Abstract
In the title salt, C19H15N4 +·Br−, the central imidazole ring makes dihedral angles of 83.1 (2) and 87.6 (2)° with the terminal benzene rings. The dihedral angle between the terminal benzene rings is 6.77 (19)°; the cyanide substituents have an anti orientation. In the crystal, the cations and anions are linked via C—H⋯N and C—H⋯Br hydrogen bonds, forming sheets lying parallel to the ac plane.
Related literature
For details and applications of N-heterocylic carbene, see: Wanzlick & Kleiner (1961 ▶); Fahlbusch et al. (2009 ▶); Demir et al. (2009 ▶); Grasa et al. (2002 ▶); Buchowicz et al. (2006 ▶); Marko et al. (2002 ▶).
Experimental
Crystal data
C19H15N4 +·Br−
M r = 379.26
Monoclinic,
a = 9.0661 (9) Å
b = 8.0357 (9) Å
c = 24.697 (3) Å
β = 95.651 (2)°
V = 1790.5 (3) Å3
Z = 4
Mo Kα radiation
μ = 2.30 mm−1
T = 296 K
0.36 × 0.17 × 0.10 mm
Data collection
Bruker APEXII DUO CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2009 ▶) T min = 0.494, T max = 0.799
12922 measured reflections
4066 independent reflections
2486 reflections with I > 2σ(I)
R int = 0.034
Refinement
R[F 2 > 2σ(F 2)] = 0.049
wR(F 2) = 0.149
S = 1.02
4066 reflections
217 parameters
H-atom parameters constrained
Δρmax = 1.14 e Å−3
Δρmin = −0.82 e Å−3
Data collection: APEX2 (Bruker, 2009 ▶); cell refinement: SAINT (Bruker, 2009 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 ▶).
Supplementary Material
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811048951/hb6514sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811048951/hb6514Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536811048951/hb6514Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C1—H1A⋯Br1i | 0.93 | 2.70 | 3.531 (4) | 149 |
| C2—H2A⋯Br1ii | 0.93 | 2.67 | 3.579 (4) | 165 |
| C3—H3A⋯N4iii | 0.93 | 2.50 | 3.377 (6) | 157 |
| C4—H4B⋯Br1i | 0.97 | 2.86 | 3.730 (4) | 149 |
| C7—H7A⋯N4iv | 0.93 | 2.60 | 3.390 (5) | 144 |
| C10—H10A⋯Br1v | 0.93 | 2.88 | 3.678 (4) | 144 |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
; (v)
.
Acknowledgments
RAH, SAA and ZZH thank Universiti Sains Malaysia for the FRGS fund (203/PKIMIA/671115) and RU grant (1001/PKIMIA/811157) (to RAH and ZZH) and the University of Tikrit for research leave (to SSA). HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.
supplementary crystallographic information
Comment
Since the investigation of N-heterocyclic carbene (NHC) chemistry by Wanzlick and Kleiner (1961), NHCs have played a major role as ligands in coordination and organometallic chemistry (Fahlbusch et al., 2009). During the past decades it has been proven as an alternative to tertiary phosphines in homogeneous catalysis. Due to NHC's strong σ-donating and negligible π-accepting characters, they are compatible with metals in a variety of oxidation states. NHC can stabilize catalytically active intermediates (Demir et al., 2009) making it a very versatile ligand system. NHC complexes with every transition metal are now known and their applications especially in the area of catalysis cover a broad spectrum such as hydroboration (Grasa et al., 2002), polymerization reactions (Buchowicz et al., 2006) and hydrosilation (Marko et al., 2002). Furthermore, NHCs are easy to handle, stable and inexpensive resulting in their receiving a great deal of interest compared to other types of carbenes.
In (I), the asymmetric unit contains a 1,3-Bis(2-cyanobenzyl)imidazolium cation and a bromide anion. The central imidazole (N1,N2/C1–C3) ring makes dihedral angles of 83.1 (2) and 87.6 (2)° with the terminal phenyl (C5–C10 and C12–C17) rings. The dihedral angle between the two terminal phenyl (C5–C10 and C12–C17) rings is 6.77 (19)°.
In the crystal, (Fig. 2), the cations and anions are linked via C—H···N and C—H···Br hydrogen bonds (Table 1), forming two-dimensional networks parallel to the ac-plane.
Experimental
Imidazole (0.3 g, 3.7 mmol) and potassium hydroxide (0.2 g, 5.5 mmol) was stirred for 2 h in 25 mL of ethanol. 2-Bromomethyl benzonitrile (1.8 g, 9.2 mmol) was then added and the mixture was refluxed at 80°C for 24 h. The resulting clear crystals were isolated by decantation, washed with fresh n-hexane (2 X 3 ml) and then left to dry at ambient temperature. Yield: 1.3 g, (94%); m.p: 233–234°C. Colourless blocks were obtained by slow evaporation of the salt solution in ethanol at ambient temperature.
Refinement
All hydrogen atoms were positioned geometrically [ C–H = 0.93 or 0.97 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C).
Figures
Fig. 1.
The asymmetric unit of the title compound, showing 30% probability displacement.
Fig. 2.
The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) network. H atoms not involved in hydrogen bond interactions are omitted for clarity.
Crystal data
| C19H15N4+·Br− | F(000) = 768 |
| Mr = 379.26 | Dx = 1.407 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2ybc | Cell parameters from 2803 reflections |
| a = 9.0661 (9) Å | θ = 2.9–23.8° |
| b = 8.0357 (9) Å | µ = 2.30 mm−1 |
| c = 24.697 (3) Å | T = 296 K |
| β = 95.651 (2)° | Block, colourless |
| V = 1790.5 (3) Å3 | 0.36 × 0.17 × 0.10 mm |
| Z = 4 |
Data collection
| Bruker APEXII DUO CCD diffractometer | 4066 independent reflections |
| Radiation source: fine-focus sealed tube | 2486 reflections with I > 2σ(I) |
| graphite | Rint = 0.034 |
| φ and ω scans | θmax = 27.5°, θmin = 1.7° |
| Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −11→11 |
| Tmin = 0.494, Tmax = 0.799 | k = −10→10 |
| 12922 measured reflections | l = −32→32 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.149 | H-atom parameters constrained |
| S = 1.02 | w = 1/[σ2(Fo2) + (0.0749P)2 + 0.6395P] where P = (Fo2 + 2Fc2)/3 |
| 4066 reflections | (Δ/σ)max = 0.001 |
| 217 parameters | Δρmax = 1.14 e Å−3 |
| 0 restraints | Δρmin = −0.82 e Å−3 |
Special details
| Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Br1 | 0.29310 (4) | 0.46183 (7) | 0.271846 (19) | 0.0744 (2) | |
| N1 | 0.3270 (3) | 0.0222 (4) | 0.29878 (11) | 0.0487 (7) | |
| N2 | 0.1865 (3) | −0.0421 (4) | 0.22727 (11) | 0.0521 (8) | |
| N3 | 0.6850 (4) | 0.2721 (5) | 0.43842 (14) | 0.0763 (11) | |
| N4 | −0.1238 (5) | −0.2711 (6) | 0.07253 (15) | 0.0977 (15) | |
| C1 | 0.3264 (4) | −0.0178 (5) | 0.24721 (13) | 0.0482 (8) | |
| H1A | 0.4092 | −0.0274 | 0.2280 | 0.058* | |
| C2 | 0.0970 (4) | −0.0140 (6) | 0.26727 (16) | 0.0659 (11) | |
| H2A | −0.0058 | −0.0215 | 0.2643 | 0.079* | |
| C3 | 0.1858 (4) | 0.0268 (6) | 0.31198 (15) | 0.0628 (11) | |
| H3A | 0.1557 | 0.0534 | 0.3459 | 0.075* | |
| C4 | 0.4592 (4) | 0.0639 (5) | 0.33548 (14) | 0.0570 (10) | |
| H4A | 0.4438 | 0.1698 | 0.3529 | 0.068* | |
| H4B | 0.5435 | 0.0756 | 0.3144 | 0.068* | |
| C5 | 0.4932 (4) | −0.0676 (5) | 0.37865 (13) | 0.0467 (8) | |
| C6 | 0.5839 (4) | −0.0257 (5) | 0.42592 (13) | 0.0466 (8) | |
| C7 | 0.6238 (4) | −0.1459 (6) | 0.46540 (14) | 0.0605 (10) | |
| H7A | 0.6816 | −0.1167 | 0.4972 | 0.073* | |
| C8 | 0.5779 (5) | −0.3068 (6) | 0.45731 (17) | 0.0709 (12) | |
| H8A | 0.6076 | −0.3878 | 0.4830 | 0.085* | |
| C9 | 0.4881 (5) | −0.3487 (6) | 0.41142 (19) | 0.0741 (12) | |
| H9A | 0.4544 | −0.4575 | 0.4067 | 0.089* | |
| C10 | 0.4474 (5) | −0.2307 (6) | 0.37226 (16) | 0.0657 (11) | |
| H10A | 0.3881 | −0.2616 | 0.3410 | 0.079* | |
| C11 | 0.1370 (5) | −0.0897 (6) | 0.17153 (16) | 0.0749 (13) | |
| H11A | 0.0594 | −0.1727 | 0.1720 | 0.090* | |
| H11B | 0.2191 | −0.1401 | 0.1552 | 0.090* | |
| C12 | 0.0786 (4) | 0.0566 (5) | 0.13661 (13) | 0.0507 (9) | |
| C13 | 0.1252 (4) | 0.2175 (5) | 0.14572 (15) | 0.0579 (10) | |
| H13A | 0.1924 | 0.2412 | 0.1756 | 0.070* | |
| C14 | 0.0744 (5) | 0.3443 (6) | 0.11149 (17) | 0.0676 (11) | |
| H14A | 0.1077 | 0.4524 | 0.1183 | 0.081* | |
| C15 | −0.0260 (5) | 0.3115 (6) | 0.06708 (17) | 0.0740 (12) | |
| H15A | −0.0618 | 0.3978 | 0.0444 | 0.089* | |
| C16 | −0.0729 (5) | 0.1509 (6) | 0.05649 (16) | 0.0693 (12) | |
| H16A | −0.1383 | 0.1278 | 0.0260 | 0.083* | |
| C17 | −0.0230 (4) | 0.0254 (5) | 0.09104 (13) | 0.0524 (9) | |
| C18 | 0.6389 (4) | 0.1393 (6) | 0.43334 (13) | 0.0540 (9) | |
| C19 | −0.0785 (5) | −0.1402 (6) | 0.08064 (14) | 0.0674 (12) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Br1 | 0.0396 (2) | 0.0842 (4) | 0.0975 (4) | −0.00728 (19) | −0.00305 (18) | −0.0309 (2) |
| N1 | 0.0396 (14) | 0.062 (2) | 0.0417 (14) | −0.0013 (13) | −0.0096 (11) | −0.0008 (13) |
| N2 | 0.0481 (16) | 0.054 (2) | 0.0491 (15) | 0.0021 (14) | −0.0196 (13) | −0.0085 (13) |
| N3 | 0.092 (3) | 0.064 (3) | 0.068 (2) | −0.018 (2) | −0.0216 (18) | −0.0005 (19) |
| N4 | 0.145 (4) | 0.074 (3) | 0.063 (2) | −0.033 (3) | −0.044 (2) | 0.004 (2) |
| C1 | 0.0362 (15) | 0.062 (3) | 0.0448 (17) | 0.0039 (15) | −0.0063 (13) | −0.0014 (16) |
| C2 | 0.0366 (17) | 0.087 (3) | 0.073 (2) | −0.0036 (18) | −0.0027 (16) | 0.001 (2) |
| C3 | 0.054 (2) | 0.083 (3) | 0.0516 (19) | −0.003 (2) | 0.0099 (16) | −0.001 (2) |
| C4 | 0.058 (2) | 0.056 (3) | 0.0509 (19) | −0.0101 (18) | −0.0213 (16) | −0.0008 (17) |
| C5 | 0.0467 (17) | 0.045 (2) | 0.0457 (17) | 0.0022 (15) | −0.0080 (13) | −0.0016 (15) |
| C6 | 0.0464 (17) | 0.052 (2) | 0.0402 (16) | 0.0005 (16) | −0.0039 (13) | −0.0024 (15) |
| C7 | 0.063 (2) | 0.071 (3) | 0.0456 (19) | 0.000 (2) | −0.0081 (15) | 0.0106 (18) |
| C8 | 0.075 (3) | 0.065 (3) | 0.071 (3) | 0.008 (2) | −0.003 (2) | 0.025 (2) |
| C9 | 0.083 (3) | 0.042 (3) | 0.095 (3) | −0.009 (2) | −0.004 (2) | 0.005 (2) |
| C10 | 0.074 (3) | 0.055 (3) | 0.063 (2) | −0.002 (2) | −0.0172 (19) | −0.007 (2) |
| C11 | 0.095 (3) | 0.058 (3) | 0.062 (2) | 0.010 (2) | −0.037 (2) | −0.014 (2) |
| C12 | 0.0511 (18) | 0.052 (3) | 0.0458 (17) | 0.0003 (17) | −0.0088 (14) | −0.0069 (16) |
| C13 | 0.053 (2) | 0.055 (3) | 0.064 (2) | −0.0027 (18) | −0.0027 (16) | −0.009 (2) |
| C14 | 0.078 (3) | 0.049 (3) | 0.078 (3) | −0.007 (2) | 0.022 (2) | −0.007 (2) |
| C15 | 0.095 (3) | 0.063 (3) | 0.065 (2) | 0.017 (3) | 0.008 (2) | 0.014 (2) |
| C16 | 0.082 (3) | 0.069 (3) | 0.053 (2) | 0.000 (2) | −0.0129 (19) | 0.009 (2) |
| C17 | 0.059 (2) | 0.054 (2) | 0.0423 (17) | 0.0001 (18) | −0.0079 (14) | 0.0008 (16) |
| C18 | 0.058 (2) | 0.059 (3) | 0.0417 (17) | −0.0030 (19) | −0.0140 (15) | 0.0000 (17) |
| C19 | 0.090 (3) | 0.060 (3) | 0.045 (2) | −0.006 (2) | −0.0303 (19) | 0.0019 (19) |
Geometric parameters (Å, °)
| N1—C1 | 1.313 (4) | C7—H7A | 0.9300 |
| N1—C3 | 1.352 (5) | C8—C9 | 1.371 (6) |
| N1—C4 | 1.469 (4) | C8—H8A | 0.9300 |
| N2—C1 | 1.329 (4) | C9—C10 | 1.378 (6) |
| N2—C2 | 1.358 (5) | C9—H9A | 0.9300 |
| N2—C11 | 1.456 (4) | C10—H10A | 0.9300 |
| N3—C18 | 1.148 (5) | C11—C12 | 1.522 (6) |
| N4—C19 | 1.140 (6) | C11—H11A | 0.9700 |
| C1—H1A | 0.9300 | C11—H11B | 0.9700 |
| C2—C3 | 1.341 (5) | C12—C13 | 1.372 (5) |
| C2—H2A | 0.9300 | C12—C17 | 1.405 (4) |
| C3—H3A | 0.9300 | C13—C14 | 1.374 (6) |
| C4—C5 | 1.511 (5) | C13—H13A | 0.9300 |
| C4—H4A | 0.9700 | C14—C15 | 1.380 (6) |
| C4—H4B | 0.9700 | C14—H14A | 0.9300 |
| C5—C10 | 1.380 (6) | C15—C16 | 1.376 (7) |
| C5—C6 | 1.401 (4) | C15—H15A | 0.9300 |
| C6—C7 | 1.395 (5) | C16—C17 | 1.369 (5) |
| C6—C18 | 1.422 (6) | C16—H16A | 0.9300 |
| C7—C8 | 1.366 (6) | C17—C19 | 1.437 (6) |
| C1—N1—C3 | 109.1 (3) | C8—C9—C10 | 120.5 (4) |
| C1—N1—C4 | 125.4 (3) | C8—C9—H9A | 119.8 |
| C3—N1—C4 | 125.4 (3) | C10—C9—H9A | 119.8 |
| C1—N2—C2 | 108.8 (3) | C9—C10—C5 | 121.1 (3) |
| C1—N2—C11 | 125.7 (3) | C9—C10—H10A | 119.5 |
| C2—N2—C11 | 125.5 (3) | C5—C10—H10A | 119.5 |
| N1—C1—N2 | 107.9 (3) | N2—C11—C12 | 113.0 (3) |
| N1—C1—H1A | 126.0 | N2—C11—H11A | 109.0 |
| N2—C1—H1A | 126.0 | C12—C11—H11A | 109.0 |
| C3—C2—N2 | 106.7 (3) | N2—C11—H11B | 109.0 |
| C3—C2—H2A | 126.7 | C12—C11—H11B | 109.0 |
| N2—C2—H2A | 126.7 | H11A—C11—H11B | 107.8 |
| C2—C3—N1 | 107.5 (3) | C13—C12—C17 | 117.8 (3) |
| C2—C3—H3A | 126.3 | C13—C12—C11 | 123.4 (3) |
| N1—C3—H3A | 126.3 | C17—C12—C11 | 118.7 (3) |
| N1—C4—C5 | 111.9 (3) | C12—C13—C14 | 121.2 (3) |
| N1—C4—H4A | 109.2 | C12—C13—H13A | 119.4 |
| C5—C4—H4A | 109.2 | C14—C13—H13A | 119.4 |
| N1—C4—H4B | 109.2 | C13—C14—C15 | 120.2 (4) |
| C5—C4—H4B | 109.2 | C13—C14—H14A | 119.9 |
| H4A—C4—H4B | 107.9 | C15—C14—H14A | 119.9 |
| C10—C5—C6 | 118.0 (3) | C16—C15—C14 | 119.8 (4) |
| C10—C5—C4 | 123.0 (3) | C16—C15—H15A | 120.1 |
| C6—C5—C4 | 118.8 (3) | C14—C15—H15A | 120.1 |
| C7—C6—C5 | 120.5 (4) | C17—C16—C15 | 119.7 (4) |
| C7—C6—C18 | 119.4 (3) | C17—C16—H16A | 120.1 |
| C5—C6—C18 | 120.1 (3) | C15—C16—H16A | 120.1 |
| C8—C7—C6 | 119.9 (3) | C16—C17—C12 | 121.2 (4) |
| C8—C7—H7A | 120.1 | C16—C17—C19 | 118.9 (3) |
| C6—C7—H7A | 120.1 | C12—C17—C19 | 119.9 (3) |
| C7—C8—C9 | 120.1 (4) | N3—C18—C6 | 178.6 (4) |
| C7—C8—H8A | 120.0 | N4—C19—C17 | 179.3 (6) |
| C9—C8—H8A | 120.0 | ||
| C3—N1—C1—N2 | −1.2 (4) | C7—C8—C9—C10 | 2.2 (7) |
| C4—N1—C1—N2 | −178.2 (3) | C8—C9—C10—C5 | −1.3 (7) |
| C2—N2—C1—N1 | 1.0 (4) | C6—C5—C10—C9 | 0.7 (6) |
| C11—N2—C1—N1 | −179.5 (4) | C4—C5—C10—C9 | 176.2 (4) |
| C1—N2—C2—C3 | −0.4 (5) | C1—N2—C11—C12 | −100.4 (5) |
| C11—N2—C2—C3 | −179.9 (4) | C2—N2—C11—C12 | 79.0 (5) |
| N2—C2—C3—N1 | −0.3 (5) | N2—C11—C12—C13 | 28.0 (6) |
| C1—N1—C3—C2 | 0.9 (5) | N2—C11—C12—C17 | −155.2 (4) |
| C4—N1—C3—C2 | 177.9 (4) | C17—C12—C13—C14 | 0.0 (6) |
| C1—N1—C4—C5 | −111.6 (4) | C11—C12—C13—C14 | 176.8 (4) |
| C3—N1—C4—C5 | 71.9 (5) | C12—C13—C14—C15 | 0.3 (6) |
| N1—C4—C5—C10 | 24.2 (5) | C13—C14—C15—C16 | −1.3 (7) |
| N1—C4—C5—C6 | −160.3 (3) | C14—C15—C16—C17 | 1.9 (7) |
| C10—C5—C6—C7 | −1.0 (5) | C15—C16—C17—C12 | −1.6 (6) |
| C4—C5—C6—C7 | −176.7 (3) | C15—C16—C17—C19 | 177.2 (4) |
| C10—C5—C6—C18 | 177.4 (4) | C13—C12—C17—C16 | 0.6 (6) |
| C4—C5—C6—C18 | 1.7 (5) | C11—C12—C17—C16 | −176.3 (4) |
| C5—C6—C7—C8 | 1.9 (6) | C13—C12—C17—C19 | −178.2 (4) |
| C18—C6—C7—C8 | −176.5 (4) | C11—C12—C17—C19 | 4.9 (6) |
| C6—C7—C8—C9 | −2.5 (6) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C1—H1A···Br1i | 0.93 | 2.70 | 3.531 (4) | 149 |
| C2—H2A···Br1ii | 0.93 | 2.67 | 3.579 (4) | 165 |
| C3—H3A···N4iii | 0.93 | 2.50 | 3.377 (6) | 157 |
| C4—H4B···Br1i | 0.97 | 2.86 | 3.730 (4) | 149 |
| C7—H7A···N4iv | 0.93 | 2.60 | 3.390 (5) | 144 |
| C10—H10A···Br1v | 0.93 | 2.88 | 3.678 (4) | 144 |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x, y−1/2, −z+1/2; (iii) −x, y+1/2, −z+1/2; (iv) x+1, −y−1/2, z+1/2; (v) x, y−1, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6514).
References
- Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
- Buchowicz, W., Koziol, A., Jerzykiewicz, L. B., Lis, T., Pasynkiewicz, S., Pecherzewska, A. & Pietrzykowski, A. (2006). J. Mol. Catal. A Chem. 257, 118–123.
- Demir, S., Özdemir, I. & Cetinkaya, B. (2009). J. Organomet. Chem. 694, 4025–4031.
- Fahlbusch, T., Frank, M., Maas, G. & Schatz, J. (2009). Organometallics, 28, 6183–6193.
- Grasa, G. A., Moore, Z., Martin, K. L., Stevens, E. D., Nolan, S. P., Paquet, V. & Lebel, H. (2002). J. Organomet. Chem. 658, 126–131.
- Marko, I. E., Sterin, S., Buisine, O., Mignani, G., Branlard, P., Tinant, B. & Declercq, J.-P. (2002). Science, 298, 204–206. [DOI] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Wanzlick, W. H. & Kleiner, J. H. (1961). Angew. Chem. Int. Ed. Engl 73, 493–497.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811048951/hb6514sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811048951/hb6514Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536811048951/hb6514Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


