Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 30;67(Pt 12):o3456. doi: 10.1107/S1600536811049233

2-(4-Fluoro­phen­yl)-2-oxoethyl 4-meth­oxy­benzoate

Hoong-Kun Fun a,*,, Wan-Sin Loh a,§, B Garudachari b, Arun M Isloor b, M N Satyanarayan c
PMCID: PMC3239086  PMID: 22199934

Abstract

In the title compound, C16H13FO4, the dihedral angle between the benzene rings is 84.28 (8)°. In the crystal, C—H⋯F and C—H⋯O hydrogen bonds link the mol­ecules to form a three-dimensional network. The crystal structure is consolidated by C—H⋯π inter­actions and short F⋯F contacts [2.7748 (14) Å] also occur.

Related literature

For related structures and background to phenacyl benzoates, see: Fun et al. (2011a,b ). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-67-o3456-scheme1.jpg

Experimental

Crystal data

  • C16H13FO4

  • M r = 288.26

  • Monoclinic, Inline graphic

  • a = 9.3523 (2) Å

  • b = 10.1949 (2) Å

  • c = 15.6465 (4) Å

  • β = 118.842 (2)°

  • V = 1306.77 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.29 × 0.25 × 0.15 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.967, T max = 0.984

  • 18005 measured reflections

  • 4669 independent reflections

  • 3194 reflections with I > 2σ(I)

  • R int = 0.061

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.151

  • S = 1.03

  • 4669 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811049233/hb6504sup1.cif

e-67-o3456-sup1.cif (18.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811049233/hb6504Isup2.hkl

e-67-o3456-Isup2.hkl (228.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811049233/hb6504Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯F1i 0.95 2.55 3.1334 (17) 120
C8—H8B⋯O3ii 0.99 2.43 3.3517 (19) 154
C11—H11A⋯O4iii 0.95 2.53 3.380 (2) 150
C1—H1ACg2iv 0.95 2.59 3.3693 (17) 139
C8—H8ACg1v 0.99 2.83 3.5309 (19) 128

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the award of the post of Research Officer under the Research University Grant (1001/PFIZIK/811160). AMI is thankful to the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India, for the Young scientist award. SMN thanks the Department of Information Technology, New Delhi, India, for financial support.

supplementary crystallographic information

Comment

As part of our ongoing studies of phenacyl benzoates (Fun et al., 2011a,b), we now report the synthesis and structure of the title compound.

In the title compound (Fig. 1), the dihedral angle formed between the fluoro-substituted (C1–C6) and the methoxy-substituted (C10–C15) benzene rings is 84.28 (8)°. Bond lengths and angles are within the normal ranges and are comparable to the related structures (Fun et al., 2011a,b).

In the crystal (Fig. 2), C4—H4A···F1, C8—H8B···O3 and C11—H11A···O4 hydrogen bonds (Table 1) link the molecules together to form a three-dimensional network. The crystal structure is further stabilized by C–H···π interactions (Table 1) involving the fluoro-substituted (Cg1) and the methoxy-substituted (Cg2) benzene rings.

Experimental

A mixture of 4-methoxybenzoic acid (1.0 g, 0.0065 mol), potassium carbonate (0.99 g, 0.0072 mol) and 2-bromo-1-(4-fluorophenyl)ethanone (1.41 g, 0.0065 mol) in dimethylformamide (10 ml) was stirred at room temperature for 2 h. On cooling, colourless needle-shaped crystals of 2-(4-fluorophenyl)-2-oxoethyl 4-methoxybenzoate began to separate. It was collected by filtration and recrystallized from ethanol to yield yellow blocks of (I). Yield: 1.72 g, 91.0%. M.p: 387–388 K.

Refinement

All H atoms were positioned geometrically and refined with a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C) [C–H = 0.95 or 0.99 Å]. A rotating group model was applied to the methyl group.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the b axis, showing the three-dimensional network. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C16H13FO4 F(000) = 600
Mr = 288.26 Dx = 1.465 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3370 reflections
a = 9.3523 (2) Å θ = 2.5–32.1°
b = 10.1949 (2) Å µ = 0.11 mm1
c = 15.6465 (4) Å T = 100 K
β = 118.842 (2)° Block, yellow
V = 1306.77 (5) Å3 0.29 × 0.25 × 0.15 mm
Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer 4669 independent reflections
Radiation source: fine-focus sealed tube 3194 reflections with I > 2σ(I)
graphite Rint = 0.061
φ and ω scans θmax = 32.4°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −14→14
Tmin = 0.967, Tmax = 0.984 k = −15→10
18005 measured reflections l = −23→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0735P)2 + 0.1795P] where P = (Fo2 + 2Fc2)/3
4669 reflections (Δ/σ)max < 0.001
191 parameters Δρmax = 0.53 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.36713 (11) 0.06839 (8) 0.92948 (7) 0.0261 (2)
O1 0.82633 (13) 0.73381 (9) 0.99094 (8) 0.0196 (2)
O2 0.58433 (13) 0.61282 (11) 0.84358 (8) 0.0266 (3)
O3 0.94829 (13) 0.65098 (10) 0.90861 (8) 0.0242 (2)
O4 0.85652 (13) 1.24512 (10) 0.77160 (8) 0.0223 (2)
C1 0.44544 (17) 0.37022 (14) 0.84080 (11) 0.0197 (3)
H1A 0.4037 0.4188 0.7818 0.024*
C2 0.37612 (18) 0.25071 (14) 0.84149 (11) 0.0207 (3)
H2A 0.2882 0.2159 0.7837 0.025*
C3 0.43844 (18) 0.18361 (13) 0.92864 (11) 0.0192 (3)
C4 0.56758 (18) 0.22904 (14) 1.01457 (11) 0.0203 (3)
H4A 0.6071 0.1801 1.0733 0.024*
C5 0.63790 (18) 0.34841 (14) 1.01258 (11) 0.0192 (3)
H5A 0.7281 0.3810 1.0703 0.023*
C6 0.57633 (16) 0.42079 (13) 0.92587 (10) 0.0170 (3)
C7 0.64362 (17) 0.55037 (13) 0.91908 (10) 0.0176 (3)
C8 0.79205 (17) 0.60283 (13) 1.00908 (11) 0.0187 (3)
H8A 0.7709 0.6026 1.0653 0.022*
H8B 0.8874 0.5458 1.0253 0.022*
C9 0.89159 (16) 0.74423 (13) 0.93063 (10) 0.0177 (3)
C10 0.88512 (16) 0.87944 (13) 0.89496 (10) 0.0162 (3)
C11 0.96253 (17) 0.90621 (14) 0.83957 (11) 0.0186 (3)
H11A 1.0230 0.8393 0.8290 0.022*
C12 0.95157 (17) 1.02951 (14) 0.80006 (11) 0.0199 (3)
H12A 1.0049 1.0474 0.7628 0.024*
C13 0.86196 (16) 1.12769 (13) 0.81507 (10) 0.0173 (3)
C14 0.78543 (17) 1.10306 (13) 0.87092 (10) 0.0170 (3)
H14A 0.7259 1.1704 0.8818 0.020*
C15 0.79728 (16) 0.97864 (13) 0.91055 (10) 0.0170 (3)
H15A 0.7451 0.9611 0.9485 0.020*
C16 0.7667 (2) 1.34901 (14) 0.78505 (12) 0.0240 (3)
H16A 0.7724 1.4275 0.7507 0.036*
H16B 0.8136 1.3683 0.8548 0.036*
H16C 0.6525 1.3224 0.7589 0.036*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0259 (5) 0.0168 (4) 0.0324 (5) −0.0055 (3) 0.0114 (4) 0.0027 (4)
O1 0.0248 (5) 0.0132 (4) 0.0226 (5) −0.0019 (4) 0.0127 (4) 0.0008 (4)
O2 0.0247 (5) 0.0252 (5) 0.0243 (6) −0.0029 (4) 0.0074 (4) 0.0073 (4)
O3 0.0250 (5) 0.0178 (5) 0.0330 (6) 0.0038 (4) 0.0166 (5) 0.0028 (4)
O4 0.0279 (6) 0.0165 (5) 0.0305 (6) 0.0026 (4) 0.0203 (5) 0.0046 (4)
C1 0.0189 (6) 0.0205 (6) 0.0190 (6) 0.0015 (5) 0.0087 (5) 0.0032 (5)
C2 0.0177 (6) 0.0206 (7) 0.0207 (7) −0.0013 (5) 0.0068 (5) −0.0009 (5)
C3 0.0193 (6) 0.0136 (6) 0.0261 (7) −0.0010 (5) 0.0119 (6) 0.0000 (5)
C4 0.0227 (7) 0.0173 (6) 0.0196 (7) 0.0014 (5) 0.0091 (6) 0.0029 (5)
C5 0.0198 (6) 0.0170 (6) 0.0191 (6) 0.0002 (5) 0.0080 (5) 0.0001 (5)
C6 0.0164 (6) 0.0160 (6) 0.0203 (6) −0.0001 (5) 0.0100 (5) 0.0006 (5)
C7 0.0167 (6) 0.0165 (6) 0.0204 (6) 0.0023 (5) 0.0096 (5) 0.0016 (5)
C8 0.0218 (6) 0.0134 (5) 0.0201 (7) −0.0006 (5) 0.0093 (5) 0.0023 (5)
C9 0.0150 (6) 0.0164 (6) 0.0198 (6) −0.0012 (5) 0.0069 (5) −0.0003 (5)
C10 0.0141 (6) 0.0144 (6) 0.0181 (6) −0.0007 (5) 0.0062 (5) −0.0003 (5)
C11 0.0157 (6) 0.0173 (6) 0.0228 (7) 0.0002 (5) 0.0094 (5) −0.0011 (5)
C12 0.0184 (6) 0.0205 (6) 0.0252 (7) −0.0010 (5) 0.0140 (6) 0.0003 (6)
C13 0.0174 (6) 0.0150 (6) 0.0190 (6) −0.0016 (5) 0.0084 (5) 0.0009 (5)
C14 0.0177 (6) 0.0150 (6) 0.0198 (6) 0.0004 (5) 0.0103 (5) −0.0006 (5)
C15 0.0175 (6) 0.0167 (6) 0.0173 (6) −0.0017 (5) 0.0087 (5) −0.0008 (5)
C16 0.0302 (8) 0.0172 (6) 0.0301 (8) 0.0041 (6) 0.0188 (7) 0.0034 (6)

Geometric parameters (Å, °)

F1—C3 1.3541 (16) C7—C8 1.520 (2)
O1—C9 1.3528 (18) C8—H8A 0.9900
O1—C8 1.4333 (16) C8—H8B 0.9900
O2—C7 1.2150 (17) C9—C10 1.4773 (19)
O3—C9 1.2165 (17) C10—C15 1.3966 (19)
O4—C13 1.3657 (16) C10—C11 1.3983 (19)
O4—C16 1.4290 (18) C11—C12 1.383 (2)
C1—C2 1.383 (2) C11—H11A 0.9500
C1—C6 1.401 (2) C12—C13 1.396 (2)
C1—H1A 0.9500 C12—H12A 0.9500
C2—C3 1.378 (2) C13—C14 1.3936 (19)
C2—H2A 0.9500 C14—C15 1.3926 (19)
C3—C4 1.384 (2) C14—H14A 0.9500
C4—C5 1.391 (2) C15—H15A 0.9500
C4—H4A 0.9500 C16—H16A 0.9800
C5—C6 1.401 (2) C16—H16B 0.9800
C5—H5A 0.9500 C16—H16C 0.9800
C6—C7 1.4889 (19)
C9—O1—C8 115.50 (11) H8A—C8—H8B 108.2
C13—O4—C16 117.37 (11) O3—C9—O1 122.76 (13)
C2—C1—C6 120.98 (13) O3—C9—C10 124.49 (13)
C2—C1—H1A 119.5 O1—C9—C10 112.75 (12)
C6—C1—H1A 119.5 C15—C10—C11 119.40 (13)
C3—C2—C1 117.96 (14) C15—C10—C9 122.01 (13)
C3—C2—H2A 121.0 C11—C10—C9 118.50 (12)
C1—C2—H2A 121.0 C12—C11—C10 120.38 (13)
F1—C3—C2 117.70 (13) C12—C11—H11A 119.8
F1—C3—C4 118.95 (13) C10—C11—H11A 119.8
C2—C3—C4 123.34 (13) C11—C12—C13 119.84 (13)
C3—C4—C5 118.14 (13) C11—C12—H12A 120.1
C3—C4—H4A 120.9 C13—C12—H12A 120.1
C5—C4—H4A 120.9 O4—C13—C14 124.28 (12)
C4—C5—C6 120.31 (13) O4—C13—C12 115.20 (12)
C4—C5—H5A 119.8 C14—C13—C12 120.52 (13)
C6—C5—H5A 119.8 C15—C14—C13 119.25 (13)
C5—C6—C1 119.25 (13) C15—C14—H14A 120.4
C5—C6—C7 123.09 (13) C13—C14—H14A 120.4
C1—C6—C7 117.66 (12) C14—C15—C10 120.60 (13)
O2—C7—C6 121.60 (13) C14—C15—H15A 119.7
O2—C7—C8 120.06 (13) C10—C15—H15A 119.7
C6—C7—C8 118.34 (12) O4—C16—H16A 109.5
O1—C8—C7 109.63 (11) O4—C16—H16B 109.5
O1—C8—H8A 109.7 H16A—C16—H16B 109.5
C7—C8—H8A 109.7 O4—C16—H16C 109.5
O1—C8—H8B 109.7 H16A—C16—H16C 109.5
C7—C8—H8B 109.7 H16B—C16—H16C 109.5
C6—C1—C2—C3 0.7 (2) C8—O1—C9—C10 165.35 (11)
C1—C2—C3—F1 178.20 (13) O3—C9—C10—C15 170.19 (14)
C1—C2—C3—C4 −0.9 (2) O1—C9—C10—C15 −9.49 (19)
F1—C3—C4—C5 −179.17 (13) O3—C9—C10—C11 −6.4 (2)
C2—C3—C4—C5 −0.1 (2) O1—C9—C10—C11 173.95 (12)
C3—C4—C5—C6 1.2 (2) C15—C10—C11—C12 −0.4 (2)
C4—C5—C6—C1 −1.3 (2) C9—C10—C11—C12 176.28 (13)
C4—C5—C6—C7 178.76 (13) C10—C11—C12—C13 −0.4 (2)
C2—C1—C6—C5 0.3 (2) C16—O4—C13—C14 0.3 (2)
C2—C1—C6—C7 −179.77 (13) C16—O4—C13—C12 −179.80 (13)
C5—C6—C7—O2 −177.62 (14) C11—C12—C13—O4 −178.93 (13)
C1—C6—C7—O2 2.5 (2) C11—C12—C13—C14 1.0 (2)
C5—C6—C7—C8 3.5 (2) O4—C13—C14—C15 179.01 (13)
C1—C6—C7—C8 −176.36 (12) C12—C13—C14—C15 −0.9 (2)
C9—O1—C8—C7 −73.21 (15) C13—C14—C15—C10 0.2 (2)
O2—C7—C8—O1 7.51 (19) C11—C10—C15—C14 0.4 (2)
C6—C7—C8—O1 −173.62 (11) C9—C10—C15—C14 −176.08 (13)
C8—O1—C9—O3 −14.3 (2)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.
D—H···A D—H H···A D···A D—H···A
C4—H4A···F1i 0.95 2.55 3.1334 (17) 120
C8—H8B···O3ii 0.99 2.43 3.3517 (19) 154
C11—H11A···O4iii 0.95 2.53 3.380 (2) 150
C1—H1A···Cg2iv 0.95 2.59 3.3693 (17) 139
C8—H8A···Cg1v 0.99 2.83 3.5309 (19) 128

Symmetry codes: (i) −x+1, −y, −z+2; (ii) −x+2, −y+1, −z+2; (iii) −x+2, y−1/2, −z+3/2; (iv) −x+1, y−1/2, −z+3/2; (v) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6504).

References

  1. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  3. Fun, H.-K., Loh, W.-S., Garudachari, B., Isloor, A. M. & Satyanarayana, M. N. (2011a). Acta Cryst. E67, o2854. [DOI] [PMC free article] [PubMed]
  4. Fun, H.-K., Loh, W.-S., Garudachari, B., Isloor, A. M. & Satyanarayana, M. N. (2011b). Acta Cryst. E67, o3030. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811049233/hb6504sup1.cif

e-67-o3456-sup1.cif (18.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811049233/hb6504Isup2.hkl

e-67-o3456-Isup2.hkl (228.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811049233/hb6504Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES