Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 30;67(Pt 12):o3462. doi: 10.1107/S1600536811048951

1,3-Bis(2-cyano­benz­yl)imidazolium bromide

Rosenani A Haque a, Safaa A Ahmed b, Zulikha H Zetty a, Madhukar Hemamalini c, Hoong-Kun Fun c,*,
PMCID: PMC3239090  PMID: 22199938

Abstract

In the title salt, C19H15N4 +·Br, the central imidazole ring makes dihedral angles of 83.1 (2) and 87.6 (2)° with the terminal benzene rings. The dihedral angle between the terminal benzene rings is 6.77 (19)°; the cyanide substituents have an anti orientation. In the crystal, the cations and anions are linked via C—H⋯N and C—H⋯Br hydrogen bonds, forming sheets lying parallel to the ac plane.

Related literature

For details and applications of N-heterocylic carbene, see: Wanzlick & Kleiner (1961); Fahlbusch et al. (2009); Demir et al. (2009); Grasa et al. (2002); Buchowicz et al. (2006); Marko et al. (2002).graphic file with name e-67-o3462-scheme1.jpg

Experimental

Crystal data

  • C19H15N4 +·Br

  • M r = 379.26

  • Monoclinic, Inline graphic

  • a = 9.0661 (9) Å

  • b = 8.0357 (9) Å

  • c = 24.697 (3) Å

  • β = 95.651 (2)°

  • V = 1790.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.30 mm−1

  • T = 296 K

  • 0.36 × 0.17 × 0.10 mm

Data collection

  • Bruker APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.494, T max = 0.799

  • 12922 measured reflections

  • 4066 independent reflections

  • 2486 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.149

  • S = 1.02

  • 4066 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 1.14 e Å−3

  • Δρmin = −0.82 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811048951/hb6514sup1.cif

e-67-o3462-sup1.cif (19.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811048951/hb6514Isup2.hkl

e-67-o3462-Isup2.hkl (195.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811048951/hb6514Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯Br1i 0.93 2.70 3.531 (4) 149
C2—H2A⋯Br1ii 0.93 2.67 3.579 (4) 165
C3—H3A⋯N4iii 0.93 2.50 3.377 (6) 157
C4—H4B⋯Br1i 0.97 2.86 3.730 (4) 149
C7—H7A⋯N4iv 0.93 2.60 3.390 (5) 144
C10—H10A⋯Br1v 0.93 2.88 3.678 (4) 144

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

RAH, SAA and ZZH thank Universiti Sains Malaysia for the FRGS fund (203/PKIMIA/671115) and RU grant (1001/PKIMIA/811157) (to RAH and ZZH) and the University of Tikrit for research leave (to SSA). HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

Since the investigation of N-heterocyclic carbene (NHC) chemistry by Wanzlick and Kleiner (1961), NHCs have played a major role as ligands in coordination and organometallic chemistry (Fahlbusch et al., 2009). During the past decades it has been proven as an alternative to tertiary phosphines in homogeneous catalysis. Due to NHC's strong σ-donating and negligible π-accepting characters, they are compatible with metals in a variety of oxidation states. NHC can stabilize catalytically active intermediates (Demir et al., 2009) making it a very versatile ligand system. NHC complexes with every transition metal are now known and their applications especially in the area of catalysis cover a broad spectrum such as hydroboration (Grasa et al., 2002), polymerization reactions (Buchowicz et al., 2006) and hydrosilation (Marko et al., 2002). Furthermore, NHCs are easy to handle, stable and inexpensive resulting in their receiving a great deal of interest compared to other types of carbenes.

In (I), the asymmetric unit contains a 1,3-Bis(2-cyanobenzyl)imidazolium cation and a bromide anion. The central imidazole (N1,N2/C1–C3) ring makes dihedral angles of 83.1 (2) and 87.6 (2)° with the terminal phenyl (C5–C10 and C12–C17) rings. The dihedral angle between the two terminal phenyl (C5–C10 and C12–C17) rings is 6.77 (19)°.

In the crystal, (Fig. 2), the cations and anions are linked via C—H···N and C—H···Br hydrogen bonds (Table 1), forming two-dimensional networks parallel to the ac-plane.

Experimental

Imidazole (0.3 g, 3.7 mmol) and potassium hydroxide (0.2 g, 5.5 mmol) was stirred for 2 h in 25 mL of ethanol. 2-Bromomethyl benzonitrile (1.8 g, 9.2 mmol) was then added and the mixture was refluxed at 80°C for 24 h. The resulting clear crystals were isolated by decantation, washed with fresh n-hexane (2 X 3 ml) and then left to dry at ambient temperature. Yield: 1.3 g, (94%); m.p: 233–234°C. Colourless blocks were obtained by slow evaporation of the salt solution in ethanol at ambient temperature.

Refinement

All hydrogen atoms were positioned geometrically [ C–H = 0.93 or 0.97 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, showing 30% probability displacement.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) network. H atoms not involved in hydrogen bond interactions are omitted for clarity.

Crystal data

C19H15N4+·Br F(000) = 768
Mr = 379.26 Dx = 1.407 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2803 reflections
a = 9.0661 (9) Å θ = 2.9–23.8°
b = 8.0357 (9) Å µ = 2.30 mm1
c = 24.697 (3) Å T = 296 K
β = 95.651 (2)° Block, colourless
V = 1790.5 (3) Å3 0.36 × 0.17 × 0.10 mm
Z = 4

Data collection

Bruker APEXII DUO CCD diffractometer 4066 independent reflections
Radiation source: fine-focus sealed tube 2486 reflections with I > 2σ(I)
graphite Rint = 0.034
φ and ω scans θmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −11→11
Tmin = 0.494, Tmax = 0.799 k = −10→10
12922 measured reflections l = −32→32

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0749P)2 + 0.6395P] where P = (Fo2 + 2Fc2)/3
4066 reflections (Δ/σ)max = 0.001
217 parameters Δρmax = 1.14 e Å3
0 restraints Δρmin = −0.82 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.29310 (4) 0.46183 (7) 0.271846 (19) 0.0744 (2)
N1 0.3270 (3) 0.0222 (4) 0.29878 (11) 0.0487 (7)
N2 0.1865 (3) −0.0421 (4) 0.22727 (11) 0.0521 (8)
N3 0.6850 (4) 0.2721 (5) 0.43842 (14) 0.0763 (11)
N4 −0.1238 (5) −0.2711 (6) 0.07253 (15) 0.0977 (15)
C1 0.3264 (4) −0.0178 (5) 0.24721 (13) 0.0482 (8)
H1A 0.4092 −0.0274 0.2280 0.058*
C2 0.0970 (4) −0.0140 (6) 0.26727 (16) 0.0659 (11)
H2A −0.0058 −0.0215 0.2643 0.079*
C3 0.1858 (4) 0.0268 (6) 0.31198 (15) 0.0628 (11)
H3A 0.1557 0.0534 0.3459 0.075*
C4 0.4592 (4) 0.0639 (5) 0.33548 (14) 0.0570 (10)
H4A 0.4438 0.1698 0.3529 0.068*
H4B 0.5435 0.0756 0.3144 0.068*
C5 0.4932 (4) −0.0676 (5) 0.37865 (13) 0.0467 (8)
C6 0.5839 (4) −0.0257 (5) 0.42592 (13) 0.0466 (8)
C7 0.6238 (4) −0.1459 (6) 0.46540 (14) 0.0605 (10)
H7A 0.6816 −0.1167 0.4972 0.073*
C8 0.5779 (5) −0.3068 (6) 0.45731 (17) 0.0709 (12)
H8A 0.6076 −0.3878 0.4830 0.085*
C9 0.4881 (5) −0.3487 (6) 0.41142 (19) 0.0741 (12)
H9A 0.4544 −0.4575 0.4067 0.089*
C10 0.4474 (5) −0.2307 (6) 0.37226 (16) 0.0657 (11)
H10A 0.3881 −0.2616 0.3410 0.079*
C11 0.1370 (5) −0.0897 (6) 0.17153 (16) 0.0749 (13)
H11A 0.0594 −0.1727 0.1720 0.090*
H11B 0.2191 −0.1401 0.1552 0.090*
C12 0.0786 (4) 0.0566 (5) 0.13661 (13) 0.0507 (9)
C13 0.1252 (4) 0.2175 (5) 0.14572 (15) 0.0579 (10)
H13A 0.1924 0.2412 0.1756 0.070*
C14 0.0744 (5) 0.3443 (6) 0.11149 (17) 0.0676 (11)
H14A 0.1077 0.4524 0.1183 0.081*
C15 −0.0260 (5) 0.3115 (6) 0.06708 (17) 0.0740 (12)
H15A −0.0618 0.3978 0.0444 0.089*
C16 −0.0729 (5) 0.1509 (6) 0.05649 (16) 0.0693 (12)
H16A −0.1383 0.1278 0.0260 0.083*
C17 −0.0230 (4) 0.0254 (5) 0.09104 (13) 0.0524 (9)
C18 0.6389 (4) 0.1393 (6) 0.43334 (13) 0.0540 (9)
C19 −0.0785 (5) −0.1402 (6) 0.08064 (14) 0.0674 (12)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0396 (2) 0.0842 (4) 0.0975 (4) −0.00728 (19) −0.00305 (18) −0.0309 (2)
N1 0.0396 (14) 0.062 (2) 0.0417 (14) −0.0013 (13) −0.0096 (11) −0.0008 (13)
N2 0.0481 (16) 0.054 (2) 0.0491 (15) 0.0021 (14) −0.0196 (13) −0.0085 (13)
N3 0.092 (3) 0.064 (3) 0.068 (2) −0.018 (2) −0.0216 (18) −0.0005 (19)
N4 0.145 (4) 0.074 (3) 0.063 (2) −0.033 (3) −0.044 (2) 0.004 (2)
C1 0.0362 (15) 0.062 (3) 0.0448 (17) 0.0039 (15) −0.0063 (13) −0.0014 (16)
C2 0.0366 (17) 0.087 (3) 0.073 (2) −0.0036 (18) −0.0027 (16) 0.001 (2)
C3 0.054 (2) 0.083 (3) 0.0516 (19) −0.003 (2) 0.0099 (16) −0.001 (2)
C4 0.058 (2) 0.056 (3) 0.0509 (19) −0.0101 (18) −0.0213 (16) −0.0008 (17)
C5 0.0467 (17) 0.045 (2) 0.0457 (17) 0.0022 (15) −0.0080 (13) −0.0016 (15)
C6 0.0464 (17) 0.052 (2) 0.0402 (16) 0.0005 (16) −0.0039 (13) −0.0024 (15)
C7 0.063 (2) 0.071 (3) 0.0456 (19) 0.000 (2) −0.0081 (15) 0.0106 (18)
C8 0.075 (3) 0.065 (3) 0.071 (3) 0.008 (2) −0.003 (2) 0.025 (2)
C9 0.083 (3) 0.042 (3) 0.095 (3) −0.009 (2) −0.004 (2) 0.005 (2)
C10 0.074 (3) 0.055 (3) 0.063 (2) −0.002 (2) −0.0172 (19) −0.007 (2)
C11 0.095 (3) 0.058 (3) 0.062 (2) 0.010 (2) −0.037 (2) −0.014 (2)
C12 0.0511 (18) 0.052 (3) 0.0458 (17) 0.0003 (17) −0.0088 (14) −0.0069 (16)
C13 0.053 (2) 0.055 (3) 0.064 (2) −0.0027 (18) −0.0027 (16) −0.009 (2)
C14 0.078 (3) 0.049 (3) 0.078 (3) −0.007 (2) 0.022 (2) −0.007 (2)
C15 0.095 (3) 0.063 (3) 0.065 (2) 0.017 (3) 0.008 (2) 0.014 (2)
C16 0.082 (3) 0.069 (3) 0.053 (2) 0.000 (2) −0.0129 (19) 0.009 (2)
C17 0.059 (2) 0.054 (2) 0.0423 (17) 0.0001 (18) −0.0079 (14) 0.0008 (16)
C18 0.058 (2) 0.059 (3) 0.0417 (17) −0.0030 (19) −0.0140 (15) 0.0000 (17)
C19 0.090 (3) 0.060 (3) 0.045 (2) −0.006 (2) −0.0303 (19) 0.0019 (19)

Geometric parameters (Å, °)

N1—C1 1.313 (4) C7—H7A 0.9300
N1—C3 1.352 (5) C8—C9 1.371 (6)
N1—C4 1.469 (4) C8—H8A 0.9300
N2—C1 1.329 (4) C9—C10 1.378 (6)
N2—C2 1.358 (5) C9—H9A 0.9300
N2—C11 1.456 (4) C10—H10A 0.9300
N3—C18 1.148 (5) C11—C12 1.522 (6)
N4—C19 1.140 (6) C11—H11A 0.9700
C1—H1A 0.9300 C11—H11B 0.9700
C2—C3 1.341 (5) C12—C13 1.372 (5)
C2—H2A 0.9300 C12—C17 1.405 (4)
C3—H3A 0.9300 C13—C14 1.374 (6)
C4—C5 1.511 (5) C13—H13A 0.9300
C4—H4A 0.9700 C14—C15 1.380 (6)
C4—H4B 0.9700 C14—H14A 0.9300
C5—C10 1.380 (6) C15—C16 1.376 (7)
C5—C6 1.401 (4) C15—H15A 0.9300
C6—C7 1.395 (5) C16—C17 1.369 (5)
C6—C18 1.422 (6) C16—H16A 0.9300
C7—C8 1.366 (6) C17—C19 1.437 (6)
C1—N1—C3 109.1 (3) C8—C9—C10 120.5 (4)
C1—N1—C4 125.4 (3) C8—C9—H9A 119.8
C3—N1—C4 125.4 (3) C10—C9—H9A 119.8
C1—N2—C2 108.8 (3) C9—C10—C5 121.1 (3)
C1—N2—C11 125.7 (3) C9—C10—H10A 119.5
C2—N2—C11 125.5 (3) C5—C10—H10A 119.5
N1—C1—N2 107.9 (3) N2—C11—C12 113.0 (3)
N1—C1—H1A 126.0 N2—C11—H11A 109.0
N2—C1—H1A 126.0 C12—C11—H11A 109.0
C3—C2—N2 106.7 (3) N2—C11—H11B 109.0
C3—C2—H2A 126.7 C12—C11—H11B 109.0
N2—C2—H2A 126.7 H11A—C11—H11B 107.8
C2—C3—N1 107.5 (3) C13—C12—C17 117.8 (3)
C2—C3—H3A 126.3 C13—C12—C11 123.4 (3)
N1—C3—H3A 126.3 C17—C12—C11 118.7 (3)
N1—C4—C5 111.9 (3) C12—C13—C14 121.2 (3)
N1—C4—H4A 109.2 C12—C13—H13A 119.4
C5—C4—H4A 109.2 C14—C13—H13A 119.4
N1—C4—H4B 109.2 C13—C14—C15 120.2 (4)
C5—C4—H4B 109.2 C13—C14—H14A 119.9
H4A—C4—H4B 107.9 C15—C14—H14A 119.9
C10—C5—C6 118.0 (3) C16—C15—C14 119.8 (4)
C10—C5—C4 123.0 (3) C16—C15—H15A 120.1
C6—C5—C4 118.8 (3) C14—C15—H15A 120.1
C7—C6—C5 120.5 (4) C17—C16—C15 119.7 (4)
C7—C6—C18 119.4 (3) C17—C16—H16A 120.1
C5—C6—C18 120.1 (3) C15—C16—H16A 120.1
C8—C7—C6 119.9 (3) C16—C17—C12 121.2 (4)
C8—C7—H7A 120.1 C16—C17—C19 118.9 (3)
C6—C7—H7A 120.1 C12—C17—C19 119.9 (3)
C7—C8—C9 120.1 (4) N3—C18—C6 178.6 (4)
C7—C8—H8A 120.0 N4—C19—C17 179.3 (6)
C9—C8—H8A 120.0
C3—N1—C1—N2 −1.2 (4) C7—C8—C9—C10 2.2 (7)
C4—N1—C1—N2 −178.2 (3) C8—C9—C10—C5 −1.3 (7)
C2—N2—C1—N1 1.0 (4) C6—C5—C10—C9 0.7 (6)
C11—N2—C1—N1 −179.5 (4) C4—C5—C10—C9 176.2 (4)
C1—N2—C2—C3 −0.4 (5) C1—N2—C11—C12 −100.4 (5)
C11—N2—C2—C3 −179.9 (4) C2—N2—C11—C12 79.0 (5)
N2—C2—C3—N1 −0.3 (5) N2—C11—C12—C13 28.0 (6)
C1—N1—C3—C2 0.9 (5) N2—C11—C12—C17 −155.2 (4)
C4—N1—C3—C2 177.9 (4) C17—C12—C13—C14 0.0 (6)
C1—N1—C4—C5 −111.6 (4) C11—C12—C13—C14 176.8 (4)
C3—N1—C4—C5 71.9 (5) C12—C13—C14—C15 0.3 (6)
N1—C4—C5—C10 24.2 (5) C13—C14—C15—C16 −1.3 (7)
N1—C4—C5—C6 −160.3 (3) C14—C15—C16—C17 1.9 (7)
C10—C5—C6—C7 −1.0 (5) C15—C16—C17—C12 −1.6 (6)
C4—C5—C6—C7 −176.7 (3) C15—C16—C17—C19 177.2 (4)
C10—C5—C6—C18 177.4 (4) C13—C12—C17—C16 0.6 (6)
C4—C5—C6—C18 1.7 (5) C11—C12—C17—C16 −176.3 (4)
C5—C6—C7—C8 1.9 (6) C13—C12—C17—C19 −178.2 (4)
C18—C6—C7—C8 −176.5 (4) C11—C12—C17—C19 4.9 (6)
C6—C7—C8—C9 −2.5 (6)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H1A···Br1i 0.93 2.70 3.531 (4) 149
C2—H2A···Br1ii 0.93 2.67 3.579 (4) 165
C3—H3A···N4iii 0.93 2.50 3.377 (6) 157
C4—H4B···Br1i 0.97 2.86 3.730 (4) 149
C7—H7A···N4iv 0.93 2.60 3.390 (5) 144
C10—H10A···Br1v 0.93 2.88 3.678 (4) 144

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x, y−1/2, −z+1/2; (iii) −x, y+1/2, −z+1/2; (iv) x+1, −y−1/2, z+1/2; (v) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6514).

References

  1. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Buchowicz, W., Koziol, A., Jerzykiewicz, L. B., Lis, T., Pasynkiewicz, S., Pecherzewska, A. & Pietrzykowski, A. (2006). J. Mol. Catal. A Chem. 257, 118–123.
  3. Demir, S., Özdemir, I. & Cetinkaya, B. (2009). J. Organomet. Chem. 694, 4025–4031.
  4. Fahlbusch, T., Frank, M., Maas, G. & Schatz, J. (2009). Organometallics, 28, 6183–6193.
  5. Grasa, G. A., Moore, Z., Martin, K. L., Stevens, E. D., Nolan, S. P., Paquet, V. & Lebel, H. (2002). J. Organomet. Chem. 658, 126–131.
  6. Marko, I. E., Sterin, S., Buisine, O., Mignani, G., Branlard, P., Tinant, B. & Declercq, J.-P. (2002). Science, 298, 204–206. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Wanzlick, W. H. & Kleiner, J. H. (1961). Angew. Chem. Int. Ed. Engl 73, 493–497.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811048951/hb6514sup1.cif

e-67-o3462-sup1.cif (19.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811048951/hb6514Isup2.hkl

e-67-o3462-Isup2.hkl (195.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811048951/hb6514Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES