Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 30;67(Pt 12):o3474. doi: 10.1107/S1600536811049294

(E)-1-(5-Bromo­thio­phen-2-yl)-3-(3,4,5-trimeth­oxy­phen­yl)prop-2-en-1-one

Suresh B Vepuri a,*, H C Devarajegowda b, Waleed Fadl Ali Al-eryani b, K Lavanya a, S Anbazhagan c
PMCID: PMC3239100  PMID: 22199948

Abstract

In the title compound, C16H15BrO4S, the dihedral angle between the thio­phene and benzene rings is 13.08 (16)°. The C atoms of the meta meth­oxy groups of the substituted benzene ring lie close to the plane of the ring [displacements = 0.049 (5) and −0.022 (4) Å], whereas the para-C atom is significantly displaced [−1.052 (4) Å]. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming C(11) chains propagating in [100].

Related literature

For general background to chalcones see: Chun et al. (2001); Horng et al. (2003); Mei et al. (2003).graphic file with name e-67-o3474-scheme1.jpg

Experimental

Crystal data

  • C16H15BrO4S

  • M r = 383.25

  • Orthorhombic, Inline graphic

  • a = 16.8923 (7) Å

  • b = 8.0793 (6) Å

  • c = 23.6427 (17) Å

  • V = 3226.7 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.69 mm−1

  • T = 293 K

  • 0.22 × 0.15 × 0.12 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2010) T min = 0.625, T max = 1.000

  • 17608 measured reflections

  • 2833 independent reflections

  • 1944 reflections with I > 2σ(I)

  • R int = 0.055

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.074

  • S = 0.99

  • 2833 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811049294/hb6511sup1.cif

e-67-o3474-sup1.cif (19.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811049294/hb6511Isup2.hkl

e-67-o3474-Isup2.hkl (136.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811049294/hb6511Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21⋯O6i 0.93 2.46 3.320 (4) 155

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank Professor T. N. Guru Row, SSCU, IISc, Bangalore, for support of the data collection. SBV thanks the Acharya Nagarjuna University, Gutntur, Andhrapradesh, for support of the part-time PhD programme in Pharmacy.

supplementary crystallographic information

Comment

Chalcones are alpha beta unsaturated ketones, widely distributed in nature and are extensively studied for their biological activity (e.g. Chun et al., 2001; Horng et al., 2003; Mei et al., 2003). In this paper we report the crystal structure of the title chalcone derivative, (I) (Fig. 1).

The unit cell contains eight molecules. The five-membered thiophene ring (S2\C19\···C22) is not coplanar with the phenyl ring (C10\C11\···C15) system; the dihedral angle between the two planes is 13.08 (16)°. The crystal structure displays intermolecular C21—H21···O6 and weak intramolecular C8—H8B···O5 and C9—H9B···O4 hydrogen bonds (Table 1). The packing of molecules in the crystal structure is depicted in Fig. 2.

Experimental

A mixture of 2-acetyl-5-BromoThiophene (0.01 mole) and 3,4,5-trimethoxybenzaldehyde (0.01 mole) were stirred in ethanol (30 ml) and then an aqueous solution of potassium hydroxide (40%,15 ml)was added to it. The mixture was kept over night at room temperature and then it was poured into crushed ice and acidified with dilute hydrochloric acid. The precipiteted chalcone was filtered and crystallized from ethanol to yield colourless prisms of (I).

Refinement

All H atoms were positioned at calculated positions C—H = 0.93Å for aromatic H and C—H = 0.96Å for methyl H and refined using a riding model with Uiso(H) = 1.2Ueq(C)for aromatic and Uiso(H) = 1.2Ueq(C)for for methyl H.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The H atoms are shown as spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Packing of the molecules when viewed down the b axis.

Crystal data

C16H15BrO4S Dx = 1.578 Mg m3
Mr = 383.25 Melting point: 421 K
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 2833 reflections
a = 16.8923 (7) Å θ = 2.4–25.0°
b = 8.0793 (6) Å µ = 2.69 mm1
c = 23.6427 (17) Å T = 293 K
V = 3226.7 (4) Å3 Prism, colourless
Z = 8 0.22 × 0.15 × 0.12 mm
F(000) = 1552

Data collection

Oxford Diffraction Xcalibur diffractometer 2833 independent reflections
Radiation source: Mova (Mo) X-ray Source 1944 reflections with I > 2σ(I)
mirror Rint = 0.055
Detector resolution: 16.0839 pixels mm-1 θmax = 25.0°, θmin = 2.4°
ω scans h = −20→20
Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2010) k = −9→8
Tmin = 0.625, Tmax = 1.000 l = −28→27
17608 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042 H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0142P)2] where P = (Fo2 + 2Fc2)/3
S = 0.99 (Δ/σ)max = 0.001
2833 reflections Δρmax = 0.37 e Å3
200 parameters Δρmin = −0.30 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00037 (6)

Special details

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.33.55 (release 05–01–2010 CrysAlis171. NET) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.IR (KBr) 1653.9, 1597.8, 1071.2, 811.3 cm-1. 1H-NMR (300 MHz, CDCl3): δ 7.755–7.806 (s, 2 H, Ar–H), 7.114–7.251 (m, 4H, Ar–H and HC=CH), 3.922–3.942 (s, 9 H, OCH3).
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.22995 (2) 0.12039 (5) 0.462527 (19) 0.05957 (17)
S2 0.40847 (5) 0.19214 (12) 0.47450 (4) 0.0457 (3)
O3 0.58044 (13) 0.2459 (3) 0.47770 (11) 0.0554 (7)
O4 0.97395 (13) 0.0142 (3) 0.35359 (11) 0.0548 (7)
O5 0.93207 (14) −0.0951 (3) 0.25109 (10) 0.0536 (7)
O6 0.78125 (15) −0.1434 (3) 0.22387 (10) 0.0584 (8)
C7 0.7010 (2) −0.1558 (6) 0.20613 (17) 0.0786 (15)
H7A 0.6988 −0.2054 0.1693 0.118*
H7B 0.6779 −0.0473 0.2047 0.118*
H7C 0.6721 −0.2231 0.2325 0.118*
C8 0.9680 (2) −0.2507 (5) 0.25738 (19) 0.0836 (16)
H8A 1.0071 −0.2655 0.2283 0.125*
H8B 0.9285 −0.3358 0.2543 0.125*
H8C 0.9929 −0.2572 0.2938 0.125*
C9 0.9990 (2) 0.0853 (5) 0.40581 (16) 0.0609 (12)
H9A 1.0557 0.0825 0.4080 0.091*
H9B 0.9770 0.0233 0.4367 0.091*
H9C 0.9811 0.1979 0.4079 0.091*
C10 0.8948 (2) 0.0080 (4) 0.34261 (15) 0.0413 (9)
C11 0.8748 (2) −0.0580 (4) 0.29009 (14) 0.0394 (9)
C12 0.7953 (2) −0.0746 (5) 0.27587 (15) 0.0451 (10)
C13 0.7371 (2) −0.0232 (4) 0.31290 (15) 0.0433 (10)
H13 0.6841 −0.0355 0.3031 0.052*
C14 0.7572 (2) 0.0468 (4) 0.36467 (15) 0.0379 (9)
C15 0.8364 (2) 0.0618 (4) 0.37962 (14) 0.0420 (9)
H15 0.8502 0.1078 0.4143 0.050*
C16 0.69605 (19) 0.1080 (4) 0.40313 (15) 0.0426 (9)
H16 0.7133 0.1705 0.4338 0.051*
C17 0.61970 (19) 0.0843 (4) 0.39899 (14) 0.0424 (9)
H17 0.6011 0.0188 0.3695 0.051*
C18 0.5618 (2) 0.1556 (4) 0.43846 (15) 0.0402 (9)
C19 0.47821 (19) 0.1147 (4) 0.42830 (14) 0.0364 (9)
C20 0.4436 (2) 0.0223 (4) 0.38785 (14) 0.0448 (10)
H20 0.4718 −0.0289 0.3590 0.054*
C21 0.3606 (2) 0.0105 (4) 0.39334 (15) 0.0482 (10)
H21 0.3281 −0.0490 0.3690 0.058*
C22 0.3348 (2) 0.0965 (4) 0.43839 (15) 0.0418 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0319 (2) 0.0731 (3) 0.0738 (3) 0.0005 (2) 0.0004 (2) −0.0001 (3)
S2 0.0331 (5) 0.0599 (7) 0.0441 (6) 0.0009 (5) 0.0020 (4) −0.0137 (5)
O3 0.0377 (14) 0.0760 (19) 0.0525 (17) 0.0036 (14) −0.0002 (13) −0.0232 (15)
O4 0.0358 (15) 0.081 (2) 0.0480 (16) 0.0026 (14) 0.0056 (13) −0.0046 (15)
O5 0.0545 (16) 0.0651 (18) 0.0411 (15) 0.0098 (15) 0.0226 (14) 0.0057 (14)
O6 0.0559 (17) 0.083 (2) 0.0363 (15) −0.0106 (16) 0.0095 (14) −0.0114 (15)
C7 0.066 (3) 0.115 (4) 0.055 (3) −0.029 (3) 0.000 (3) −0.023 (3)
C8 0.089 (4) 0.075 (4) 0.086 (4) 0.025 (3) 0.039 (3) 0.003 (3)
C9 0.043 (2) 0.078 (3) 0.062 (3) −0.010 (2) −0.008 (2) 0.001 (3)
C10 0.035 (2) 0.050 (2) 0.038 (2) 0.0007 (19) 0.0063 (18) 0.0078 (19)
C11 0.042 (2) 0.043 (2) 0.033 (2) 0.0036 (19) 0.0108 (18) 0.0094 (18)
C12 0.054 (2) 0.047 (2) 0.034 (2) −0.002 (2) 0.006 (2) 0.0072 (19)
C13 0.034 (2) 0.055 (3) 0.041 (2) −0.0011 (19) 0.0045 (18) 0.004 (2)
C14 0.037 (2) 0.040 (2) 0.037 (2) 0.0061 (18) 0.0056 (18) 0.0036 (18)
C15 0.039 (2) 0.053 (2) 0.034 (2) 0.0055 (19) 0.0024 (18) 0.0007 (19)
C16 0.040 (2) 0.053 (3) 0.034 (2) 0.005 (2) 0.0021 (18) −0.0043 (19)
C17 0.036 (2) 0.052 (2) 0.039 (2) −0.0002 (19) 0.0052 (18) −0.0038 (19)
C18 0.036 (2) 0.049 (2) 0.036 (2) 0.0041 (19) 0.0008 (18) 0.0045 (19)
C19 0.0360 (19) 0.040 (2) 0.0327 (19) 0.0027 (18) 0.0062 (17) −0.0003 (18)
C20 0.045 (2) 0.054 (3) 0.036 (2) −0.001 (2) 0.0046 (18) −0.0100 (19)
C21 0.045 (2) 0.062 (3) 0.037 (2) −0.011 (2) −0.0103 (19) −0.006 (2)
C22 0.0327 (19) 0.047 (2) 0.045 (2) −0.0008 (18) −0.0077 (18) 0.003 (2)

Geometric parameters (Å, °)

Br1—C22 1.871 (3) C10—C15 1.389 (4)
S2—C22 1.695 (3) C10—C11 1.393 (5)
S2—C19 1.724 (3) C11—C12 1.390 (5)
O3—C18 1.221 (4) C12—C13 1.381 (5)
O4—C10 1.363 (4) C13—C14 1.390 (5)
O4—C9 1.426 (4) C13—H13 0.9300
O5—C11 1.370 (4) C14—C15 1.389 (4)
O5—C8 1.404 (4) C14—C16 1.462 (4)
O6—C12 1.370 (4) C15—H15 0.9300
O6—C7 1.423 (4) C16—C17 1.308 (4)
C7—H7A 0.9600 C16—H16 0.9300
C7—H7B 0.9600 C17—C18 1.469 (4)
C7—H7C 0.9600 C17—H17 0.9300
C8—H8A 0.9600 C18—C19 1.470 (4)
C8—H8B 0.9600 C19—C20 1.347 (4)
C8—H8C 0.9600 C20—C21 1.410 (5)
C9—H9A 0.9600 C20—H20 0.9300
C9—H9B 0.9600 C21—C22 1.344 (5)
C9—H9C 0.9600 C21—H21 0.9300
C22—S2—C19 90.97 (17) C12—C13—C14 120.5 (3)
C10—O4—C9 118.1 (3) C12—C13—H13 119.7
C11—O5—C8 115.5 (3) C14—C13—H13 119.7
C12—O6—C7 117.3 (3) C15—C14—C13 119.6 (3)
O6—C7—H7A 109.5 C15—C14—C16 119.5 (3)
O6—C7—H7B 109.5 C13—C14—C16 120.9 (3)
H7A—C7—H7B 109.5 C14—C15—C10 119.8 (3)
O6—C7—H7C 109.5 C14—C15—H15 120.1
H7A—C7—H7C 109.5 C10—C15—H15 120.1
H7B—C7—H7C 109.5 C17—C16—C14 126.9 (4)
O5—C8—H8A 109.5 C17—C16—H16 116.6
O5—C8—H8B 109.5 C14—C16—H16 116.6
H8A—C8—H8B 109.5 C16—C17—C18 123.4 (3)
O5—C8—H8C 109.5 C16—C17—H17 118.3
H8A—C8—H8C 109.5 C18—C17—H17 118.3
H8B—C8—H8C 109.5 O3—C18—C17 123.1 (3)
O4—C9—H9A 109.5 O3—C18—C19 120.4 (3)
O4—C9—H9B 109.5 C17—C18—C19 116.6 (3)
H9A—C9—H9B 109.5 C20—C19—C18 131.1 (3)
O4—C9—H9C 109.5 C20—C19—S2 110.7 (3)
H9A—C9—H9C 109.5 C18—C19—S2 118.1 (3)
H9B—C9—H9C 109.5 C19—C20—C21 113.8 (3)
O4—C10—C15 124.5 (3) C19—C20—H20 123.1
O4—C10—C11 115.0 (3) C21—C20—H20 123.1
C15—C10—C11 120.6 (3) C22—C21—C20 111.1 (3)
O5—C11—C12 119.9 (3) C22—C21—H21 124.4
O5—C11—C10 120.8 (3) C20—C21—H21 124.4
C12—C11—C10 119.2 (3) C21—C22—S2 113.3 (3)
O6—C12—C13 124.6 (4) C21—C22—Br1 127.0 (3)
O6—C12—C11 115.1 (3) S2—C22—Br1 119.6 (2)
C13—C12—C11 120.3 (4)
C9—O4—C10—C15 −2.0 (5) O4—C10—C15—C14 −178.7 (3)
C9—O4—C10—C11 178.0 (3) C11—C10—C15—C14 1.3 (5)
C8—O5—C11—C12 −100.4 (4) C15—C14—C16—C17 −170.3 (4)
C8—O5—C11—C10 84.3 (4) C13—C14—C16—C17 10.9 (6)
O4—C10—C11—O5 −6.9 (5) C14—C16—C17—C18 −177.6 (3)
C15—C10—C11—O5 173.1 (3) C16—C17—C18—O3 1.6 (6)
O4—C10—C11—C12 177.8 (3) C16—C17—C18—C19 −179.1 (3)
C15—C10—C11—C12 −2.2 (5) O3—C18—C19—C20 178.5 (4)
C7—O6—C12—C13 2.8 (5) C17—C18—C19—C20 −0.8 (6)
C7—O6—C12—C11 −177.0 (3) O3—C18—C19—S2 −2.1 (5)
O5—C11—C12—O6 5.8 (5) C17—C18—C19—S2 178.6 (2)
C10—C11—C12—O6 −178.8 (3) C22—S2—C19—C20 0.5 (3)
O5—C11—C12—C13 −174.0 (3) C22—S2—C19—C18 −179.1 (3)
C10—C11—C12—C13 1.3 (5) C18—C19—C20—C21 178.9 (3)
O6—C12—C13—C14 −179.4 (3) S2—C19—C20—C21 −0.5 (4)
C11—C12—C13—C14 0.4 (6) C19—C20—C21—C22 0.3 (5)
C12—C13—C14—C15 −1.4 (5) C20—C21—C22—S2 0.1 (4)
C12—C13—C14—C16 177.4 (3) C20—C21—C22—Br1 179.2 (3)
C13—C14—C15—C10 0.5 (5) C19—S2—C22—C21 −0.3 (3)
C16—C14—C15—C10 −178.3 (3) C19—S2—C22—Br1 −179.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C21—H21···O6i 0.93 2.46 3.320 (4) 155

Symmetry codes: (i) x−1/2, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6511).

References

  1. Chun, N. L., Hsin, K. H., Horng, H. K., Mei, F. H., Hsien, C. L., Ya, L. C., Mei, I. C., Jaw, J. K., Jih, P. W. & Che, M. T. (2001). Drug Dev Res. 53, 9–14.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  4. Horng, H. K., Lo, T. T., Kun, L. Y., Cheng, T. L., Jih, P. W. & Chun, N. L. (2003). Bioorg. Med. Chem. 1, 105–111.
  5. Mei, L., Prapon, W., Simon, L. C., Agnes, L. C. T. & Mei, L. G. (2003). Bioorg. Med. Chem. 11, 2729–2738.
  6. Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED Oxford Diffraction Ltd, Yarnton, England.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Watkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON Chemical Crystallography Laboratory, University of Oxford, England.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811049294/hb6511sup1.cif

e-67-o3474-sup1.cif (19.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811049294/hb6511Isup2.hkl

e-67-o3474-Isup2.hkl (136.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811049294/hb6511Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES