Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 30;67(Pt 12):o3470. doi: 10.1107/S1600536811048938

Dehydro­leucodin: a guaiane-type sesquiterpene lactone

Horacio A Priestap a, Khalil A Abboud b, Alvaro E Velandia a, Luis A Lopez c, Manuel A Barbieri a,*
PMCID: PMC3239097  PMID: 22199945

Abstract

Dehydro­leucodin [systematic name: (1S,6S,2R)-9,13-dimeth­yl-5-methyl­ene-3-oxatricyclo­[8.3.0.02,6]trideca-9,12-diene-4,11-dione], C15H16O3, is a guanolide isolated from Artemisia douglasiana. The fused-ring system contains a seven-membered ring that adopts a chair conformation, a fused planar cyclo­pentenone ring and a five-membered lactone ring fused in envelope conformation. The absolute structure determined by X-ray analysis agrees with that previously assigned to this compound by NMR studies [Bohlmann & Zdero (1972). Tetra­hedron Lett. 13, 621–624] and also with that of leucodine, a closely related guaianolide [Martinez et al. (1988). J. Nat. Prod. 51, 221–228].

Related literature

For NMR studies of dehydro­leucodin and leucodine, see: Bohlmann & Zdero (1972); Martinez et al., (1988). For the pharmacological activity of dehydro­leucodin and related compounds, see Giordano et al. (1992).graphic file with name e-67-o3470-scheme1.jpg

Experimental

Crystal data

  • C15H16O3

  • M r = 244.28

  • Orthorhombic, Inline graphic

  • a = 7.5101 (3) Å

  • b = 11.1065 (4) Å

  • c = 15.0228 (6) Å

  • V = 1253.07 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.73 mm−1

  • T = 100 K

  • 0.29 × 0.07 × 0.05 mm

Data collection

  • Bruker APEXII DUO diffractometer

  • Absorption correction: integration (SADABS; Bruker, 2008) T min = 0.820, T max = 0.962

  • 10896 measured reflections

  • 2166 independent reflections

  • 2150 reflections with I > 2σ(I)

  • R int = 0.064

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.068

  • S = 1.05

  • 2166 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.14 e Å−3

  • Absolute structure: Flack (1983), 879 Friedel pairs

  • Flack parameter: 0.00 (17)

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811048938/bg2432sup1.cif

e-67-o3470-sup1.cif (15.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811048938/bg2432Isup2.hkl

e-67-o3470-Isup2.hkl (106.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811048938/bg2432Isup3.mol

Supplementary material file. DOI: 10.1107/S1600536811048938/bg2432Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was partially supported by SECyTP, UNCuyo 06 J 213 grant and ANPCYT PICT-R 2005 32850 grant to LAL. We thank Florida Inter­national University, the National Science Foundation and the University of Florida for funding of the purchase of the X-ray equipment.

supplementary crystallographic information

Comment

The title compound, a guaiane-type sesquiterpene lactone, was isolated from Artemisia douglasiana Bess (Asteraceae). NMR studies have been reported previously (Bohlmann & Zdero, 1972). By using a lanthanide shift reagent [Eu(fod)3] the lower field signals of dehydroleucodin could be resolved and showed the 5S, 6R and 7S configurations at the chiral centers. Here we report the crystal structure of dehydroleucodin that resulted coherent with the absolute stereochemistry previously reported by Bohlmann and Zdero (1972). The molecular geometry of dehydroleucodin is illustrated in Fig. 1. Inspection of the crystal structure shows that the cyclopentenone carbons, C-9 and C-10 are almost coplanar. The seven-membered ring adopts approximately a chair conformation with the atoms C-6, C-7, and C-8 above the plane. The lactone ring shows a half-chair conformation. H-5 and H-7 are located below the plane (beta-orientation) whereas H-6 is above the plane (beta-orientation), hence the configurations at the chiral centers 5, 6 and 7, is confirmed as being S, R and S, respectively. Bond distances and bond angles are normal.

Experimental

Aerial parts of Artemisia douglasiana were collected in San Carlos, Mendoza (Argentina). The dried crushed plant material (10 g, dry weight) was exhaustedly extracted with boiling CHCl3. The CHCl3 extract was chromatographed on silica gel and alumina columns using mixtures of ethyl acetate and chloroform as eluants to give white crystals of dehydroleucodin (70 mg). This compound was identified by comparing the spectroscopic data with the previously published data (Bohlmann and Zdero, 1972). Crystals suitable for X-ray analysis were obtained by recrystallization from DMSO-water at 277K.

Refinement

All the H atoms were placed in idealized positions and refined riding on their parent atoms, with C—H = 0.93-0.99 Å and Uiso(H) =1.5Ueq(C) for the methyl H atoms and 1.2Ueq(C) for the remaining ones. The Flack x parameter is 0.00 (17) confirming that the correct enantiomer is being reported.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, showing 50% probability displacement ellipsoids.

Crystal data

C15H16O3 Dehydroleucodin
Mr = 244.28 Dx = 1.295 Mg m3
Orthorhombic, P212121 Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2ab Cell parameters from 9973 reflections
a = 7.5101 (3) Å θ = 2.9–67.8°
b = 11.1065 (4) Å µ = 0.73 mm1
c = 15.0228 (6) Å T = 100 K
V = 1253.07 (8) Å3 Needles, colourless
Z = 4 0.29 × 0.07 × 0.05 mm
F(000) = 520

Data collection

Bruker APEXII DUO diffractometer 2166 independent reflections
Radiation source: IµS microsource 2150 reflections with I > 2σ(I)
graphite Rint = 0.064
phi and ω scans θmax = 66.4°, θmin = 5.0°
Absorption correction: integration (SADABS; Bruker, 2008) h = −8→7
Tmin = 0.820, Tmax = 0.962 k = −13→12
10896 measured reflections l = −17→17

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027 H-atom parameters constrained
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0273P)2 + 0.2735P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
2166 reflections Δρmax = 0.19 e Å3
165 parameters Δρmin = −0.14 e Å3
0 restraints Absolute structure: Flack (1983), 879 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.00 (17)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. All H atoms were positioned geometrically (C—H=0.93/1.00 Å) and allowed to ride with Uiso(H)=1.2/1.5Ueq(C). Methyl ones were allowed to rotate around the corresponding C—C. The Flack x parameter is 0.00 (17) confirming that the correct enantiomer is refined for this structure.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.81504 (13) −0.02962 (8) 0.26751 (7) 0.0312 (2)
O2 0.80476 (13) 0.43297 (8) 0.09948 (6) 0.0248 (2)
O3 0.87294 (16) 0.62331 (10) 0.06281 (7) 0.0411 (3)
C1 0.68912 (15) 0.17287 (10) 0.25112 (8) 0.0192 (3)
C2 0.77553 (16) 0.05869 (11) 0.22172 (10) 0.0240 (3)
C3 0.79958 (18) 0.06797 (12) 0.12543 (10) 0.0278 (3)
H3A 0.8526 0.0072 0.0897 0.033*
C4 0.73794 (16) 0.17220 (12) 0.09389 (9) 0.0241 (3)
C5 0.66907 (16) 0.25183 (10) 0.16885 (8) 0.0192 (3)
H5A 0.5406 0.2712 0.1588 0.023*
C6 0.77492 (16) 0.36796 (10) 0.18300 (8) 0.0183 (3)
H6A 0.8926 0.3478 0.2104 0.022*
C7 0.68007 (16) 0.46068 (10) 0.24137 (8) 0.0190 (3)
H7A 0.5548 0.4662 0.2191 0.023*
C8 0.66895 (18) 0.43149 (11) 0.33978 (8) 0.0227 (3)
H8A 0.6197 0.5015 0.3723 0.027*
H8B 0.7899 0.4154 0.3631 0.027*
C9 0.55009 (17) 0.32097 (11) 0.35585 (8) 0.0224 (3)
H9A 0.5127 0.3202 0.4190 0.027*
H9B 0.4414 0.3286 0.3190 0.027*
C10 0.63981 (17) 0.20247 (11) 0.33441 (9) 0.0209 (3)
C11 0.77282 (17) 0.57383 (11) 0.21226 (9) 0.0215 (3)
C12 0.82427 (19) 0.55285 (12) 0.11838 (9) 0.0269 (3)
C13 0.80965 (17) 0.67457 (11) 0.25533 (10) 0.0266 (3)
H13A 0.8719 0.7376 0.2260 0.032*
H13B 0.7739 0.6839 0.3156 0.032*
C14 0.7232 (2) 0.20714 (14) −0.00173 (9) 0.0321 (3)
H14A 0.7834 0.1469 −0.0387 0.048*
H14B 0.7792 0.2859 −0.0107 0.048*
H14C 0.5973 0.2116 −0.0186 0.048*
C15 0.6668 (2) 0.12277 (12) 0.41396 (9) 0.0304 (3)
H15A 0.5508 0.0977 0.4374 0.046*
H15B 0.7319 0.1671 0.4600 0.046*
H15C 0.7353 0.0515 0.3964 0.046*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0261 (5) 0.0160 (4) 0.0516 (6) 0.0001 (4) −0.0029 (4) 0.0034 (4)
O2 0.0299 (5) 0.0231 (4) 0.0214 (4) −0.0035 (4) 0.0023 (4) 0.0021 (4)
O3 0.0564 (7) 0.0322 (6) 0.0347 (6) −0.0113 (5) 0.0045 (5) 0.0112 (5)
C1 0.0158 (6) 0.0158 (5) 0.0261 (6) −0.0017 (5) −0.0029 (5) 0.0001 (5)
C2 0.0158 (6) 0.0161 (6) 0.0401 (8) −0.0039 (5) −0.0027 (5) −0.0029 (5)
C3 0.0244 (7) 0.0213 (6) 0.0377 (8) −0.0010 (6) 0.0033 (6) −0.0118 (6)
C4 0.0191 (6) 0.0257 (6) 0.0275 (7) −0.0051 (5) 0.0011 (5) −0.0076 (6)
C5 0.0169 (6) 0.0182 (6) 0.0225 (6) −0.0011 (5) −0.0013 (5) −0.0027 (5)
C6 0.0186 (6) 0.0176 (6) 0.0186 (6) −0.0002 (5) −0.0010 (5) 0.0015 (5)
C7 0.0179 (6) 0.0156 (5) 0.0236 (6) 0.0019 (5) −0.0008 (5) −0.0001 (5)
C8 0.0275 (7) 0.0179 (6) 0.0227 (7) 0.0003 (5) −0.0003 (5) −0.0032 (5)
C9 0.0259 (6) 0.0215 (6) 0.0198 (6) −0.0015 (6) 0.0017 (5) −0.0022 (5)
C10 0.0193 (6) 0.0181 (6) 0.0253 (6) −0.0041 (5) −0.0037 (5) 0.0014 (5)
C11 0.0176 (6) 0.0179 (6) 0.0289 (7) 0.0018 (5) −0.0032 (5) 0.0037 (5)
C12 0.0277 (7) 0.0223 (6) 0.0305 (7) −0.0047 (6) −0.0033 (6) 0.0050 (5)
C13 0.0219 (6) 0.0190 (6) 0.0389 (7) 0.0007 (5) −0.0039 (6) 0.0003 (6)
C14 0.0315 (8) 0.0399 (8) 0.0251 (7) −0.0044 (6) 0.0018 (6) −0.0099 (6)
C15 0.0371 (8) 0.0252 (6) 0.0288 (7) −0.0026 (6) −0.0048 (6) 0.0075 (6)

Geometric parameters (Å, °)

O1—C2 1.2343 (17) C7—H7A 1.0000
O2—C12 1.3692 (16) C8—C9 1.5369 (17)
O2—C6 1.4649 (14) C8—H8A 0.9900
O3—C12 1.2012 (17) C8—H8B 0.9900
C1—C10 1.3456 (19) C9—C10 1.5132 (17)
C1—C2 1.4914 (16) C9—H9A 0.9900
C1—C5 1.5230 (17) C9—H9B 0.9900
C2—C3 1.461 (2) C10—C15 1.5009 (18)
C3—C4 1.334 (2) C11—C13 1.3218 (18)
C3—H3A 0.9500 C11—C12 1.4808 (19)
C4—C14 1.4920 (19) C13—H13A 0.9500
C4—C5 1.5225 (17) C13—H13B 0.9500
C5—C6 1.5299 (16) C14—H14A 0.9800
C5—H5A 1.0000 C14—H14B 0.9800
C6—C7 1.5286 (17) C14—H14C 0.9800
C6—H6A 1.0000 C15—H15A 0.9800
C7—C11 1.5019 (16) C15—H15B 0.9800
C7—C8 1.5158 (17) C15—H15C 0.9800
C12—O2—C6 108.55 (9) C7—C8—H8B 109.5
C10—C1—C2 127.08 (12) C9—C8—H8B 109.5
C10—C1—C5 125.92 (11) H8A—C8—H8B 108.1
C2—C1—C5 107.0 (1) C10—C9—C8 113.74 (10)
O1—C2—C3 125.31 (13) C10—C9—H9A 108.8
O1—C2—C1 127.97 (13) C8—C9—H9A 108.8
C3—C2—C1 106.68 (11) C10—C9—H9B 108.8
C4—C3—C2 111.72 (12) C8—C9—H9B 108.8
C4—C3—H3A 124.1 H9A—C9—H9B 107.7
C2—C3—H3A 124.1 C1—C10—C15 123.99 (12)
C3—C4—C14 126.41 (12) C1—C10—C9 122.21 (11)
C3—C4—C5 111.05 (12) C15—C10—C9 113.80 (11)
C14—C4—C5 122.40 (12) C13—C11—C12 123.01 (12)
C4—C5—C1 103.43 (10) C13—C11—C7 131.52 (13)
C4—C5—C6 114.58 (10) C12—C11—C7 105.47 (10)
C1—C5—C6 108.75 (9) O3—C12—O2 121.46 (13)
C4—C5—H5A 110.0 O3—C12—C11 129.70 (13)
C1—C5—H5A 110.0 O2—C12—C11 108.82 (11)
C6—C5—H5A 110.0 C11—C13—H13A 120.0
O2—C6—C7 103.33 (9) C11—C13—H13B 120.0
O2—C6—C5 112.09 (9) H13A—C13—H13B 120.0
C7—C6—C5 113.92 (10) C4—C14—H14A 109.5
O2—C6—H6A 109.1 C4—C14—H14B 109.5
C7—C6—H6A 109.1 H14A—C14—H14B 109.5
C5—C6—H6A 109.1 C4—C14—H14C 109.5
C11—C7—C8 119.24 (11) H14A—C14—H14C 109.5
C11—C7—C6 100.4 (1) H14B—C14—H14C 109.5
C8—C7—C6 116.17 (10) C10—C15—H15A 109.5
C11—C7—H7A 106.7 C10—C15—H15B 109.5
C8—C7—H7A 106.7 H15A—C15—H15B 109.5
C6—C7—H7A 106.7 C10—C15—H15C 109.5
C7—C8—C9 110.86 (10) H15A—C15—H15C 109.5
C7—C8—H8A 109.5 H15B—C15—H15C 109.5
C9—C8—H8A 109.5

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2432).

References

  1. Bohlmann, F. & Zdero, C. (1972). Tetrahedron Lett. 13, 621–624.
  2. Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Giordano, O. S., Pestchanker, J. M., Guerreiro, E., Saad, J. R., Enriz, R. D., Rodriguez, A. M., Jauregui, E. A., Maria, A. O. M. & Wendel, G. H. (1992). J. Med. Chem. 35, 2452–2458. [DOI] [PubMed]
  5. Martinez, M. V., Munoz-Zamora, A. & Joseph-Nathan, P. (1988). J. Nat. Prod. 51, 221–228.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811048938/bg2432sup1.cif

e-67-o3470-sup1.cif (15.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811048938/bg2432Isup2.hkl

e-67-o3470-Isup2.hkl (106.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811048938/bg2432Isup3.mol

Supplementary material file. DOI: 10.1107/S1600536811048938/bg2432Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES