Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 30;67(Pt 12):o3467. doi: 10.1107/S1600536811049683

N,N′,N′′-Tricyclo­hexyl­guanidinium iodide

Farouq F Said a,*, Basem F Ali a,*, Darrin Richeson b
PMCID: PMC3239094  PMID: 22199942

Abstract

In the title compound, C19H36N3 +·I, the orientation of the cyclo­hexyl rings around the planar (sum of N—C—N angles = 360°) CN3 + unit produces steric hindrance around the N—H groups. As a consequence of this particular orientation of the tricyclo­hexyl­guanidinium cation (hereafter denoted CHGH+), hydrogen bonding is restricted to classical N—H⋯I and non-clasical (cyclo­hex­yl)C—H⋯I hydrogen bonds. The propeller CHGH+ cation and the oriented hydrogen-bonding interactions lead to a three-dimensional supra­molecular structure.

Related literature

For background to guanidines, see: Ishikawa & Isobe (2002); Moroni et al. (2001); Yoshiizumi et al. (1998). The title salt is isomorphous with the chloride anion-analogue (Cai & Hu, 2006) and N,N′,N′′-triisopropyl­guanidinium chloride (Said et al., 2005). (Ishikawa & Isobe, 2002). The structural features and hydrogen -bonding array provided by guanidinium cations suggest them to be good building blocks for the formation of supra­molecular entities, see: Said, Bazinet et al. (2006); Said, Ong et al. (2006). For bond-length data, see: Allen et al. (1987). graphic file with name e-67-o3467-scheme1.jpg

Experimental

Crystal data

  • C19H36N3 +·I

  • M r = 433.41

  • Cubic, Inline graphic

  • a = 12.893 (4) Å

  • V = 2143 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.50 mm−1

  • T = 188 K

  • 0.5 × 0.3 × 0.3 mm

Data collection

  • Bruker P4 diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.271, T max = 0.320

  • 2387 measured reflections

  • 802 independent reflections

  • 628 reflections with I > 2σ(I)

  • R int = 0.055

  • 3 standard reflections every 97 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.076

  • S = 1.04

  • 802 reflections

  • 70 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack (1983), 802 Friedel pairs

  • Flack parameter: 0.08 (8)

Data collection: XSCANS (Bruker, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811049683/bq2321sup1.cif

e-67-o3467-sup1.cif (13.6KB, cif)

Supplementary material file. DOI: 10.1107/S1600536811049683/bq2321Isup2.mol

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811049683/bq2321Isup3.hkl

e-67-o3467-Isup3.hkl (40.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811049683/bq2321Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯I1i 0.86 2.86 3.693 (5) 165
C2—H2A⋯I1ii 0.98 3.03 3.950 (5) 158

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We would like to thank Dr Thomas Haas for his help in the analysis of the structure.

supplementary crystallographic information

Comment

Guanidines are of special interest due to their possible application in medicine (Yoshiizumi et al., 1998; Moroni et al., 2001). They are considered super bases as they are easily protonated to generate guanidinium cations (Ishikawa & Isobe, 2002). The structural features and hydrogen bonding array provided by these cations suggest that they are good building blocks for the formation of supramolecular entities (Said, Bazinet et al., 2006, Said, Ong et al., 2006, Said et al., 2005).

The title compound (I), Fig. 1, is a typical N,N',N"-trisubstituted guanidinium halide salt with normal geometric parameters (Said et al., 2005). The central guanidinium fragment of the cation of the title salt is planar [sum of NCN angles is 360°] with bond lengths and angles as expected for a central Csp2 hybridization, accounting for charge delocalization between the three C—N bonds. The bond length C1—N1 [1.330 (5) Å] is comparable with literature averages for substituted and unsubstituted guanidinium cations (1.321 and 1.328 Å, respectively; (Allen et al., 1987)). The cyclohexyl ring has the normal chair conformation with conventional bond lengths and angles. A partial packing diagram is shown in Fig. 2. The CHGH+ ions occur in chains, with the I- anions arranged parallel to the cation chains. The cations and anions occur in a 3-fold array: three anions surround each cation [via its three N—H···I, 2.856 Å; (165°) and C—H···I (3.027 Å; 158°) interactions, Table 1, Fig. 3], and three cations surround each anion resulting in the formation of three-dimensional supramolecular structure.This type of supramolecular synthons has been observed frequently in other related compounds. The stability of this crystal lattice is evidenced by the crystallization of a whole series of isomorphous compounds of this type, such as N,N',N''-tricyclohexylguanidinium chloride (Cai & Hu, 2006), even with different substituents like N,N',N''-triisipropylguanidinium chloride (Said et al., 2005).

Experimental

General:N,N',N"-tricyclohexylguanidine was prepared according to literature methods. All other reagents were purchased from Aldrich Chemical Company and used without further purification. Elemental analyses were run on a Perkin Elmer PE CHN 4000 elemental analysis system.

Synthesis and crystallization ofN,N',N"-tricyclohexylguanidinium iodide, {C(HNcyclohexyl)3}+I-

In a round bottom flask, a combination of 0.200 g (1.34 mmol) ammonium iodide and 0.41 g (1.34 mmol) N,N',N''-tricyclohexylguanidine were dissolved in 10 mL of distilled water. White precipitate of {C(HNcyclohexyl)3}+I- was deposited immediately of the solution (0.46 g, 92.0% yield). The product was crystallized from a mixture of methanol and distilled water to give white cubic crystals. In addition to confirming the molecular formula through elemental analysis, the solid obtained was examined by single-crystal X-ray analysis. Anal. Calcd for C19H36IN3 C, 52.65; H, 8.37; N, 9.70. Found C, 52.56; H, 8.63; N, 9.40.

Refinement

Hydrogen atoms were included in calculated positions and refined as riding on their parent atoms with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) and N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.

Fig. 1.

The structure of (I) with the guanidinium cation symmetry unique atoms are labeled. The other atoms are related by threefold rotation (3/2 – z, 1 – x, 1/2 + y and 1 – y, – 1/2 + y, 3/2 – x).

Fig. 2.

Fig. 2.

A partial packing diagram of (I), showing the CHGH+ cations and anions occur in a 3-fold array: three anions surround each cation and three cations surround each anion. Different colors and molecular rendering is used to clarify the arrangement.

Fig. 3.

Fig. 3.

The diagram showing one guanidium cation and three anions in order to emphasize the orientation of the supramolecular synthon that results from hydrogen bonding array of three N—H···I and three C—H···I interactions.

Crystal data

C19H36N3+·I Dx = 1.343 Mg m3
Mr = 433.41 Mo Kα radiation, λ = 0.71073 Å
Cubic, P213 Cell parameters from 30 reflections
Hall symbol: P 2ac 2ab 3 θ = 3.9–6.9°
a = 12.893 (4) Å µ = 1.50 mm1
V = 2143 (2) Å3 T = 188 K
Z = 4 Block, colorless
F(000) = 896 0.5 × 0.3 × 0.3 mm

Data collection

Bruker P4 diffractometer 628 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.055
graphite θmax = 25.9°, θmin = 2.2°
ω scans h = 0→15
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = 0→15
Tmin = 0.271, Tmax = 0.320 l = 0→15
2387 measured reflections 3 standard reflections every 97 reflections
802 independent reflections intensity decay: none

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038 H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0269P)2 + 0.7683P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
802 reflections Δρmax = 0.33 e Å3
70 parameters Δρmin = −0.27 e Å3
0 restraints Absolute structure: Flack (1983), 802 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.08 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 0.89107 (4) 0.89107 (4) 0.89107 (4) 0.0589 (2)
N1 0.8894 (5) 0.1398 (4) 0.7489 (4) 0.0715 (16)
H1A 0.8803 0.0781 0.7728 0.086*
C1 0.8343 (6) 0.1657 (6) 0.6657 (6) 0.064 (3)
C2 0.9631 (6) 0.2045 (6) 0.8033 (6) 0.071 (2)
H2A 0.9812 0.2636 0.7591 0.086*
C3 0.9164 (6) 0.2440 (8) 0.9017 (8) 0.114 (4)
H3A 0.8951 0.1861 0.9448 0.137*
H3B 0.8556 0.2855 0.8862 0.137*
C4 0.9957 (9) 0.3091 (9) 0.9588 (11) 0.149 (5)
H4A 1.0115 0.3701 0.9177 0.179*
H4B 0.9660 0.3323 1.0239 0.179*
C5 1.0919 (7) 0.2525 (9) 0.9799 (7) 0.100 (3)
H5A 1.0780 0.1967 1.0285 0.120*
H5B 1.1419 0.2990 1.0116 0.120*
C6 1.1359 (5) 0.2091 (7) 0.8838 (7) 0.084 (2)
H6A 1.1957 0.1668 0.9009 0.101*
H6C 1.1593 0.2654 0.8397 0.101*
C7 1.0581 (6) 0.1441 (7) 0.8255 (7) 0.086 (3)
H7C 1.0885 0.1206 0.7608 0.103*
H7A 1.0404 0.0835 0.8663 0.103*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.0589 (2) 0.0589 (2) 0.0589 (2) −0.0007 (3) −0.0007 (3) −0.0007 (3)
N1 0.084 (4) 0.060 (3) 0.070 (4) −0.014 (4) −0.026 (4) 0.014 (3)
C1 0.064 (3) 0.064 (3) 0.064 (3) −0.012 (4) −0.012 (4) 0.012 (4)
C2 0.082 (6) 0.071 (5) 0.061 (5) −0.020 (5) −0.024 (4) 0.010 (4)
C3 0.082 (7) 0.132 (8) 0.129 (9) 0.040 (6) −0.022 (7) −0.045 (8)
C4 0.129 (9) 0.147 (10) 0.172 (12) 0.014 (9) −0.035 (9) −0.102 (10)
C5 0.097 (7) 0.138 (8) 0.065 (5) −0.021 (8) −0.028 (6) 0.008 (6)
C6 0.064 (5) 0.090 (6) 0.098 (6) −0.014 (4) −0.005 (5) 0.007 (6)
C7 0.049 (4) 0.104 (7) 0.105 (6) −0.010 (4) −0.001 (5) −0.026 (6)

Geometric parameters (Å, °)

N1—C1 1.330 (5) C4—C5 1.465 (13)
N1—C2 1.446 (9) C4—H4A 0.9700
N1—H1A 0.8600 C4—H4B 0.9700
C1—N1i 1.330 (5) C5—C6 1.473 (13)
C1—N1ii 1.330 (5) C5—H5A 0.9700
C2—C7 1.479 (10) C5—H5B 0.9700
C2—C3 1.493 (11) C6—C7 1.508 (10)
C2—H2A 0.9800 C6—H6A 0.9700
C3—C4 1.514 (13) C6—H6C 0.9700
C3—H3A 0.9700 C7—H7C 0.9700
C3—H3B 0.9700 C7—H7A 0.9700
C1—N1—C2 126.7 (5) C5—C4—H4B 109.1
C1—N1—H1A 116.7 C3—C4—H4B 109.1
C2—N1—H1A 116.7 H4A—C4—H4B 107.8
N1i—C1—N1 119.99 (3) C4—C5—C6 111.1 (8)
N1i—C1—N1ii 119.99 (3) C4—C5—H5A 109.4
N1—C1—N1ii 119.99 (3) C6—C5—H5A 109.4
N1—C2—C7 109.5 (6) C4—C5—H5B 109.4
N1—C2—C3 110.1 (7) C6—C5—H5B 109.4
C7—C2—C3 110.4 (7) H5A—C5—H5B 108.0
N1—C2—H2A 108.9 C5—C6—C7 112.0 (7)
C7—C2—H2A 108.9 C5—C6—H6A 109.2
C3—C2—H2A 108.9 C7—C6—H6A 109.2
C2—C3—C4 109.3 (8) C5—C6—H6C 109.2
C2—C3—H3A 109.8 C7—C6—H6C 109.2
C4—C3—H3A 109.8 H6A—C6—H6C 107.9
C2—C3—H3B 109.8 C2—C7—C6 110.8 (7)
C4—C3—H3B 109.8 C2—C7—H7C 109.5
H3A—C3—H3B 108.3 C6—C7—H7C 109.5
C5—C4—C3 112.7 (8) C2—C7—H7A 109.5
C5—C4—H4A 109.1 C6—C7—H7A 109.5
C3—C4—H4A 109.1 H7C—C7—H7A 108.1

Symmetry codes: (i) −z+3/2, −x+1, y+1/2; (ii) −y+1, z−1/2, −x+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···I1iii 0.86 2.86 3.693 (5) 165
C2—H2A···I1iv 0.98 3.03 3.950 (5) 158

Symmetry codes: (iii) x, y−1, z; (iv) −x+2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2321).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (1996). XSCANS . Bruker AXS Inc., Madison, Wisconsin, USA
  3. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cai, X.-Q. & Hu, M.-L. (2006). Acta Cryst. E62, o1260–o1261.
  5. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  6. Ishikawa, T. & Isobe, T. (2002). Chem. Eur. J. 8, 552–557. [DOI] [PubMed]
  7. Moroni, M., Koksch, B., Osipov, S. N., Crucianelli, M., Frigerio, M., Bravo, P. & Burger, K. (2001). J. Org. Chem. 66, 130–133. [DOI] [PubMed]
  8. Said, F. F., Bazinet, P., Ong, T. G., Yap, G. P. A. & Richeson, D. S. (2006). Cryst. Growth Des., 6, 258–266.
  9. Said, F. F., Ong, T. G., Bazinet, P., Yap, G. P. A. & Richeson, D. S. (2006). Cryst. Growth Des., 6, 1848–1857.
  10. Said, F. F., Ong, T. G., Yap, G. P. A. & Richeson, D. (2005). Cryst. Growth Des., 5, 1881–1888.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Yoshiizumi, K., Seko, N., Nishimura, N., Ikeda, S., Yoshino, K. & Kondo Kazutaka, H. (1998). Bioorg. Med. Chem. Lett. 8, 3397–3402. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811049683/bq2321sup1.cif

e-67-o3467-sup1.cif (13.6KB, cif)

Supplementary material file. DOI: 10.1107/S1600536811049683/bq2321Isup2.mol

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811049683/bq2321Isup3.hkl

e-67-o3467-Isup3.hkl (40.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811049683/bq2321Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES