Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 25;67(Pt 12):o3450–o3451. doi: 10.1107/S1600536811050070

Bis[2-(4-amino­phen­yl)-4,5-dihydro-1H-imidazol-3-ium] dichloride monohydrate

Krešimir Molčanov a,*, Ivana Stolić b, Biserka Kojić-Prodić a, Miroslav Bajić b
PMCID: PMC3239081  PMID: 22199929

Abstract

The asymmetric unit of the title compound, 2C9H12N3 +·2Cl·H2O, comprises two mol­ecules, two chloride anions and one mol­ecule of crystal water. In the imidazolinium ring, the protonation contributes to delocalization of the positive charge over the two C—N bonds. Both chloride anions are acceptors of four hydrogen bonds in a flattened tetra­hedron environment. The donors are NH2 groups, the NH groups of the imidazolinium rings and the water mol­ecule. These hydrogen bonds and N—H⋯O(H2O) hydrogen bonds form a three-dimensional network.

Related literature

For background and the biological activity of aromatic amidines, see: Chen et al. (2010); Hu et al. (2009); Del Poeta et al. (1998); Baraldi et al. (2004); Jarak et al. (2011); Neidle (2001); Stolić et al. (2011). For the synthesis, see Widra et al. (1990). For related compounds see: Jarak et al. (2005); Legrand et al. (2008). For puckering parameters, see: Cremer & Pople (1975);graphic file with name e-67-o3450-scheme1.jpg

Experimental

Crystal data

  • 2C9H12N3 +·2Cl·H2O

  • M r = 413.35

  • Orthorhombic, Inline graphic

  • a = 10.5307 (2) Å

  • b = 17.9659 (4) Å

  • c = 22.4290 (5) Å

  • V = 4243.42 (16) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 2.91 mm−1

  • T = 293 K

  • 0.4 × 0.05 × 0.04 mm

Data collection

  • Oxford Xcalibur Nova R Ruby diffractometer

  • Absorption correction: multi-scan (ABSPACK; Oxford Diffraction, 2010) T min = 0.389, T max = 0.892

  • 13695 measured reflections

  • 4375 independent reflections

  • 3054 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.116

  • S = 1.00

  • 4375 reflections

  • 348 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811050070/bq2316sup1.cif

e-67-o3450-sup1.cif (20.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811050070/bq2316Isup2.hkl

e-67-o3450-Isup2.hkl (210.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811050070/bq2316Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H11⋯Cl2i 0.86 2.45 3.296 (2) 170
N1A—H12⋯Cl1 0.86 2.45 3.304 (2) 170
N1B—H21⋯Cl2ii 0.86 2.59 3.448 (2) 174
N1B—H22⋯O1iii 0.86 2.02 2.882 (3) 177
N2A—H2C⋯Cl2 0.86 2.29 3.1113 (18) 160
N2B—H2D⋯Cl1ii 0.86 2.35 3.1615 (19) 157
N3A—H3C⋯Cl1i 0.86 2.36 3.1900 (17) 162
O1—H1A⋯Cl2iv 0.93 (2) 2.21 (2) 3.1329 (19) 178 (3)
O1—H1B⋯Cl1v 0.95 (2) 2.21 (2) 3.147 (2) 170 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

This research was funded by the Croatian Ministry of Science, Education and Sports, grant Nos. 098–1191344-2943 and 053–0982914-2965.

supplementary crystallographic information

Comment

Nucleic acids are important targets for many biomolecules and small molecules. Many anticancer drugs are known to exert their biological activity through bonding into minor groove of DNA. Aromatic amidines which bind strongly into the DNA minor groove exhibit outstandindg antiparasitic (Chen et al., 2010), antibacterial (Hu et al., 2009), antifungal (Del Poeta et al., 1998), and antitumor activity (Baraldi et al., 2004). The amidinium moiety is known to contribute to DNA binding of small molecules by electrostatic, van der Waals and hydrogen bonding interactions (Neidle, 2001). Aminobenzamidine derivatives are very useful building blocks for construction of target complex molecules (Jarak et al., 2011). We found out that 4,5-dihydroimidazoles with cyclic amidine moiety at the terminal positions show sometimes better antitumor activity than corresponding unsubstituted or alkyl substituted amidines (Stolić et al., 2011). Detail analysis of interactions of these compounds with nucleic acids can help to design more potent agents against different types of diseases.

The asymmetric unit of I comprises two molecules (labeled as A and B) and a single molecule of crystal water (Fig. 1). The five-membered rings of the cations are almost planar, the Cremer-Pople (Cremer & Pople, 1975) puckering parameters Θ being 3.2° and 0.6° for A and B molecules, respectively. The cations, however, are not planar, since mean planes of six- and five-membered rings are tilted by 9.3° and 14.8°, respectively. Both imino nitrogen atoms of the imidazolinium ring are protonated, since the imidazole is stronger proton acceptor than the amine nitrogen. The positive charge is delocalized over the two C—N bonds in the five-membered ring (Scheme 1, Fig. 1), further stabilizing the cation. The chloride anions are acceptors of four hydrogen bonds in the shapes of flattened tetrahedra with different donor groups: Cl1 accepts hydrogen bonds from two NH group of the imidazolinium ring, one NH2 group and a water molecule; Cl2 is surrounded by two NH2 groups, one imidazolinium NH and a water molecule. The molecule of crystal water is a proton donor to chloride ions and acceptor of N—H···O bonds. Thus, crystal packing comprises three-dimensional hydrogen bonding network (Fig. 2, Table 1).

Experimental

The crude imidate ester hydrochloride (2.39 g, 12.8 mmol) prepared from 4-aminobenzonitrile (1.66 g, 14.1 mmol) in anhydrous methanol by Pinner reaction was suspended in anhydrous methanol (50 ml), 1,2-diaminoethane (12 ml) was added and mixture was refluxed for 12 h under the nitrogen atmosphere. The solvent was removed under reduced pressure and residue was recrystallized from ethanol-diethyl ether to yield 1.27 g (50.5%) of pale brown powder, m.p. 473 K; IR (νmax/cm-1): 3353, 3099, 1582, 1502, 1364, 1191, 949, 835; 1H NMR (DMSO-d6) δ/p.p.m.: 10.12 (s, 2H, NH), 7.76 (s, 2H, NH2), 6.65 (s, 2H, ArH), 6.46 (s, 2H, ArH), 2.50 (s, 4H, CH2).

Refinement

The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å and 0.97 Å for C and 0.86 Å for N atom and Uiso(H) = 1.2Ueq(C,N). The H atoms of water were located in difference map and then allowed to ride on their parent atoms, with O—H = 0.95 Å and 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

ORTEP-3 (Farrugia, 1997) drawing of the asymmetric unit of I. Displacement ellipsoids are drawn for the probability of 50% and hydrogen atoms are depicted as spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Hydrogen bonding in I. Symmetry operators: (i) x + 1/2, -y + 1/2, -z + 1; (ii) x - 1, y, z; (iii) -x + 1, y - 3/2, -z + 1/2; (iv) x, y - 1, z; (v) - x + 1, -y, -z + 1.

Crystal data

2C9H12N3+·2Cl·H2O F(000) = 1744
Mr = 413.35 Dx = 1.294 Mg m3
Orthorhombic, Pbca Cu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ac 2ab Cell parameters from 4375 reflections
a = 10.5307 (2) Å θ = 3.2–76.0°
b = 17.9659 (4) Å µ = 2.91 mm1
c = 22.4290 (5) Å T = 293 K
V = 4243.42 (16) Å3 Prism, colourless
Z = 8 0.4 × 0.05 × 0.04 mm

Data collection

Oxford Xcalibur Nova R Ruby diffractometer 3054 reflections with I > 2σ(I)
CCD detector, ω scans Rint = 0.030
Absorption correction: multi-scan (ABSPACK; Oxford Diffraction, 2010) θmax = 76.2°, θmin = 3.9°
Tmin = 0.389, Tmax = 0.892 h = −10→13
13695 measured reflections k = −22→18
4375 independent reflections l = −12→27

Refinement

Refinement on F2 3 restraints
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.0664P)2 + 0.1666P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.116 (Δ/σ)max < 0.001
S = 1.00 Δρmax = 0.24 e Å3
4375 reflections Δρmin = −0.13 e Å3
348 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1A 0.15472 (18) 0.24466 (12) 0.46353 (9) 0.0591 (4)
C2A 0.2329 (2) 0.20468 (13) 0.50240 (9) 0.0677 (5)
H2A 0.2799 0.1647 0.488 0.081*
C3A 0.2413 (2) 0.22367 (13) 0.56166 (9) 0.0649 (5)
H3A 0.2947 0.1966 0.5866 0.078*
C4A 0.17150 (17) 0.28251 (10) 0.58513 (8) 0.0529 (4)
C5A 0.09206 (18) 0.32174 (11) 0.54635 (9) 0.0590 (4)
H5A 0.0434 0.3609 0.561 0.071*
C6A 0.08469 (19) 0.30346 (12) 0.48693 (9) 0.0630 (5)
H6A 0.032 0.3309 0.4619 0.076*
C7A 0.17897 (17) 0.30141 (10) 0.64793 (8) 0.0536 (4)
C8A 0.2419 (2) 0.29987 (16) 0.74592 (10) 0.0797 (6)
H811 0.3175 0.3238 0.7616 0.096*
H812 0.2177 0.2594 0.7722 0.096*
C9A 0.1344 (2) 0.35524 (14) 0.73860 (10) 0.0759 (6)
H911 0.0625 0.3423 0.7636 0.091*
H912 0.1618 0.4054 0.7481 0.091*
N1A 0.1465 (2) 0.22627 (13) 0.40482 (8) 0.0825 (6)
H11 0.0974 0.2511 0.3815 0.099*
H12 0.1904 0.1898 0.391 0.099*
N2A 0.26224 (17) 0.27362 (11) 0.68540 (8) 0.0705 (5)
H2C 0.3218 0.2434 0.6753 0.085*
N3A 0.10317 (17) 0.34793 (10) 0.67552 (8) 0.0671 (4)
H3C 0.0421 0.3714 0.6584 0.081*
C1B 0.7185 (2) 0.49540 (12) 0.38839 (10) 0.0699 (5)
C2B 0.7994 (2) 0.48300 (13) 0.43669 (11) 0.0726 (6)
H2B 0.8718 0.4542 0.4314 0.087*
C3B 0.7741 (2) 0.51242 (13) 0.49165 (10) 0.0677 (5)
H3B 0.8288 0.5024 0.5232 0.081*
C4B 0.66745 (19) 0.55730 (11) 0.50120 (9) 0.0597 (4)
C5B 0.5881 (2) 0.57082 (13) 0.45265 (11) 0.0679 (5)
H5B 0.5171 0.601 0.4577 0.082*
C6B 0.6124 (2) 0.54067 (14) 0.39764 (11) 0.0738 (6)
H6B 0.5576 0.5505 0.3661 0.089*
C7B 0.64277 (17) 0.58804 (11) 0.55951 (10) 0.0593 (5)
C8B 0.6543 (2) 0.60604 (14) 0.66131 (11) 0.0752 (6)
H821 0.7238 0.632 0.6807 0.09*
H822 0.6143 0.5728 0.6897 0.09*
C9B 0.5585 (2) 0.66057 (15) 0.63481 (12) 0.0809 (7)
H921 0.4744 0.6527 0.6512 0.097*
H922 0.5839 0.7117 0.6419 0.097*
N1B 0.7415 (2) 0.46400 (14) 0.33459 (10) 0.0947 (7)
H21 0.8067 0.4359 0.3298 0.114*
H22 0.6908 0.4722 0.3053 0.114*
N2B 0.69789 (18) 0.56590 (11) 0.60876 (8) 0.0702 (5)
H2D 0.7541 0.5312 0.6099 0.084*
N3B 0.56234 (18) 0.64252 (11) 0.57148 (9) 0.0762 (5)
H3D 0.5174 0.6648 0.5449 0.091*
Cl1 0.33702 (5) 0.08741 (3) 0.36842 (2) 0.06847 (16)
Cl2 0.48675 (5) 0.16106 (3) 0.68365 (3) 0.08017 (19)
O1 0.4366 (2) 0.99224 (11) 0.26032 (8) 0.0905 (5)
H1A 0.461 (3) 0.9475 (12) 0.2776 (14) 0.136*
H1B 0.396 (3) 1.0191 (15) 0.2913 (12) 0.136*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1A 0.0660 (10) 0.0683 (11) 0.0431 (10) −0.0008 (9) 0.0021 (9) 0.0024 (9)
C2A 0.0789 (12) 0.0720 (13) 0.0522 (12) 0.0194 (10) 0.0007 (10) −0.0040 (10)
C3A 0.0728 (11) 0.0716 (12) 0.0503 (11) 0.0160 (10) −0.0065 (9) −0.0001 (9)
C4A 0.0563 (9) 0.0563 (10) 0.0461 (10) −0.0010 (8) 0.0003 (8) 0.0006 (8)
C5A 0.0666 (10) 0.0577 (10) 0.0527 (11) 0.0084 (9) 0.0027 (9) 0.0007 (8)
C6A 0.0677 (10) 0.0707 (12) 0.0506 (11) 0.0092 (10) −0.0040 (9) 0.0071 (9)
C7A 0.0588 (9) 0.0527 (9) 0.0492 (10) −0.0024 (8) −0.0012 (8) 0.0008 (8)
C8A 0.0945 (15) 0.0948 (17) 0.0499 (12) 0.0214 (13) −0.0123 (11) −0.0105 (11)
C9A 0.0898 (14) 0.0868 (15) 0.0511 (12) 0.0187 (13) −0.0059 (11) −0.0109 (11)
N1A 0.1041 (14) 0.0982 (15) 0.0453 (10) 0.0272 (12) −0.0067 (10) −0.0056 (9)
N2A 0.0768 (10) 0.0855 (12) 0.0491 (10) 0.0234 (9) −0.0076 (8) −0.0075 (8)
N3A 0.0762 (10) 0.0756 (11) 0.0496 (10) 0.0201 (9) −0.0077 (8) −0.0088 (8)
C1B 0.0866 (13) 0.0648 (12) 0.0582 (12) −0.0045 (11) 0.0046 (11) 0.0040 (10)
C2B 0.0807 (13) 0.0690 (13) 0.0682 (14) 0.0124 (11) 0.0058 (11) 0.0054 (11)
C3B 0.0758 (12) 0.0672 (12) 0.0601 (13) 0.0098 (10) −0.0006 (10) 0.0069 (10)
C4B 0.0647 (10) 0.0540 (10) 0.0606 (12) −0.0013 (9) 0.0017 (9) 0.0084 (9)
C5B 0.0686 (11) 0.0669 (12) 0.0684 (14) 0.0044 (10) −0.0027 (10) 0.0054 (10)
C6B 0.0821 (13) 0.0794 (15) 0.0600 (13) −0.0002 (12) −0.0092 (11) 0.0080 (11)
C7B 0.0587 (9) 0.0559 (10) 0.0634 (12) 0.0002 (8) 0.0003 (9) 0.0057 (9)
C8B 0.0797 (13) 0.0808 (15) 0.0652 (14) 0.0153 (12) 0.0023 (11) −0.0055 (11)
C9B 0.0854 (14) 0.0821 (15) 0.0753 (16) 0.0220 (13) 0.0018 (13) −0.0069 (12)
N1B 0.1131 (15) 0.1059 (17) 0.0651 (13) 0.0179 (14) −0.0007 (12) −0.0067 (12)
N2B 0.0787 (10) 0.0727 (11) 0.0592 (10) 0.0204 (9) −0.0019 (9) −0.0008 (8)
N3B 0.0819 (11) 0.0759 (11) 0.0707 (12) 0.0247 (10) −0.0048 (10) 0.0015 (9)
Cl1 0.0833 (3) 0.0644 (3) 0.0577 (3) −0.0134 (2) 0.0066 (2) −0.0012 (2)
Cl2 0.0760 (3) 0.0766 (3) 0.0879 (4) 0.0119 (3) 0.0061 (3) 0.0194 (3)
O1 0.1249 (14) 0.0828 (11) 0.0637 (10) 0.0098 (11) 0.0000 (10) 0.0030 (8)

Geometric parameters (Å, °)

C1A—N1A 1.360 (3) C1B—C2B 1.396 (3)
C1A—C6A 1.391 (3) C1B—C6B 1.397 (3)
C1A—C2A 1.398 (3) C2B—C3B 1.367 (3)
C2A—C3A 1.375 (3) C2B—H2B 0.93
C2A—H2A 0.93 C3B—C4B 1.399 (3)
C3A—C4A 1.391 (3) C3B—H3B 0.93
C3A—H3A 0.93 C4B—C5B 1.394 (3)
C4A—C5A 1.398 (3) C4B—C7B 1.443 (3)
C4A—C7A 1.451 (3) C5B—C6B 1.372 (3)
C5A—C6A 1.375 (3) C5B—H5B 0.93
C5A—H5A 0.93 C6B—H6B 0.93
C6A—H6A 0.93 C7B—N2B 1.310 (3)
C7A—N3A 1.311 (2) C7B—N3B 1.322 (3)
C7A—N2A 1.313 (2) C8B—N2B 1.456 (3)
C8A—N2A 1.453 (3) C8B—C9B 1.527 (3)
C8A—C9A 1.516 (3) C8B—H821 0.97
C8A—H811 0.97 C8B—H822 0.97
C8A—H812 0.97 C9B—N3B 1.458 (3)
C9A—N3A 1.458 (3) C9B—H921 0.97
C9A—H911 0.97 C9B—H922 0.97
C9A—H912 0.97 N1B—H21 0.86
N1A—H11 0.86 N1B—H22 0.86
N1A—H12 0.86 N2B—H2D 0.86
N2A—H2C 0.86 N3B—H3D 0.86
N3A—H3C 0.86 O1—H1A 0.928 (17)
C1B—N1B 1.354 (3) O1—H1B 0.947 (17)
N1A—C1A—C6A 121.06 (19) N1B—C1B—C6B 121.2 (2)
N1A—C1A—C2A 121.1 (2) C2B—C1B—C6B 117.7 (2)
C6A—C1A—C2A 117.84 (19) C3B—C2B—C1B 121.3 (2)
C3A—C2A—C1A 120.9 (2) C3B—C2B—H2B 119.4
C3A—C2A—H2A 119.6 C1B—C2B—H2B 119.4
C1A—C2A—H2A 119.6 C2B—C3B—C4B 121.1 (2)
C2A—C3A—C4A 121.37 (19) C2B—C3B—H3B 119.4
C2A—C3A—H3A 119.3 C4B—C3B—H3B 119.4
C4A—C3A—H3A 119.3 C5B—C4B—C3B 117.5 (2)
C3A—C4A—C5A 117.64 (18) C5B—C4B—C7B 122.24 (19)
C3A—C4A—C7A 121.11 (17) C3B—C4B—C7B 120.26 (19)
C5A—C4A—C7A 121.23 (17) C6B—C5B—C4B 121.5 (2)
C6A—C5A—C4A 121.10 (19) C6B—C5B—H5B 119.3
C6A—C5A—H5A 119.4 C4B—C5B—H5B 119.3
C4A—C5A—H5A 119.4 C5B—C6B—C1B 120.8 (2)
C5A—C6A—C1A 121.15 (19) C5B—C6B—H6B 119.6
C5A—C6A—H6A 119.4 C1B—C6B—H6B 119.6
C1A—C6A—H6A 119.4 N2B—C7B—N3B 109.7 (2)
N3A—C7A—N2A 110.29 (18) N2B—C7B—C4B 124.63 (18)
N3A—C7A—C4A 125.06 (17) N3B—C7B—C4B 125.64 (19)
N2A—C7A—C4A 124.64 (18) N2B—C8B—C9B 102.17 (19)
N2A—C8A—C9A 102.81 (17) N2B—C8B—H821 111.3
N2A—C8A—H811 111.2 C9B—C8B—H821 111.3
C9A—C8A—H811 111.2 N2B—C8B—H822 111.3
N2A—C8A—H812 111.2 C9B—C8B—H822 111.3
C9A—C8A—H812 111.2 H821—C8B—H822 109.2
H811—C8A—H812 109.1 N3B—C9B—C8B 102.61 (18)
N3A—C9A—C8A 102.38 (17) N3B—C9B—H921 111.2
N3A—C9A—H911 111.3 C8B—C9B—H921 111.2
C8A—C9A—H911 111.3 N3B—C9B—H922 111.2
N3A—C9A—H912 111.3 C8B—C9B—H922 111.2
C8A—C9A—H912 111.3 H921—C9B—H922 109.2
H911—C9A—H912 109.2 C1B—N1B—H21 120
C1A—N1A—H11 120 C1B—N1B—H22 120
C1A—N1A—H12 120 H21—N1B—H22 120
H11—N1A—H12 120 C7B—N2B—C8B 113.13 (18)
C7A—N2A—C8A 112.10 (18) C7B—N2B—H2D 123.4
C7A—N2A—H2C 124 C8B—N2B—H2D 123.4
C8A—N2A—H2C 124 C7B—N3B—C9B 112.36 (19)
C7A—N3A—C9A 112.22 (17) C7B—N3B—H3D 123.8
C7A—N3A—H3C 123.9 C9B—N3B—H3D 123.8
C9A—N3A—H3C 123.9 H1A—O1—H1B 105 (2)
N1B—C1B—C2B 121.1 (2)
N1A—C1A—C2A—C3A 179.7 (2) N1B—C1B—C2B—C3B −177.6 (2)
C6A—C1A—C2A—C3A −0.8 (3) C6B—C1B—C2B—C3B 1.7 (4)
C1A—C2A—C3A—C4A 0.7 (4) C1B—C2B—C3B—C4B −1.3 (4)
C2A—C3A—C4A—C5A 0.1 (3) C2B—C3B—C4B—C5B 0.0 (3)
C2A—C3A—C4A—C7A 178.9 (2) C2B—C3B—C4B—C7B −179.8 (2)
C3A—C4A—C5A—C6A −0.9 (3) C3B—C4B—C5B—C6B 0.8 (3)
C7A—C4A—C5A—C6A −179.66 (19) C7B—C4B—C5B—C6B −179.5 (2)
C4A—C5A—C6A—C1A 0.9 (3) C4B—C5B—C6B—C1B −0.3 (4)
N1A—C1A—C6A—C5A 179.4 (2) N1B—C1B—C6B—C5B 178.4 (2)
C2A—C1A—C6A—C5A 0.0 (3) C2B—C1B—C6B—C5B −0.9 (3)
C3A—C4A—C7A—N3A −169.1 (2) C5B—C4B—C7B—N2B 165.7 (2)
C5A—C4A—C7A—N3A 9.6 (3) C3B—C4B—C7B—N2B −14.6 (3)
C3A—C4A—C7A—N2A 10.2 (3) C5B—C4B—C7B—N3B −14.6 (3)
C5A—C4A—C7A—N2A −171.1 (2) C3B—C4B—C7B—N3B 165.2 (2)
N2A—C8A—C9A—N3A 4.1 (3) N2B—C8B—C9B—N3B 0.3 (3)
N3A—C7A—N2A—C8A 2.6 (3) N3B—C7B—N2B—C8B 0.8 (3)
C4A—C7A—N2A—C8A −176.8 (2) C4B—C7B—N2B—C8B −179.5 (2)
C9A—C8A—N2A—C7A −4.3 (3) C9B—C8B—N2B—C7B −0.7 (3)
N2A—C7A—N3A—C9A 0.5 (3) N2B—C7B—N3B—C9B −0.6 (3)
C4A—C7A—N3A—C9A 179.9 (2) C4B—C7B—N3B—C9B 179.7 (2)
C8A—C9A—N3A—C7A −3.1 (3) C8B—C9B—N3B—C7B 0.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1A—H11···Cl2i 0.86 2.45 3.296 (2) 170.
N1A—H12···Cl1 0.86 2.45 3.304 (2) 170.
N1B—H21···Cl2ii 0.86 2.59 3.448 (2) 174.
N1B—H22···O1iii 0.86 2.02 2.882 (3) 177.
N2A—H2C···Cl2 0.86 2.29 3.1113 (18) 160
N2B—H2D···Cl1ii 0.86 2.35 3.1615 (19) 157.
N3A—H3C···Cl1i 0.86 2.36 3.1900 (17) 162.
O1—H1A···Cl2iv 0.93 (2) 2.21 (2) 3.1329 (19) 178 (3)
O1—H1B···Cl1v 0.95 (2) 2.21 (2) 3.147 (2) 170 (3)

Symmetry codes: (i) x−1/2, −y+1/2, −z+1; (ii) x+1/2, −y+1/2, −z+1; (iii) −x+1, y−1/2, −z+1/2; (iv) −x+1, −y+1, −z+1; (v) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2316).

References

  1. Baraldi, P. G., Bovero, A., Fruttarolo, F., Preti, D., Tabrizi, M. A., Pavani, M. G. & Romagnoli, R. (2004). Med. Res. Rev. 24, 475–528. [DOI] [PubMed]
  2. Chen, X., Orser, B. A. & MacDonald, J. F. (2010). Eur. J. Pharmacol. 648, 15–23. [DOI] [PubMed]
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  4. Del Poeta, M., Schell, W. A., Dykstra, C. C., Jones, S. K., Tidwell, R. R., Czarny, A., Bajić, M., Bajić, Ma., Kumar, A., Boykin, D. W. & Perfect, J. R. (1998). Antimicrob. Agents Chemother. 42, 2495–2502. [DOI] [PMC free article] [PubMed]
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  7. Hu, L., Kully, M. L., Boykin, D. W. & Abood, N. (2009). Bioorg. Med. Chem. Lett. 19, 4626–4629. [DOI] [PubMed]
  8. Jarak, I., Karminski-Zamola, G., Pavlović, G. & Popović, Z. (2005). Acta Cryst. C61, o98–o100. [DOI] [PubMed]
  9. Jarak, I., Marjanović, M., Piantanida, I., Kralj, M. & Karminski-Zamola, G. (2011). Eur. J. Med. Chem. 46, 2807–2815. [DOI] [PubMed]
  10. Legrand, Y. M., Lee, A. van der & Barboiu, M. (2008). Acta Cryst. E64, o967–o968. [DOI] [PMC free article] [PubMed]
  11. Neidle, S. (2001). Nat. Prod. Rep. 18, 291–309. [DOI] [PubMed]
  12. Oxford Diffraction (2010). ABSPACK and CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Stolić, I., Mišković, K., Piantanida, I., Baus Lončar, M., Glavaš-Obrovac, Lj. & Bajić, M. (2011). Eur. J. Med. Chem. 46, 743–755. [DOI] [PubMed]
  15. Widra, R. L., Patterson, S. E. & Strekowski, L. (1990). J. Heterocycl. Chem. 27, 803–805.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811050070/bq2316sup1.cif

e-67-o3450-sup1.cif (20.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811050070/bq2316Isup2.hkl

e-67-o3450-Isup2.hkl (210.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811050070/bq2316Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES