Abstract
Dehydroleucodin [systematic name: (1S,6S,2R)-9,13-dimethyl-5-methylene-3-oxatricyclo[8.3.0.02,6]trideca-9,12-diene-4,11-dione], C15H16O3, is a guanolide isolated from Artemisia douglasiana. The fused-ring system contains a seven-membered ring that adopts a chair conformation, a fused planar cyclopentenone ring and a five-membered lactone ring fused in envelope conformation. The absolute structure determined by X-ray analysis agrees with that previously assigned to this compound by NMR studies [Bohlmann & Zdero (1972 ▶). Tetrahedron Lett. 13, 621–624] and also with that of leucodine, a closely related guaianolide [Martinez et al. (1988 ▶). J. Nat. Prod. 51, 221–228].
Related literature
For NMR studies of dehydroleucodin and leucodine, see: Bohlmann & Zdero (1972 ▶); Martinez et al., (1988 ▶). For the pharmacological activity of dehydroleucodin and related compounds, see Giordano et al. (1992 ▶).
Experimental
Crystal data
C15H16O3
M r = 244.28
Orthorhombic,
a = 7.5101 (3) Å
b = 11.1065 (4) Å
c = 15.0228 (6) Å
V = 1253.07 (8) Å3
Z = 4
Cu Kα radiation
μ = 0.73 mm−1
T = 100 K
0.29 × 0.07 × 0.05 mm
Data collection
Bruker APEXII DUO diffractometer
Absorption correction: integration (SADABS; Bruker, 2008 ▶) T min = 0.820, T max = 0.962
10896 measured reflections
2166 independent reflections
2150 reflections with I > 2σ(I)
R int = 0.064
Refinement
R[F 2 > 2σ(F 2)] = 0.027
wR(F 2) = 0.068
S = 1.05
2166 reflections
165 parameters
H-atom parameters constrained
Δρmax = 0.19 e Å−3
Δρmin = −0.14 e Å−3
Absolute structure: Flack (1983 ▶), 879 Friedel pairs
Flack parameter: 0.00 (17)
Data collection: APEX2 (Bruker, 2008 ▶); cell refinement: SAINT (Bruker, 2008 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811048938/bg2432sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811048938/bg2432Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536811048938/bg2432Isup3.mol
Supplementary material file. DOI: 10.1107/S1600536811048938/bg2432Isup4.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Acknowledgments
This work was partially supported by SECyTP, UNCuyo 06 J 213 grant and ANPCYT PICT-R 2005 32850 grant to LAL. We thank Florida International University, the National Science Foundation and the University of Florida for funding of the purchase of the X-ray equipment.
supplementary crystallographic information
Comment
The title compound, a guaiane-type sesquiterpene lactone, was isolated from Artemisia douglasiana Bess (Asteraceae). NMR studies have been reported previously (Bohlmann & Zdero, 1972). By using a lanthanide shift reagent [Eu(fod)3] the lower field signals of dehydroleucodin could be resolved and showed the 5S, 6R and 7S configurations at the chiral centers. Here we report the crystal structure of dehydroleucodin that resulted coherent with the absolute stereochemistry previously reported by Bohlmann and Zdero (1972). The molecular geometry of dehydroleucodin is illustrated in Fig. 1. Inspection of the crystal structure shows that the cyclopentenone carbons, C-9 and C-10 are almost coplanar. The seven-membered ring adopts approximately a chair conformation with the atoms C-6, C-7, and C-8 above the plane. The lactone ring shows a half-chair conformation. H-5 and H-7 are located below the plane (beta-orientation) whereas H-6 is above the plane (beta-orientation), hence the configurations at the chiral centers 5, 6 and 7, is confirmed as being S, R and S, respectively. Bond distances and bond angles are normal.
Experimental
Aerial parts of Artemisia douglasiana were collected in San Carlos, Mendoza (Argentina). The dried crushed plant material (10 g, dry weight) was exhaustedly extracted with boiling CHCl3. The CHCl3 extract was chromatographed on silica gel and alumina columns using mixtures of ethyl acetate and chloroform as eluants to give white crystals of dehydroleucodin (70 mg). This compound was identified by comparing the spectroscopic data with the previously published data (Bohlmann and Zdero, 1972). Crystals suitable for X-ray analysis were obtained by recrystallization from DMSO-water at 277K.
Refinement
All the H atoms were placed in idealized positions and refined riding on their parent atoms, with C—H = 0.93-0.99 Å and Uiso(H) =1.5Ueq(C) for the methyl H atoms and 1.2Ueq(C) for the remaining ones. The Flack x parameter is 0.00 (17) confirming that the correct enantiomer is being reported.
Figures
Fig. 1.
The molecular structure of the title molecule, showing 50% probability displacement ellipsoids.
Crystal data
C15H16O3 | Dehydroleucodin |
Mr = 244.28 | Dx = 1.295 Mg m−3 |
Orthorhombic, P212121 | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 9973 reflections |
a = 7.5101 (3) Å | θ = 2.9–67.8° |
b = 11.1065 (4) Å | µ = 0.73 mm−1 |
c = 15.0228 (6) Å | T = 100 K |
V = 1253.07 (8) Å3 | Needles, colourless |
Z = 4 | 0.29 × 0.07 × 0.05 mm |
F(000) = 520 |
Data collection
Bruker APEXII DUO diffractometer | 2166 independent reflections |
Radiation source: IµS microsource | 2150 reflections with I > 2σ(I) |
graphite | Rint = 0.064 |
phi and ω scans | θmax = 66.4°, θmin = 5.0° |
Absorption correction: integration (SADABS; Bruker, 2008) | h = −8→7 |
Tmin = 0.820, Tmax = 0.962 | k = −13→12 |
10896 measured reflections | l = −17→17 |
Refinement
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.027 | H-atom parameters constrained |
wR(F2) = 0.068 | w = 1/[σ2(Fo2) + (0.0273P)2 + 0.2735P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
2166 reflections | Δρmax = 0.19 e Å−3 |
165 parameters | Δρmin = −0.14 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 879 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Flack parameter: 0.00 (17) |
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. All H atoms were positioned geometrically (C—H=0.93/1.00 Å) and allowed to ride with Uiso(H)=1.2/1.5Ueq(C). Methyl ones were allowed to rotate around the corresponding C—C. The Flack x parameter is 0.00 (17) confirming that the correct enantiomer is refined for this structure. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | ||
O1 | 0.81504 (13) | −0.02962 (8) | 0.26751 (7) | 0.0312 (2) | |
O2 | 0.80476 (13) | 0.43297 (8) | 0.09948 (6) | 0.0248 (2) | |
O3 | 0.87294 (16) | 0.62331 (10) | 0.06281 (7) | 0.0411 (3) | |
C1 | 0.68912 (15) | 0.17287 (10) | 0.25112 (8) | 0.0192 (3) | |
C2 | 0.77553 (16) | 0.05869 (11) | 0.22172 (10) | 0.0240 (3) | |
C3 | 0.79958 (18) | 0.06797 (12) | 0.12543 (10) | 0.0278 (3) | |
H3A | 0.8526 | 0.0072 | 0.0897 | 0.033* | |
C4 | 0.73794 (16) | 0.17220 (12) | 0.09389 (9) | 0.0241 (3) | |
C5 | 0.66907 (16) | 0.25183 (10) | 0.16885 (8) | 0.0192 (3) | |
H5A | 0.5406 | 0.2712 | 0.1588 | 0.023* | |
C6 | 0.77492 (16) | 0.36796 (10) | 0.18300 (8) | 0.0183 (3) | |
H6A | 0.8926 | 0.3478 | 0.2104 | 0.022* | |
C7 | 0.68007 (16) | 0.46068 (10) | 0.24137 (8) | 0.0190 (3) | |
H7A | 0.5548 | 0.4662 | 0.2191 | 0.023* | |
C8 | 0.66895 (18) | 0.43149 (11) | 0.33978 (8) | 0.0227 (3) | |
H8A | 0.6197 | 0.5015 | 0.3723 | 0.027* | |
H8B | 0.7899 | 0.4154 | 0.3631 | 0.027* | |
C9 | 0.55009 (17) | 0.32097 (11) | 0.35585 (8) | 0.0224 (3) | |
H9A | 0.5127 | 0.3202 | 0.4190 | 0.027* | |
H9B | 0.4414 | 0.3286 | 0.3190 | 0.027* | |
C10 | 0.63981 (17) | 0.20247 (11) | 0.33441 (9) | 0.0209 (3) | |
C11 | 0.77282 (17) | 0.57383 (11) | 0.21226 (9) | 0.0215 (3) | |
C12 | 0.82427 (19) | 0.55285 (12) | 0.11838 (9) | 0.0269 (3) | |
C13 | 0.80965 (17) | 0.67457 (11) | 0.25533 (10) | 0.0266 (3) | |
H13A | 0.8719 | 0.7376 | 0.2260 | 0.032* | |
H13B | 0.7739 | 0.6839 | 0.3156 | 0.032* | |
C14 | 0.7232 (2) | 0.20714 (14) | −0.00173 (9) | 0.0321 (3) | |
H14A | 0.7834 | 0.1469 | −0.0387 | 0.048* | |
H14B | 0.7792 | 0.2859 | −0.0107 | 0.048* | |
H14C | 0.5973 | 0.2116 | −0.0186 | 0.048* | |
C15 | 0.6668 (2) | 0.12277 (12) | 0.41396 (9) | 0.0304 (3) | |
H15A | 0.5508 | 0.0977 | 0.4374 | 0.046* | |
H15B | 0.7319 | 0.1671 | 0.4600 | 0.046* | |
H15C | 0.7353 | 0.0515 | 0.3964 | 0.046* |
Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0261 (5) | 0.0160 (4) | 0.0516 (6) | 0.0001 (4) | −0.0029 (4) | 0.0034 (4) |
O2 | 0.0299 (5) | 0.0231 (4) | 0.0214 (4) | −0.0035 (4) | 0.0023 (4) | 0.0021 (4) |
O3 | 0.0564 (7) | 0.0322 (6) | 0.0347 (6) | −0.0113 (5) | 0.0045 (5) | 0.0112 (5) |
C1 | 0.0158 (6) | 0.0158 (5) | 0.0261 (6) | −0.0017 (5) | −0.0029 (5) | 0.0001 (5) |
C2 | 0.0158 (6) | 0.0161 (6) | 0.0401 (8) | −0.0039 (5) | −0.0027 (5) | −0.0029 (5) |
C3 | 0.0244 (7) | 0.0213 (6) | 0.0377 (8) | −0.0010 (6) | 0.0033 (6) | −0.0118 (6) |
C4 | 0.0191 (6) | 0.0257 (6) | 0.0275 (7) | −0.0051 (5) | 0.0011 (5) | −0.0076 (6) |
C5 | 0.0169 (6) | 0.0182 (6) | 0.0225 (6) | −0.0011 (5) | −0.0013 (5) | −0.0027 (5) |
C6 | 0.0186 (6) | 0.0176 (6) | 0.0186 (6) | −0.0002 (5) | −0.0010 (5) | 0.0015 (5) |
C7 | 0.0179 (6) | 0.0156 (5) | 0.0236 (6) | 0.0019 (5) | −0.0008 (5) | −0.0001 (5) |
C8 | 0.0275 (7) | 0.0179 (6) | 0.0227 (7) | 0.0003 (5) | −0.0003 (5) | −0.0032 (5) |
C9 | 0.0259 (6) | 0.0215 (6) | 0.0198 (6) | −0.0015 (6) | 0.0017 (5) | −0.0022 (5) |
C10 | 0.0193 (6) | 0.0181 (6) | 0.0253 (6) | −0.0041 (5) | −0.0037 (5) | 0.0014 (5) |
C11 | 0.0176 (6) | 0.0179 (6) | 0.0289 (7) | 0.0018 (5) | −0.0032 (5) | 0.0037 (5) |
C12 | 0.0277 (7) | 0.0223 (6) | 0.0305 (7) | −0.0047 (6) | −0.0033 (6) | 0.0050 (5) |
C13 | 0.0219 (6) | 0.0190 (6) | 0.0389 (7) | 0.0007 (5) | −0.0039 (6) | 0.0003 (6) |
C14 | 0.0315 (8) | 0.0399 (8) | 0.0251 (7) | −0.0044 (6) | 0.0018 (6) | −0.0099 (6) |
C15 | 0.0371 (8) | 0.0252 (6) | 0.0288 (7) | −0.0026 (6) | −0.0048 (6) | 0.0075 (6) |
Geometric parameters (Å, °)
O1—C2 | 1.2343 (17) | C7—H7A | 1.0000 |
O2—C12 | 1.3692 (16) | C8—C9 | 1.5369 (17) |
O2—C6 | 1.4649 (14) | C8—H8A | 0.9900 |
O3—C12 | 1.2012 (17) | C8—H8B | 0.9900 |
C1—C10 | 1.3456 (19) | C9—C10 | 1.5132 (17) |
C1—C2 | 1.4914 (16) | C9—H9A | 0.9900 |
C1—C5 | 1.5230 (17) | C9—H9B | 0.9900 |
C2—C3 | 1.461 (2) | C10—C15 | 1.5009 (18) |
C3—C4 | 1.334 (2) | C11—C13 | 1.3218 (18) |
C3—H3A | 0.9500 | C11—C12 | 1.4808 (19) |
C4—C14 | 1.4920 (19) | C13—H13A | 0.9500 |
C4—C5 | 1.5225 (17) | C13—H13B | 0.9500 |
C5—C6 | 1.5299 (16) | C14—H14A | 0.9800 |
C5—H5A | 1.0000 | C14—H14B | 0.9800 |
C6—C7 | 1.5286 (17) | C14—H14C | 0.9800 |
C6—H6A | 1.0000 | C15—H15A | 0.9800 |
C7—C11 | 1.5019 (16) | C15—H15B | 0.9800 |
C7—C8 | 1.5158 (17) | C15—H15C | 0.9800 |
C12—O2—C6 | 108.55 (9) | C7—C8—H8B | 109.5 |
C10—C1—C2 | 127.08 (12) | C9—C8—H8B | 109.5 |
C10—C1—C5 | 125.92 (11) | H8A—C8—H8B | 108.1 |
C2—C1—C5 | 107.0 (1) | C10—C9—C8 | 113.74 (10) |
O1—C2—C3 | 125.31 (13) | C10—C9—H9A | 108.8 |
O1—C2—C1 | 127.97 (13) | C8—C9—H9A | 108.8 |
C3—C2—C1 | 106.68 (11) | C10—C9—H9B | 108.8 |
C4—C3—C2 | 111.72 (12) | C8—C9—H9B | 108.8 |
C4—C3—H3A | 124.1 | H9A—C9—H9B | 107.7 |
C2—C3—H3A | 124.1 | C1—C10—C15 | 123.99 (12) |
C3—C4—C14 | 126.41 (12) | C1—C10—C9 | 122.21 (11) |
C3—C4—C5 | 111.05 (12) | C15—C10—C9 | 113.80 (11) |
C14—C4—C5 | 122.40 (12) | C13—C11—C12 | 123.01 (12) |
C4—C5—C1 | 103.43 (10) | C13—C11—C7 | 131.52 (13) |
C4—C5—C6 | 114.58 (10) | C12—C11—C7 | 105.47 (10) |
C1—C5—C6 | 108.75 (9) | O3—C12—O2 | 121.46 (13) |
C4—C5—H5A | 110.0 | O3—C12—C11 | 129.70 (13) |
C1—C5—H5A | 110.0 | O2—C12—C11 | 108.82 (11) |
C6—C5—H5A | 110.0 | C11—C13—H13A | 120.0 |
O2—C6—C7 | 103.33 (9) | C11—C13—H13B | 120.0 |
O2—C6—C5 | 112.09 (9) | H13A—C13—H13B | 120.0 |
C7—C6—C5 | 113.92 (10) | C4—C14—H14A | 109.5 |
O2—C6—H6A | 109.1 | C4—C14—H14B | 109.5 |
C7—C6—H6A | 109.1 | H14A—C14—H14B | 109.5 |
C5—C6—H6A | 109.1 | C4—C14—H14C | 109.5 |
C11—C7—C8 | 119.24 (11) | H14A—C14—H14C | 109.5 |
C11—C7—C6 | 100.4 (1) | H14B—C14—H14C | 109.5 |
C8—C7—C6 | 116.17 (10) | C10—C15—H15A | 109.5 |
C11—C7—H7A | 106.7 | C10—C15—H15B | 109.5 |
C8—C7—H7A | 106.7 | H15A—C15—H15B | 109.5 |
C6—C7—H7A | 106.7 | C10—C15—H15C | 109.5 |
C7—C8—C9 | 110.86 (10) | H15A—C15—H15C | 109.5 |
C7—C8—H8A | 109.5 | H15B—C15—H15C | 109.5 |
C9—C8—H8A | 109.5 |
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2432).
References
- Bohlmann, F. & Zdero, C. (1972). Tetrahedron Lett. 13, 621–624.
- Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876–881.
- Giordano, O. S., Pestchanker, J. M., Guerreiro, E., Saad, J. R., Enriz, R. D., Rodriguez, A. M., Jauregui, E. A., Maria, A. O. M. & Wendel, G. H. (1992). J. Med. Chem. 35, 2452–2458. [DOI] [PubMed]
- Martinez, M. V., Munoz-Zamora, A. & Joseph-Nathan, P. (1988). J. Nat. Prod. 51, 221–228.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811048938/bg2432sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811048938/bg2432Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536811048938/bg2432Isup3.mol
Supplementary material file. DOI: 10.1107/S1600536811048938/bg2432Isup4.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report