e-67-o3444-sup1.cif (22.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811048987/pv2473Isup2.hkl

e-67-o3444-Isup2.hkl (219.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811048987/pv2473Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES