Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 25;67(Pt 12):o3448. doi: 10.1107/S1600536811049750

Ethyl 4-[(E)-(2-hy­droxy­benzyl­idene)amino]­piperidine-1-carboxyl­ate

Rui-Qin Fang a,b,*, Zhi-Li Shan a, Xing Guo a
PMCID: PMC3239079  PMID: 22199927

Abstract

In the title compound, C15H20N2O3, the piperidine ring adopts a chair conformation, although the amide N atom is almost planar (bond angle sum = 359.7°). The mol­ecule adopts an E conformation about the C=N bond, which allows for the formation of an intra­molecular O—H⋯N hydrogen bond. In the crystal, mol­ecules are linked by C—H⋯O inter­ations, resulting in C(6) chains propagating in [010].

Related literature

For a related structure, see: Tas et al. (2007). For standard bond lengths, see: Allen et al. 1987).graphic file with name e-67-o3448-scheme1.jpg

Experimental

Crystal data

  • C15H20N2O3

  • M r = 276.33

  • Monoclinic, Inline graphic

  • a = 15.732 (3) Å

  • b = 9.1890 (18) Å

  • c = 10.414 (2) Å

  • β = 97.24 (3)°

  • V = 1493.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.28 × 0.23 × 0.22 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.976, T max = 0.981

  • 3098 measured reflections

  • 2922 independent reflections

  • 1750 reflections with I > 2σ(I)

  • R int = 0.032

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.065

  • wR(F 2) = 0.174

  • S = 1.09

  • 2922 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811049750/hb6521sup1.cif

e-67-o3448-sup1.cif (18.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811049750/hb6521Isup2.hkl

e-67-o3448-Isup2.hkl (143.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811049750/hb6521Isup3.cdx

Supplementary material file. DOI: 10.1107/S1600536811049750/hb6521Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.87 2.592 (3) 146
C15—H15B⋯O2i 0.96 2.56 3.475 (5) 160

Symmetry code: (i) Inline graphic.

Acknowledgments

We are grateful to the Fundamental Research Funds for the Central Universities (ZYGX2009J085) and the China Postdoctoral Science Foundation (20110491380) for support.

supplementary crystallographic information

Comment

The cystal structure of the Schiff base N-(1-ethoxycarbonyl)piperidine-4-yl)-3,5-di-t-butylsalicylaldimine, derived from ethyl 4-aminopiperidine-1-carboxylate and 3,5-di-tert-butylsalicylaldehyde, has been reported before (Tas et al., 2007). There are two tert butyl subsitituents on the 3- and 5- positons, as compared with the title compound. The molecular structure of title compound (I), Fig. 1, possesses an E configuration about C7=N1 double bond, and the bond length 1.268 (3) Å is in the normal range. (Allen et al. 1987). The C13=O2 double bond 1.208 (4) Å. The C2—O1, N2—C13 and C13—O3 single bond lengths are 1.352 (3), 1.343 (4) and 1.347 (4) Å, respectively. All these bond lengths is comparable to that observed in the reference compound. (Tas et al., 2007) The torsion angle of C9—C8—N1—C7 and C12—C8—N1—C7 is -108.8 (3) ° and 131.3 (3) °. The Rms deviation of phenyl ring is 0.0072 Å, and the Rms of six-member piperidine ring of chair conformation is 0.2282 Å. The The dihedral angle between phenyl plane and piperidine ring in title compound is 77.58 (10) °. There is an intramolecular hydrogen bond, O1—H1···N1, together with one kind of intermolecular hydrogen bond C15—H15B···O2 in the crystal structure of title compound. All these hydrogen bonds the molecule to form an extended network along b axis, Fig. 2.

Experimental

The title compound was prepared by stirring a mixture of salicylaldehyde (122 mg, 1 mmol) and ethyl 4-aminopiperidine-1-carboxylate (172 mg, 1 mmol) in methanol (15 ml) for 3 h at room temperature. After keeping the solution in air for 4 d, yellow block-shaped crystals of (I) were formed. The crystals were isolated, washed three times with methanol and dried in a vacuum desiccator containing anhydrous CaCl2.

Refinement

All the H atoms, were placed in idealized positions (C—H = 0.93- 0.96 Å, O—H = 0.82 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The structure of the title compound (I) showing 35% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of (I), viewed along the b axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C15H20N2O3 F(000) = 592
Mr = 276.33 Dx = 1.229 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1428 reflections
a = 15.732 (3) Å θ = 2.5–24.2°
b = 9.1890 (18) Å µ = 0.09 mm1
c = 10.414 (2) Å T = 293 K
β = 97.24 (3)° Block, yellow
V = 1493.5 (5) Å3 0.28 × 0.23 × 0.22 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer 1750 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.032
graphite θmax = 26.0°, θmin = 1.3°
ω/2θ scan h = −19→19
Absorption correction: ψ scan (North et al., 1968) k = −11→0
Tmin = 0.976, Tmax = 0.981 l = 0→12
3098 measured reflections 3 standard reflections every 200 reflections
2922 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065 H-atom parameters constrained
wR(F2) = 0.174 w = 1/[σ2(Fo2) + (0.0611P)2 + 0.6373P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max < 0.001
2922 reflections Δρmax = 0.21 e Å3
183 parameters Δρmin = −0.16 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.022 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.07284 (18) 0.1352 (3) 0.1715 (3) 0.0491 (7)
C2 −0.11096 (19) 0.0759 (3) 0.2735 (3) 0.0503 (7)
C3 −0.19939 (19) 0.0618 (3) 0.2628 (3) 0.0619 (8)
H3 −0.2248 0.0232 0.3312 0.074*
C4 −0.2494 (2) 0.1047 (4) 0.1517 (3) 0.0632 (9)
H4 −0.3087 0.0962 0.1460 0.076*
C5 −0.2130 (2) 0.1602 (4) 0.0488 (3) 0.0661 (9)
H5 −0.2471 0.1874 −0.0268 0.079*
C6 −0.1251 (2) 0.1749 (4) 0.0594 (3) 0.0624 (8)
H6 −0.1003 0.2124 −0.0100 0.075*
C7 0.01943 (18) 0.1592 (3) 0.1838 (3) 0.0515 (7)
H7 0.0431 0.2014 0.1153 0.062*
C8 0.16035 (17) 0.1521 (3) 0.2946 (3) 0.0526 (7)
H8 0.1725 0.2147 0.2228 0.063*
C9 0.2061 (2) 0.0066 (4) 0.2873 (3) 0.0645 (9)
H9A 0.1913 −0.0348 0.2017 0.077*
H9B 0.1865 −0.0601 0.3496 0.077*
C10 0.3033 (2) 0.0227 (4) 0.3151 (3) 0.0677 (9)
H10A 0.3300 −0.0725 0.3170 0.081*
H10B 0.3242 0.0792 0.2469 0.081*
C11 0.2866 (2) 0.2392 (4) 0.4458 (3) 0.0680 (9)
H11A 0.3062 0.3029 0.3813 0.082*
H11B 0.3038 0.2814 0.5305 0.082*
C12 0.18953 (18) 0.2265 (3) 0.4225 (3) 0.0557 (8)
H12A 0.1697 0.1713 0.4923 0.067*
H12B 0.1644 0.3229 0.4224 0.067*
C13 0.37125 (18) 0.0361 (4) 0.5437 (3) 0.0584 (8)
C14 0.4508 (2) −0.1707 (5) 0.6252 (4) 0.0828 (11)
H14A 0.4184 −0.1817 0.6980 0.099*
H14B 0.5018 −0.1140 0.6531 0.099*
C15 0.4747 (3) −0.3153 (5) 0.5780 (5) 0.1084 (15)
H15A 0.4240 −0.3724 0.5553 0.163*
H15B 0.5117 −0.3639 0.6449 0.163*
H15C 0.5040 −0.3031 0.5032 0.163*
N1 0.06833 (14) 0.1243 (3) 0.2853 (2) 0.0528 (6)
N2 0.32588 (16) 0.0948 (3) 0.4385 (2) 0.0626 (7)
O1 −0.06447 (13) 0.0300 (2) 0.38413 (19) 0.0671 (6)
H1 −0.0133 0.0389 0.3780 0.101*
O2 0.38554 (15) 0.0953 (3) 0.6478 (2) 0.0837 (8)
O3 0.39911 (13) −0.0984 (3) 0.5189 (2) 0.0702 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0515 (17) 0.0451 (16) 0.0500 (17) 0.0037 (13) 0.0037 (13) 0.0011 (13)
C2 0.0551 (18) 0.0422 (16) 0.0534 (17) 0.0012 (13) 0.0065 (14) −0.0017 (14)
C3 0.0563 (19) 0.061 (2) 0.070 (2) −0.0036 (15) 0.0119 (16) −0.0025 (17)
C4 0.0478 (17) 0.064 (2) 0.078 (2) 0.0019 (15) 0.0065 (17) −0.0118 (18)
C5 0.059 (2) 0.069 (2) 0.066 (2) 0.0056 (17) −0.0080 (17) −0.0065 (17)
C6 0.063 (2) 0.070 (2) 0.0534 (18) 0.0038 (16) 0.0041 (15) 0.0062 (16)
C7 0.0537 (17) 0.0496 (17) 0.0518 (17) −0.0005 (14) 0.0089 (14) 0.0064 (14)
C8 0.0487 (16) 0.0589 (18) 0.0506 (17) 0.0013 (14) 0.0076 (13) 0.0110 (14)
C9 0.063 (2) 0.071 (2) 0.0567 (18) 0.0102 (16) −0.0036 (15) −0.0106 (16)
C10 0.065 (2) 0.079 (2) 0.0577 (19) 0.0233 (18) 0.0004 (16) 0.0001 (17)
C11 0.059 (2) 0.062 (2) 0.080 (2) −0.0032 (16) −0.0050 (17) −0.0067 (18)
C12 0.0566 (18) 0.0505 (17) 0.0603 (18) 0.0047 (14) 0.0087 (14) 0.0013 (15)
C13 0.0370 (15) 0.077 (2) 0.060 (2) −0.0037 (15) 0.0008 (14) 0.0034 (18)
C14 0.060 (2) 0.105 (3) 0.079 (2) 0.005 (2) −0.0110 (18) 0.025 (2)
C15 0.080 (3) 0.099 (3) 0.135 (4) 0.015 (2) −0.029 (3) 0.034 (3)
N1 0.0464 (14) 0.0562 (15) 0.0551 (15) 0.0019 (11) 0.0036 (11) 0.0084 (12)
N2 0.0598 (16) 0.0654 (17) 0.0588 (16) 0.0088 (13) −0.0075 (12) −0.0021 (14)
O1 0.0574 (13) 0.0852 (16) 0.0590 (13) −0.0027 (11) 0.0085 (10) 0.0187 (12)
O2 0.0713 (16) 0.113 (2) 0.0625 (15) −0.0005 (14) −0.0089 (12) −0.0106 (15)
O3 0.0568 (13) 0.0798 (16) 0.0697 (14) 0.0101 (12) −0.0085 (11) 0.0118 (12)

Geometric parameters (Å, °)

C1—C6 1.389 (4) C10—N2 1.450 (4)
C1—C2 1.394 (4) C10—H10A 0.9700
C1—C7 1.458 (4) C10—H10B 0.9700
C2—O1 1.352 (3) C11—N2 1.470 (4)
C2—C3 1.388 (4) C11—C12 1.520 (4)
C3—C4 1.373 (4) C11—H11A 0.9700
C3—H3 0.9300 C11—H11B 0.9700
C4—C5 1.375 (4) C12—H12A 0.9700
C4—H4 0.9300 C12—H12B 0.9700
C5—C6 1.380 (4) C13—O2 1.208 (4)
C5—H5 0.9300 C13—N2 1.343 (4)
C6—H6 0.9300 C13—O3 1.347 (4)
C7—N1 1.268 (3) C14—O3 1.449 (4)
C7—H7 0.9300 C14—C15 1.482 (6)
C8—N1 1.461 (3) C14—H14A 0.9700
C8—C12 1.516 (4) C14—H14B 0.9700
C8—C9 1.525 (4) C15—H15A 0.9600
C8—H8 0.9800 C15—H15B 0.9600
C9—C10 1.527 (4) C15—H15C 0.9600
C9—H9A 0.9700 O1—H1 0.8200
C9—H9B 0.9700
C6—C1—C2 118.5 (3) N2—C10—H10B 109.7
C6—C1—C7 120.7 (3) C9—C10—H10B 109.7
C2—C1—C7 120.8 (3) H10A—C10—H10B 108.2
O1—C2—C3 117.9 (3) N2—C11—C12 110.1 (3)
O1—C2—C1 122.2 (3) N2—C11—H11A 109.6
C3—C2—C1 119.9 (3) C12—C11—H11A 109.6
C4—C3—C2 120.2 (3) N2—C11—H11B 109.6
C4—C3—H3 119.9 C12—C11—H11B 109.6
C2—C3—H3 119.9 H11A—C11—H11B 108.2
C3—C4—C5 120.8 (3) C8—C12—C11 111.2 (2)
C3—C4—H4 119.6 C8—C12—H12A 109.4
C5—C4—H4 119.6 C11—C12—H12A 109.4
C4—C5—C6 119.1 (3) C8—C12—H12B 109.4
C4—C5—H5 120.5 C11—C12—H12B 109.4
C6—C5—H5 120.5 H12A—C12—H12B 108.0
C5—C6—C1 121.5 (3) O2—C13—N2 124.8 (3)
C5—C6—H6 119.3 O2—C13—O3 123.8 (3)
C1—C6—H6 119.3 N2—C13—O3 111.3 (3)
N1—C7—C1 121.8 (3) O3—C14—C15 107.4 (3)
N1—C7—H7 119.1 O3—C14—H14A 110.2
C1—C7—H7 119.1 C15—C14—H14A 110.2
N1—C8—C12 108.9 (2) O3—C14—H14B 110.2
N1—C8—C9 108.2 (2) C15—C14—H14B 110.2
C12—C8—C9 110.3 (2) H14A—C14—H14B 108.5
N1—C8—H8 109.8 C14—C15—H15A 109.5
C12—C8—H8 109.8 C14—C15—H15B 109.5
C9—C8—H8 109.8 H15A—C15—H15B 109.5
C8—C9—C10 111.9 (3) C14—C15—H15C 109.5
C8—C9—H9A 109.2 H15A—C15—H15C 109.5
C10—C9—H9A 109.2 H15B—C15—H15C 109.5
C8—C9—H9B 109.2 C7—N1—C8 120.2 (2)
C10—C9—H9B 109.2 C13—N2—C10 125.9 (3)
H9A—C9—H9B 107.9 C13—N2—C11 120.3 (3)
N2—C10—C9 109.9 (3) C10—N2—C11 113.6 (2)
N2—C10—H10A 109.7 C2—O1—H1 109.5
C9—C10—H10A 109.7 C13—O3—C14 116.0 (3)
C6—C1—C2—O1 177.8 (3) C9—C8—C12—C11 53.5 (3)
C7—C1—C2—O1 −4.2 (4) N2—C11—C12—C8 −55.7 (4)
C6—C1—C2—C3 −1.9 (4) C1—C7—N1—C8 −179.1 (3)
C7—C1—C2—C3 176.2 (3) C12—C8—N1—C7 131.3 (3)
O1—C2—C3—C4 −179.0 (3) C9—C8—N1—C7 −108.8 (3)
C1—C2—C3—C4 0.6 (4) O2—C13—N2—C10 −175.8 (3)
C2—C3—C4—C5 0.9 (5) O3—C13—N2—C10 4.1 (4)
C3—C4—C5—C6 −1.2 (5) O2—C13—N2—C11 −2.3 (5)
C4—C5—C6—C1 0.0 (5) O3—C13—N2—C11 177.6 (3)
C2—C1—C6—C5 1.6 (5) C9—C10—N2—C13 115.9 (3)
C7—C1—C6—C5 −176.5 (3) C9—C10—N2—C11 −58.0 (4)
C6—C1—C7—N1 179.7 (3) C12—C11—N2—C13 −115.3 (3)
C2—C1—C7—N1 1.8 (4) C12—C11—N2—C10 59.0 (4)
N1—C8—C9—C10 −172.0 (2) O2—C13—O3—C14 −1.6 (4)
C12—C8—C9—C10 −53.0 (3) N2—C13—O3—C14 178.5 (3)
C8—C9—C10—N2 54.5 (4) C15—C14—O3—C13 −179.8 (3)
N1—C8—C12—C11 172.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.82 1.87 2.592 (3) 146
C15—H15B···O2i 0.96 2.56 3.475 (5) 160

Symmetry codes: (i) −x+1, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6521).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  3. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  4. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Tas, E., Ucar, I., Kasumov, V. T., Kilic, A. & Bulut, A. (2007). Spectrochim. Acta Part A, 68, 463–468. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811049750/hb6521sup1.cif

e-67-o3448-sup1.cif (18.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811049750/hb6521Isup2.hkl

e-67-o3448-Isup2.hkl (143.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811049750/hb6521Isup3.cdx

Supplementary material file. DOI: 10.1107/S1600536811049750/hb6521Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES