Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 30;67(Pt 12):o3453. doi: 10.1107/S1600536811048999

Ethyl 2-(4-bromo­phen­yl)-1-sec-butyl-1H-benzimidazole-5-carboxyl­ate

Natarajan Arumugam a, Nurziana Ngah b, Shafida Abd Hamid b, Aisyah Saad Abdul Rahim a,*
PMCID: PMC3239083  PMID: 22199931

Abstract

In the title compound, C20H21BrN2O2, the bromo­phenyl ring is twisted by 40.13 (8)° from the benzimidazole mean plane and the Br atom deviates by 0.753 (1) Å from that plane. The sec-butyl group is disordered over two conformations in a 0.898 (5):0.102 (5) ratio. In the crystal, mol­ecules related by translation along [Inline graphic10] are linked into chains via weak C—H⋯Br hydrogen bonds.

Related literature

For the synthesis and closely related structures, see: Arumugam et al. (2010, 2011); Navarrete-Vazquez et al. (2006). For therapeutic properties of benzimidazole derivatives, see: Vitale et al. (2008, 2009); Arienti et al. (2005). For standard bond lengths, see: Allen et al. (1987). For the low-temperature device used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-67-o3453-scheme1.jpg

Experimental

Crystal data

  • C20H21BrN2O2

  • M r = 401.30

  • Monoclinic, Inline graphic

  • a = 10.5187 (2) Å

  • b = 12.7525 (2) Å

  • c = 13.7444 (2) Å

  • β = 98.101 (1)°

  • V = 1825.27 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.27 mm−1

  • T = 100 K

  • 0.39 × 0.39 × 0.20 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.471, T max = 0.666

  • 24453 measured reflections

  • 3221 independent reflections

  • 3073 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022

  • wR(F 2) = 0.056

  • S = 1.08

  • 3221 reflections

  • 248 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811048999/cv5201sup1.cif

e-67-o3453-sup1.cif (23.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811048999/cv5201Isup2.hkl

e-67-o3453-Isup2.hkl (158KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811048999/cv5201Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16A⋯Br1i 0.98 2.79 3.533 (2) 133

Symmetry code: (i) Inline graphic.

Acknowledgments

NA, SAH and ASAR acknowledge the Malaysia Ministry of Science, Technology and Innovations (MOSTI) for funding the synthetic chemistry work under the R&D initiative grant No. 09-05-lfn-meb-004 and 304/PFARMASI/650544. NA thanks Universiti Sains Malaysia for the award of a postdoctoral fellowship.

supplementary crystallographic information

Comment

Accelerated condensation of substituted phenylenediamines with adducts of aldehydes under microwave conditions provides access into 2-arylbenzimidazoles (Navarrete-Vazquez et al., 2006; Arumugam et al., 2010; 2011). These 2-substituted benzimidazoles have recently gained attention due to their antiviral and antiproliferative activities (Vitale et al., 2008; 2009). Not only that, a series of novel 2-arylbenzimidazoles was found to exhibit highly selective inhibition on chk2 kinase, which helps to control DNA damage and could prove useful as an adjuvant to radiotherapy (Arienti et al., 2005). In continuation with our work in 2-arylbenzimidazoles (Arumugam et al., 2010; 2011), we present herein the X-ray crystal structure determination of the title compound.

The title compound, (Fig. 1), is similar to those previously reported, ethyl 1-sec-butyl-2-(4-chlorophenyl)-1H-benzimidazole-5- carboxylate (Arumugam et al., 2010) and ethyl 1-sec-butyl-2- (4-fluorophenyl)-1H-benzimidazole-5-carboxylate (Arumugam et al., 2011), except the bromine atom is attached at the para position of benzene ring.The bond lengths and angles are in normal ranges (Allen et al., 1987) and in agreement with those reported by Arumugam et al. (2010) and Arumugam et al. (2011). The sec-butyl group (C17/C18/C19/C20) is disordered over two conformations in a ratio 0.898 (5):0.102 (5). The bromophenyl ring (C1—C6/Br1) is twisted at 40.13 (8)° from the benzimidazole mean plane (C8/C9/C10/C11/C12/C13/N1/N2/C7) and Br atom deviates at 0.753 (1)Å from that plane.

In the crystal structure (Fig. 2), the molecules related by translation along [-110] are linked into chains via weak intermolecular C16—H16A···Br1 hydrogen bonds (Table 1).

Experimental

Preparation of the title compound was performed using the previous procedure described by Arumugam et al. (2010) and Arumugam et al. (2011). Recrystallization of the crude product from ethyl acetate furnished colourless crystals suitable for X-ray analysis.

Refinement

X-ray data were collected at low temperature (Cosier & Glazer, 1986). All H atoms were positioned geometrically and refined using riding model with C—H = 0.95–1.00Å and Uiso(H)=1.2 or 1.5Ueq(C). A sec- butyl group (C17/C18/C19/C20) is disordered over two conformations in a ratio 0.898 (5):0.102 (5). A minor component of disorder (C17B/C18B/C19B/C20B) was refined isotropically. A rotating group model was applied for methyl group.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with displacement ellipsods drawn at the 50% probability level. The minor component of disordered fragment has been omitted.

Fig. 2.

Fig. 2.

The molecular packing of (I) viewed down the a axis. The minor component of disorder has been omitted for clarity.

Crystal data

C20H21BrN2O2 F(000) = 824
Mr = 401.30 Dx = 1.460 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 15956 reflections
a = 10.5187 (2) Å θ = 1.9–25.0°
b = 12.7525 (2) Å µ = 2.27 mm1
c = 13.7444 (2) Å T = 100 K
β = 98.101 (1)° Block, colourless
V = 1825.27 (5) Å3 0.39 × 0.39 × 0.20 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 3221 independent reflections
Radiation source: fine-focus sealed tube 3073 reflections with I > 2σ(I)
graphite Rint = 0.024
Detector resolution: 83.66 pixels mm-1 θmax = 25.0°, θmin = 1.9°
φ and ω scans h = −12→12
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −15→15
Tmin = 0.471, Tmax = 0.666 l = −16→16
24453 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0253P)2 + 1.2079P] where P = (Fo2 + 2Fc2)/3
3221 reflections (Δ/σ)max < 0.001
248 parameters Δρmax = 0.30 e Å3
12 restraints Δρmin = −0.24 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open=flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Br1 1.437653 (17) −0.132336 (14) 0.052952 (13) 0.02810 (7)
O1 0.49686 (12) 0.48183 (10) 0.16898 (9) 0.0271 (3)
O2 0.66303 (12) 0.53232 (9) 0.09400 (9) 0.0257 (3)
N1 0.97007 (13) 0.22220 (11) 0.12388 (10) 0.0189 (3)
N2 0.87714 (13) 0.08790 (11) 0.19561 (10) 0.0196 (3)
C1 1.21317 (17) 0.10333 (14) 0.14588 (12) 0.0216 (4)
H1A 1.2249 0.1737 0.1680 0.026*
C2 1.31726 (17) 0.04696 (14) 0.12213 (12) 0.0224 (4)
H2A 1.4001 0.0780 0.1278 0.027*
C3 1.29818 (16) −0.05549 (14) 0.08999 (12) 0.0212 (4)
C4 1.17921 (17) −0.10309 (14) 0.08218 (12) 0.0222 (4)
H4A 1.1684 −0.1738 0.0608 0.027*
C5 1.07572 (17) −0.04590 (13) 0.10604 (12) 0.0211 (4)
H5A 0.9933 −0.0777 0.1008 0.025*
C6 1.09155 (16) 0.05814 (13) 0.13774 (11) 0.0190 (3)
C7 0.98140 (16) 0.12428 (13) 0.15413 (12) 0.0187 (3)
C8 0.79159 (16) 0.17113 (13) 0.19091 (12) 0.0191 (3)
C9 0.67050 (16) 0.18299 (14) 0.22094 (12) 0.0212 (4)
H9A 0.6311 0.1276 0.2520 0.025*
C10 0.61127 (16) 0.27893 (14) 0.20317 (12) 0.0204 (3)
H10A 0.5289 0.2896 0.2223 0.024*
C11 0.66927 (16) 0.36167 (13) 0.15738 (12) 0.0189 (3)
C12 0.78936 (16) 0.34958 (13) 0.12819 (12) 0.0185 (3)
H12A 0.8283 0.4051 0.0970 0.022*
C13 0.85105 (16) 0.25334 (13) 0.14619 (12) 0.0178 (3)
C14 0.59928 (16) 0.46288 (13) 0.14229 (12) 0.0204 (4)
C15 0.60340 (19) 0.63412 (14) 0.07495 (14) 0.0282 (4)
H15A 0.6069 0.6746 0.1367 0.034*
H15B 0.5124 0.6260 0.0457 0.034*
C16 0.6779 (2) 0.68923 (16) 0.00444 (17) 0.0381 (5)
H16A 0.6410 0.7589 −0.0107 0.057*
H16B 0.6736 0.6482 −0.0563 0.057*
H16C 0.7677 0.6965 0.0343 0.057*
C17A 0.8740 (2) −0.00625 (16) 0.25876 (16) 0.0213 (5) 0.898 (5)
H17A 0.9573 −0.0439 0.2583 0.026* 0.898 (5)
C18A 0.8681 (3) 0.0262 (2) 0.36369 (17) 0.0287 (6) 0.898 (5)
H18A 0.8781 −0.0366 0.4065 0.034* 0.898 (5)
H18B 0.7829 0.0574 0.3683 0.034* 0.898 (5)
C19A 0.9724 (2) 0.10532 (19) 0.39981 (15) 0.0306 (6) 0.898 (5)
H19A 0.9687 0.1218 0.4690 0.046* 0.898 (5)
H19B 0.9591 0.1695 0.3605 0.046* 0.898 (5)
H19C 1.0567 0.0756 0.3932 0.046* 0.898 (5)
C20A 0.7673 (2) −0.08225 (17) 0.21800 (19) 0.0308 (6) 0.898 (5)
H20A 0.7736 −0.0974 0.1489 0.046* 0.898 (5)
H20B 0.6836 −0.0505 0.2230 0.046* 0.898 (5)
H20C 0.7762 −0.1475 0.2559 0.046* 0.898 (5)
C17B 0.9167 (17) 0.0113 (12) 0.2755 (10) 0.065 (13)* 0.102 (5)
H17B 0.9988 −0.0258 0.2688 0.077* 0.102 (5)
C18B 0.9091 (19) 0.0503 (16) 0.3795 (13) 0.017 (5)* 0.102 (5)
H18C 0.9461 −0.0025 0.4271 0.025* 0.102 (5)
H18D 0.8191 0.0623 0.3873 0.025* 0.102 (5)
H18E 0.9572 0.1160 0.3909 0.025* 0.102 (5)
C19B 0.8038 (18) −0.0613 (15) 0.2757 (13) 0.032 (5)* 0.102 (5)
H19D 0.7256 −0.0199 0.2814 0.038* 0.102 (5)
H19E 0.8194 −0.1090 0.3329 0.038* 0.102 (5)
C20B 0.784 (2) −0.1251 (15) 0.1810 (12) 0.029 (5)* 0.102 (5)
H20D 0.7084 −0.1703 0.1806 0.043* 0.102 (5)
H20E 0.8599 −0.1685 0.1771 0.043* 0.102 (5)
H20F 0.7704 −0.0776 0.1245 0.043* 0.102 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.02917 (11) 0.02848 (11) 0.02913 (11) 0.01432 (7) 0.01271 (8) 0.00389 (7)
O1 0.0221 (6) 0.0268 (7) 0.0341 (7) 0.0081 (5) 0.0097 (5) 0.0009 (5)
O2 0.0261 (7) 0.0199 (6) 0.0332 (7) 0.0098 (5) 0.0111 (5) 0.0060 (5)
N1 0.0185 (7) 0.0185 (7) 0.0205 (7) 0.0036 (6) 0.0059 (6) 0.0023 (6)
N2 0.0205 (7) 0.0177 (7) 0.0221 (7) 0.0038 (6) 0.0079 (6) 0.0056 (6)
C1 0.0252 (9) 0.0180 (8) 0.0225 (8) 0.0037 (7) 0.0061 (7) 0.0018 (7)
C2 0.0200 (8) 0.0245 (9) 0.0235 (9) 0.0033 (7) 0.0056 (7) 0.0042 (7)
C3 0.0230 (9) 0.0240 (9) 0.0178 (8) 0.0111 (7) 0.0073 (7) 0.0044 (7)
C4 0.0292 (9) 0.0183 (8) 0.0193 (8) 0.0050 (7) 0.0044 (7) 0.0015 (7)
C5 0.0219 (9) 0.0207 (8) 0.0208 (8) 0.0020 (7) 0.0038 (7) 0.0034 (7)
C6 0.0210 (8) 0.0207 (8) 0.0163 (8) 0.0050 (7) 0.0060 (6) 0.0054 (6)
C7 0.0190 (8) 0.0199 (9) 0.0177 (8) 0.0024 (7) 0.0045 (6) 0.0017 (6)
C8 0.0202 (8) 0.0193 (8) 0.0181 (8) 0.0032 (7) 0.0039 (6) 0.0017 (6)
C9 0.0211 (9) 0.0226 (9) 0.0212 (8) 0.0008 (7) 0.0072 (7) 0.0030 (7)
C10 0.0172 (8) 0.0264 (9) 0.0184 (8) 0.0031 (7) 0.0054 (6) −0.0002 (7)
C11 0.0204 (8) 0.0198 (8) 0.0162 (8) 0.0033 (7) 0.0017 (6) −0.0015 (6)
C12 0.0200 (8) 0.0178 (8) 0.0182 (8) 0.0013 (6) 0.0041 (6) 0.0008 (6)
C13 0.0178 (8) 0.0196 (8) 0.0164 (8) 0.0021 (7) 0.0033 (6) 0.0002 (6)
C14 0.0207 (9) 0.0225 (9) 0.0178 (8) 0.0037 (7) 0.0018 (7) −0.0018 (7)
C15 0.0311 (10) 0.0209 (9) 0.0341 (10) 0.0121 (7) 0.0099 (8) 0.0054 (7)
C16 0.0394 (12) 0.0276 (11) 0.0508 (13) 0.0134 (9) 0.0183 (10) 0.0105 (9)
C17A 0.0196 (12) 0.0163 (10) 0.0300 (11) 0.0046 (9) 0.0106 (9) 0.0119 (8)
C18A 0.0251 (13) 0.0367 (14) 0.0253 (11) 0.0060 (11) 0.0067 (10) 0.0112 (10)
C19A 0.0321 (12) 0.0402 (13) 0.0197 (10) 0.0122 (10) 0.0039 (8) 0.0018 (9)
C20A 0.0260 (11) 0.0210 (11) 0.0469 (15) −0.0032 (9) 0.0106 (10) 0.0020 (11)

Geometric parameters (Å, °)

Br1—C3 1.8927 (16) C15—C16 1.504 (3)
O1—C14 1.210 (2) C15—H15A 0.9900
O2—C14 1.342 (2) C15—H15B 0.9900
O2—C15 1.450 (2) C16—H16A 0.9800
N1—C7 1.316 (2) C16—H16B 0.9800
N1—C13 1.388 (2) C16—H16C 0.9800
N2—C7 1.385 (2) C17A—C18A 1.510 (3)
N2—C8 1.387 (2) C17A—C20A 1.528 (4)
N2—C17B 1.484 (5) C17A—H17A 1.0000
N2—C17A 1.485 (2) C18A—C19A 1.522 (4)
C1—C2 1.387 (2) C18A—H18A 0.9900
C1—C6 1.393 (2) C18A—H18B 0.9900
C1—H1A 0.9500 C19A—H19A 0.9800
C2—C3 1.385 (3) C19A—H19B 0.9800
C2—H2A 0.9500 C19A—H19C 0.9800
C3—C4 1.381 (3) C20A—H20A 0.9800
C4—C5 1.387 (2) C20A—H20B 0.9800
C4—H4A 0.9500 C20A—H20C 0.9800
C5—C6 1.399 (2) C17B—C19B 1.507 (6)
C5—H5A 0.9500 C17B—C18B 1.526 (6)
C6—C7 1.476 (2) C17B—H17B 1.0000
C8—C9 1.401 (2) C18B—H18C 0.9800
C8—C13 1.406 (2) C18B—H18D 0.9800
C9—C10 1.379 (2) C18B—H18E 0.9800
C9—H9A 0.9500 C19B—C20B 1.524 (6)
C10—C11 1.411 (2) C19B—H19D 0.9900
C10—H10A 0.9500 C19B—H19E 0.9900
C11—C12 1.387 (2) C20B—H20D 0.9800
C11—C14 1.486 (2) C20B—H20E 0.9800
C12—C13 1.394 (2) C20B—H20F 0.9800
C12—H12A 0.9500
C14—O2—C15 116.53 (13) O2—C14—C11 111.71 (14)
C7—N1—C13 104.23 (14) O2—C15—C16 106.46 (14)
C7—N2—C8 105.69 (13) O2—C15—H15A 110.4
C7—N2—C17B 111.6 (7) C16—C15—H15A 110.4
C8—N2—C17B 130.6 (7) O2—C15—H15B 110.4
C7—N2—C17A 126.56 (15) C16—C15—H15B 110.4
C8—N2—C17A 125.33 (14) H15A—C15—H15B 108.6
C17B—N2—C17A 20.4 (7) C15—C16—H16A 109.5
C2—C1—C6 120.87 (16) C15—C16—H16B 109.5
C2—C1—H1A 119.6 H16A—C16—H16B 109.5
C6—C1—H1A 119.6 C15—C16—H16C 109.5
C3—C2—C1 118.72 (16) H16A—C16—H16C 109.5
C3—C2—H2A 120.6 H16B—C16—H16C 109.5
C1—C2—H2A 120.6 N2—C17A—C18A 110.12 (18)
C4—C3—C2 121.90 (16) N2—C17A—C20A 111.97 (19)
C4—C3—Br1 118.66 (13) C18A—C17A—C20A 113.38 (19)
C2—C3—Br1 119.43 (13) N2—C17A—H17A 107.0
C3—C4—C5 118.88 (16) C18A—C17A—H17A 107.0
C3—C4—H4A 120.6 C20A—C17A—H17A 107.0
C5—C4—H4A 120.6 C17A—C18A—C19A 111.61 (19)
C4—C5—C6 120.61 (16) C17A—C18A—H18A 109.3
C4—C5—H5A 119.7 C19A—C18A—H18A 109.3
C6—C5—H5A 119.7 C17A—C18A—H18B 109.3
C1—C6—C5 119.01 (15) C19A—C18A—H18B 109.3
C1—C6—C7 118.89 (15) H18A—C18A—H18B 108.0
C5—C6—C7 121.87 (15) N2—C17B—C19B 105.4 (13)
N1—C7—N2 113.96 (14) N2—C17B—C18B 115.6 (14)
N1—C7—C6 122.14 (15) C19B—C17B—C18B 93.0 (3)
N2—C7—C6 123.74 (14) N2—C17B—H17B 113.6
N2—C8—C9 132.80 (16) C19B—C17B—H17B 113.6
N2—C8—C13 105.39 (14) C18B—C17B—H17B 113.6
C9—C8—C13 121.81 (15) C17B—C18B—H18C 109.5
C10—C9—C8 116.76 (15) C17B—C18B—H18D 109.5
C10—C9—H9A 121.6 H18C—C18B—H18D 109.5
C8—C9—H9A 121.6 C17B—C18B—H18E 109.5
C9—C10—C11 121.99 (15) H18C—C18B—H18E 109.5
C9—C10—H10A 119.0 H18D—C18B—H18E 109.5
C11—C10—H10A 119.0 C17B—C19B—C20B 109.9 (15)
C12—C11—C10 120.98 (15) C17B—C19B—H19D 109.7
C12—C11—C14 120.65 (15) C20B—C19B—H19D 109.7
C10—C11—C14 118.37 (15) C17B—C19B—H19E 109.7
C11—C12—C13 117.83 (15) C20B—C19B—H19E 109.7
C11—C12—H12A 121.1 H19D—C19B—H19E 108.2
C13—C12—H12A 121.1 C19B—C20B—H20D 109.5
N1—C13—C12 128.63 (15) C19B—C20B—H20E 109.5
N1—C13—C8 110.73 (14) H20D—C20B—H20E 109.5
C12—C13—C8 120.63 (15) C19B—C20B—H20F 109.5
O1—C14—O2 123.13 (15) H20D—C20B—H20F 109.5
O1—C14—C11 125.15 (16) H20E—C20B—H20F 109.5
C6—C1—C2—C3 0.0 (3) C10—C11—C12—C13 −0.4 (2)
C1—C2—C3—C4 −0.8 (3) C14—C11—C12—C13 178.76 (15)
C1—C2—C3—Br1 177.88 (12) C7—N1—C13—C12 −178.63 (17)
C2—C3—C4—C5 0.9 (3) C7—N1—C13—C8 0.12 (18)
Br1—C3—C4—C5 −177.81 (12) C11—C12—C13—N1 179.76 (16)
C3—C4—C5—C6 −0.2 (2) C11—C12—C13—C8 1.1 (2)
C2—C1—C6—C5 0.6 (2) N2—C8—C13—N1 −0.08 (18)
C2—C1—C6—C7 −173.87 (15) C9—C8—C13—N1 179.70 (15)
C4—C5—C6—C1 −0.6 (2) N2—C8—C13—C12 178.78 (15)
C4—C5—C6—C7 173.78 (15) C9—C8—C13—C12 −1.4 (3)
C13—N1—C7—N2 −0.12 (19) C15—O2—C14—O1 0.4 (2)
C13—N1—C7—C6 175.47 (15) C15—O2—C14—C11 179.89 (14)
C8—N2—C7—N1 0.07 (19) C12—C11—C14—O1 −176.80 (16)
C17B—N2—C7—N1 −146.9 (8) C10—C11—C14—O1 2.4 (3)
C17A—N2—C7—N1 −162.89 (18) C12—C11—C14—O2 3.7 (2)
C8—N2—C7—C6 −175.44 (15) C10—C11—C14—O2 −177.09 (14)
C17B—N2—C7—C6 37.6 (8) C14—O2—C15—C16 −169.26 (16)
C17A—N2—C7—C6 21.6 (3) C7—N2—C17A—C18A 108.4 (2)
C1—C6—C7—N1 38.2 (2) C8—N2—C17A—C18A −51.4 (3)
C5—C6—C7—N1 −136.19 (17) C17B—N2—C17A—C18A 61 (2)
C1—C6—C7—N2 −146.68 (16) C7—N2—C17A—C20A −124.5 (2)
C5—C6—C7—N2 39.0 (2) C8—N2—C17A—C20A 75.7 (2)
C7—N2—C8—C9 −179.74 (18) C17B—N2—C17A—C20A −172 (2)
C17B—N2—C8—C9 −41.6 (10) N2—C17A—C18A—C19A −51.2 (2)
C17A—N2—C8—C9 −16.5 (3) C20A—C17A—C18A—C19A −177.58 (17)
C7—N2—C8—C13 0.01 (17) C7—N2—C17B—C19B −150.3 (8)
C17B—N2—C8—C13 138.2 (10) C8—N2—C17B—C19B 73.4 (14)
C17A—N2—C8—C13 163.24 (19) C17A—N2—C17B—C19B −9.8 (15)
N2—C8—C9—C10 −179.33 (17) C7—N2—C17B—C18B 108.5 (9)
C13—C8—C9—C10 1.0 (2) C8—N2—C17B—C18B −27.8 (16)
C8—C9—C10—C11 −0.2 (2) C17A—N2—C17B—C18B −111 (2)
C9—C10—C11—C12 0.0 (3) N2—C17B—C19B—C20B 66.5 (18)
C9—C10—C11—C14 −179.21 (15) C18B—C17B—C19B—C20B −175.9 (16)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C16—H16A···Br1i 0.98 2.79 3.533 (2) 133

Symmetry codes: (i) x−1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5201).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Arienti, K., Brunmark, A., Axe, F., McClure, K., Lee, A., Blevitt, J., Neff, D., Huang, L., Crawford, S., Pandit, C., Karlson, L. & Breitenbucher, J. (2005). J. Med. Chem. 48, 1873–1885. [DOI] [PubMed]
  3. Arumugam, N., Abdul Rahim, A. S., Osman, H., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, o2412–o2413. [DOI] [PMC free article] [PubMed]
  4. Arumugam, N., Ngah, N., Abd Hamid, S. & Abdul Rahim, A. S. (2011). Acta Cryst. E67, o2938. [DOI] [PMC free article] [PubMed]
  5. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  7. Navarrete-Vazquez, G., Moreno-Diaz, H., Aguirre-Crespo, F., Leon-Rivera, I., Villalobos-Molina, R., Munoz-Muniz, O. & Estrada-Soto, S. (2006). Bioorg. Med. Chem. Lett. 16, 4169–4173. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Vitale, G., Carta, A., Loriga, M., Paglietti, G., La Colla, P., Busonera, B., Collu, D. & Loddo, R. (2008). Med. Chem. 4, 605–615. [DOI] [PubMed]
  11. Vitale, G., Corona, P., Loriga, M., Carta, A., Paglietti, G., La Colla, P., Busonera, B., Marongiu, E., Collu, D. & Loddo, R. (2009). Med. Chem. 5, 507–516. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811048999/cv5201sup1.cif

e-67-o3453-sup1.cif (23.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811048999/cv5201Isup2.hkl

e-67-o3453-Isup2.hkl (158KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811048999/cv5201Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES