Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 30;67(Pt 12):o3476–o3477. doi: 10.1107/S1600536811049154

(Z)-2-(5-Methyl-2-oxoindolin-3-yl­idene)-N-phenyl­hydrazinecarbothio­amide

Amna Qasem Ali a,b, Naser Eltaher Eltayeb a,c,, Siang Guan Teoh a,*, Abdussalam Salhin a, Hoong-Kun Fun d,§
PMCID: PMC3239102  PMID: 22199950

Abstract

In the title compound, C16H14N4OS, the dihedral angle between the nine-membered 5-methyl­indolin-2-one ring system and the benzene ring is 10.21 (7)°. Intra­molecular cyclic N—H⋯O and C—H⋯S hydrogen-bonding inter­actions [graph set S(6)] are present within the N—N—C—N chain between the ring systems. In the crystal, mol­ecules form centrosymmetric cyclic dimers through pairs of N—H⋯O hydrogen bonds [graph set R 2 2(8)].

Related literature

For related structures, see: Qasem Ali et al. (2011); Ferrari et al. (2002); Pervez et al. (2010); Ramzan et al. (2010). For the biological activity of Schiff bases, see: Bhandari et al. (2008); Bhardwaj et al. (2010); Pandeya et al. (1999); Sridhar et al. (2002); Suryavanshi & Pai (2006). For the cytotoxic and anti­cancer activiy of isatin and its derivatives, see: Vine et al. (2009). For bond-length data, see; Allen et al. (1987). For graph-set analysis, see Bernstein et al. (1995).graphic file with name e-67-o3476-scheme1.jpg

Experimental

Crystal data

  • C16H14N4OS

  • M r = 310.37

  • Monoclinic, Inline graphic

  • a = 5.6875 (3) Å

  • b = 17.9405 (8) Å

  • c = 14.5658 (6) Å

  • β = 91.105 (3)°

  • V = 1485.97 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 100 K

  • 0.37 × 0.14 × 0.09 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.921, T max = 0.980

  • 25266 measured reflections

  • 4645 independent reflections

  • 3565 reflections with I > 2σ(I)

  • R int = 0.080

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.123

  • S = 1.06

  • 4645 reflections

  • 212 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811049154/zs2160sup1.cif

e-67-o3476-sup1.cif (19KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811049154/zs2160Isup2.hkl

e-67-o3476-Isup2.hkl (227.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811049154/zs2160Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.89 (2) 1.96 (2) 2.848 (2) 173 (2)
N3—H1N3⋯O1 0.91 (2) 2.04 (2) 2.7595 (17) 135.8 (19)
C11—H11A⋯S1 0.95 2.63 3.2712 (18) 125

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Malaysian Government and Universiti Sains Malaysia for the RU research grant (1001/PKIMIA/815067). NEE thanks Universiti Sains Malaysia for a post-doctoral fellowship and the Inter­national University of Africa (Sudan) for providing research leave. AQA thanks the Ministry of Higher Education and the University of Sabha (Libya) for a scholarship.

supplementary crystallographic information

Comment

Isatin (2,3-dioxindole) is an endogenous compound identified in humans, and its effect has been studied in a variety of systems. Biological properties of isatin and its derivatives include a range of actions in the brain and offer protection against certain types of infections, such as antibacterial (Suryavanshi & Pai, 2006) antifungal, anticonvulsant, anti-HIV (Pandeya et al., 1999), anti-depressant and anti-inflammatory activities (Bhandari et al., 2008). Recently, we reported the crystal structure of (Z)-2-(5-chloro-2- oxoindolin-3-ylidene)-N-phenylhydrazinecarbothioamide (Qasem Ali et al., 2011). In the present paper we describe the single-crystal X-ray diffraction study of title compound, C16H14N4OS.

In this compound (Fig. 1), the dihedral angle between the nine-membered 5-methylindolin-2-one ring system and the benzene ring is 10.21 (7)°. The atoms C8 in the 5-methylindolin-2-one ring and C10 in the benzene ring are connected by a chain of four atoms (N2/N3/C9/N4)) giving a torsion angle of 7.3 (2)°, while the torsion angles (C8/N2/N3/C9) and (C10/N4/C9/N3) are 173.20 (15)° and -177.56 (16)°, respectively. These values are very close to those in the previously mentioned analogous structure (Qasem Ali et al., 2011). The essentially planar conformation of the molecule is maintained by cyclic intramolecular N3—H···O1 and C11—H···S1 hydrogen-bonding interactions [graph set S(6) (Bernstein et al., 1995)] (Table 1) together with an S(5) N4—H···N2 interaction.

In the crystal the molecules form centrosymmetric cyclic dimers through intermolecular N1—H···O1i hydrogen bonds [graph set R22(8)] (Table 1) (Fig. 2). Weak C—H···π interactions are also present: C5—H5A···Cg3ii = 3.6506 (19) Å; C12—H12A···Cg2iii = 3.6600 (19) Å. [Cg3ii is the centroid of the C10—C15 ring; Cg2iii is the centroid of the C1—C6 ring: symmetry code: (ii) = -x + 1, y + 1/2, -z + 1/2; (iii) = -x, y - 1/2, -z + 1/2].

Experimental

The title compound was synthesized by refluxing the reaction mixture of 4-phenyl-3-thiosemicarbazide (0.01 mol) and 5-methylisatin (0.01 mol) in 60 ml of ethanol for 2 hrs. The precipitate formed during reflux was filtered, washed with cold EtOH and recrystallized from hot EtOH: yield 80%. The orange crystals (m.p. 511.8–512.3 K) were grown in acetone-DMF (3:1) by slow evaporation at room temperature.

Refinement

H atoms bound to N were located in a difference-Fourier map and were refined freely. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.95 Å (aryl) and 0.98 Å (methyl) and Uiso(H) = 1.2Ueq(aryl C) and Uiso(H) = 1.5Ueq(methyl C). The highest residual electron density peak (0.397 eÅ-3)is located at 0.71 Å from C8 and the deepest hole (-0.303 eÅ-3) is located at 1.33 Å from C6.

Figures

Fig. 1.

Fig. 1.

The molecular conformation of the title compound, with 50% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed down the a axis of the unit cell. Hydrogen bonds are shown as dashed lines.

Crystal data

C16H14N4OS F(000) = 648
Mr = 310.37 Dx = 1.387 Mg m3
Monoclinic, P21/c Melting point = 511.8–512.3 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 5.6875 (3) Å Cell parameters from 4470 reflections
b = 17.9405 (8) Å θ = 3.0–30.2°
c = 14.5658 (6) Å µ = 0.23 mm1
β = 91.105 (3)° T = 100 K
V = 1485.97 (12) Å3 Block, orange
Z = 4 0.37 × 0.14 × 0.09 mm

Data collection

Bruker APEXII CCD diffractometer 4645 independent reflections
Radiation source: fine-focus sealed tube 3565 reflections with I > 2σ(I)
graphite Rint = 0.080
φ and ω scans θmax = 30.9°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −8→8
Tmin = 0.921, Tmax = 0.980 k = −25→22
25266 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.044P)2 + 0.9076P] where P = (Fo2 + 2Fc2)/3
4645 reflections (Δ/σ)max < 0.001
212 parameters Δρmax = 0.40 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.07706 (8) 0.29276 (3) 0.01263 (3) 0.02056 (12)
O1 0.7096 (2) 0.44974 (7) 0.01110 (8) 0.0187 (3)
N1 0.9164 (3) 0.52631 (8) 0.11276 (10) 0.0179 (3)
N2 0.3961 (2) 0.43175 (8) 0.17539 (10) 0.0150 (3)
N3 0.3233 (2) 0.39394 (8) 0.09997 (10) 0.0162 (3)
N4 0.0280 (2) 0.34699 (8) 0.18614 (10) 0.0159 (3)
C1 0.6987 (3) 0.51350 (9) 0.24304 (12) 0.0165 (3)
C2 0.6453 (3) 0.52430 (10) 0.33500 (12) 0.0184 (3)
H2A 0.5077 0.5027 0.3598 0.022*
C3 0.7961 (3) 0.56718 (10) 0.39045 (12) 0.0193 (3)
C4 0.9965 (3) 0.59863 (10) 0.35161 (13) 0.0206 (4)
H4A 1.0989 0.6276 0.3895 0.025*
C5 1.0518 (3) 0.58900 (10) 0.25912 (13) 0.0208 (4)
H5A 1.1879 0.6110 0.2338 0.025*
C6 0.8998 (3) 0.54610 (10) 0.20639 (12) 0.0169 (3)
C7 0.7392 (3) 0.47997 (9) 0.08672 (12) 0.0161 (3)
C8 0.5860 (3) 0.47119 (9) 0.16929 (11) 0.0155 (3)
C9 0.1363 (3) 0.34475 (9) 0.10484 (11) 0.0149 (3)
C10 −0.1620 (3) 0.30520 (9) 0.22098 (11) 0.0153 (3)
C11 −0.3260 (3) 0.26716 (9) 0.16670 (12) 0.0173 (3)
H11A −0.3118 0.2663 0.1018 0.021*
C12 −0.5113 (3) 0.23029 (10) 0.20818 (13) 0.0200 (3)
H12A −0.6224 0.2039 0.1711 0.024*
C13 −0.5366 (3) 0.23132 (10) 0.30262 (13) 0.0230 (4)
H13A −0.6641 0.2060 0.3301 0.028*
C14 −0.3733 (3) 0.26977 (12) 0.35662 (13) 0.0250 (4)
H14A −0.3896 0.2711 0.4214 0.030*
C15 −0.1861 (3) 0.30627 (11) 0.31617 (12) 0.0218 (4)
H15A −0.0740 0.3321 0.3535 0.026*
C16 0.7427 (4) 0.58122 (12) 0.48997 (13) 0.0275 (4)
H16A 0.5743 0.5738 0.4998 0.041*
H16B 0.7858 0.6325 0.5061 0.041*
H16C 0.8332 0.5465 0.5287 0.041*
H1N4 0.095 (4) 0.3741 (12) 0.2252 (15) 0.021 (5)*
H1N1 1.034 (4) 0.5376 (13) 0.0759 (16) 0.033 (6)*
H1N3 0.410 (4) 0.3965 (12) 0.0486 (15) 0.026 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0242 (2) 0.0211 (2) 0.0166 (2) −0.00282 (16) 0.00367 (15) −0.00340 (17)
O1 0.0170 (6) 0.0209 (6) 0.0183 (6) 0.0005 (5) 0.0041 (4) 0.0018 (5)
N1 0.0150 (6) 0.0184 (7) 0.0205 (7) −0.0013 (5) 0.0072 (5) 0.0019 (6)
N2 0.0152 (6) 0.0132 (7) 0.0166 (7) 0.0008 (5) 0.0025 (5) 0.0017 (5)
N3 0.0167 (6) 0.0164 (7) 0.0156 (7) −0.0017 (5) 0.0048 (5) −0.0001 (5)
N4 0.0166 (6) 0.0164 (7) 0.0146 (7) −0.0041 (5) 0.0029 (5) −0.0003 (6)
C1 0.0147 (7) 0.0148 (8) 0.0199 (8) −0.0004 (6) 0.0020 (6) 0.0027 (6)
C2 0.0191 (8) 0.0172 (8) 0.0191 (8) −0.0015 (6) 0.0044 (6) 0.0026 (7)
C3 0.0223 (8) 0.0152 (8) 0.0206 (8) −0.0003 (6) 0.0015 (6) 0.0008 (7)
C4 0.0206 (8) 0.0162 (8) 0.0250 (9) −0.0029 (6) −0.0011 (7) 0.0012 (7)
C5 0.0161 (7) 0.0178 (9) 0.0287 (9) −0.0025 (6) 0.0042 (6) 0.0014 (7)
C6 0.0148 (7) 0.0148 (8) 0.0212 (8) 0.0015 (6) 0.0040 (6) 0.0026 (6)
C7 0.0148 (7) 0.0135 (8) 0.0204 (8) 0.0028 (5) 0.0041 (6) 0.0055 (6)
C8 0.0136 (7) 0.0156 (8) 0.0174 (8) 0.0007 (6) 0.0038 (6) 0.0038 (6)
C9 0.0154 (7) 0.0137 (8) 0.0157 (8) 0.0001 (6) 0.0014 (6) 0.0025 (6)
C10 0.0137 (7) 0.0137 (8) 0.0186 (8) −0.0008 (5) 0.0031 (6) 0.0028 (6)
C11 0.0172 (7) 0.0160 (8) 0.0187 (8) 0.0011 (6) 0.0007 (6) 0.0001 (6)
C12 0.0158 (7) 0.0162 (8) 0.0279 (9) −0.0010 (6) 0.0002 (6) −0.0001 (7)
C13 0.0166 (8) 0.0206 (9) 0.0319 (10) −0.0006 (6) 0.0053 (7) 0.0069 (7)
C14 0.0205 (8) 0.0364 (11) 0.0184 (8) −0.0023 (7) 0.0046 (7) 0.0057 (8)
C15 0.0182 (8) 0.0296 (10) 0.0175 (8) −0.0038 (7) 0.0011 (6) 0.0013 (7)
C16 0.0351 (10) 0.0269 (10) 0.0205 (9) −0.0088 (8) 0.0030 (7) −0.0025 (8)

Geometric parameters (Å, °)

S1—C9 1.6643 (17) C4—C5 1.400 (3)
O1—C7 1.236 (2) C4—H4A 0.9500
N1—C7 1.355 (2) C5—C6 1.380 (2)
N1—C6 1.414 (2) C5—H5A 0.9500
N1—H1N1 0.89 (3) C7—C8 1.507 (2)
N2—C8 1.296 (2) C10—C11 1.390 (2)
N2—N3 1.349 (2) C10—C15 1.396 (2)
N3—C9 1.385 (2) C11—C12 1.392 (2)
N3—H1N3 0.91 (2) C11—H11A 0.9500
N4—C9 1.346 (2) C12—C13 1.386 (3)
N4—C10 1.417 (2) C12—H12A 0.9500
N4—H1N4 0.84 (2) C13—C14 1.389 (3)
C1—C2 1.393 (2) C13—H13A 0.9500
C1—C6 1.400 (2) C14—C15 1.391 (2)
C1—C8 1.454 (2) C14—H14A 0.9500
C2—C3 1.397 (2) C15—H15A 0.9500
C2—H2A 0.9500 C16—H16A 0.9800
C3—C4 1.401 (2) C16—H16B 0.9800
C3—C16 1.508 (3) C16—H16C 0.9800
C7—N1—C6 111.17 (14) N2—C8—C1 126.19 (15)
C7—N1—H1N1 122.3 (15) N2—C8—C7 127.40 (16)
C6—N1—H1N1 126.2 (15) C1—C8—C7 106.37 (13)
C8—N2—N3 117.49 (14) N4—C9—N3 113.02 (15)
N2—N3—C9 120.16 (14) N4—C9—S1 129.63 (13)
N2—N3—H1N3 119.0 (14) N3—C9—S1 117.35 (12)
C9—N3—H1N3 120.3 (14) C11—C10—C15 119.59 (15)
C9—N4—C10 131.63 (15) C11—C10—N4 124.33 (15)
C9—N4—H1N4 113.8 (15) C15—C10—N4 116.02 (15)
C10—N4—H1N4 114.0 (15) C10—C11—C12 119.45 (16)
C2—C1—C6 120.24 (16) C10—C11—H11A 120.3
C2—C1—C8 133.01 (15) C12—C11—H11A 120.3
C6—C1—C8 106.74 (15) C13—C12—C11 121.24 (17)
C1—C2—C3 119.32 (16) C13—C12—H12A 119.4
C1—C2—H2A 120.3 C11—C12—H12A 119.4
C3—C2—H2A 120.3 C12—C13—C14 119.17 (17)
C2—C3—C4 118.91 (17) C12—C13—H13A 120.4
C2—C3—C16 120.98 (16) C14—C13—H13A 120.4
C4—C3—C16 120.09 (16) C13—C14—C15 120.20 (17)
C5—C4—C3 122.58 (17) C13—C14—H14A 119.9
C5—C4—H4A 118.7 C15—C14—H14A 119.9
C3—C4—H4A 118.7 C14—C15—C10 120.33 (17)
C6—C5—C4 117.04 (16) C14—C15—H15A 119.8
C6—C5—H5A 121.5 C10—C15—H15A 119.8
C4—C5—H5A 121.5 C3—C16—H16A 109.5
C5—C6—C1 121.91 (16) C3—C16—H16B 109.5
C5—C6—N1 128.63 (15) H16A—C16—H16B 109.5
C1—C6—N1 109.45 (15) C3—C16—H16C 109.5
O1—C7—N1 127.33 (15) H16A—C16—H16C 109.5
O1—C7—C8 126.46 (15) H16B—C16—H16C 109.5
N1—C7—C8 106.20 (15)
C8—N2—N3—C9 173.20 (15) C6—C1—C8—N2 178.90 (16)
C6—C1—C2—C3 −0.8 (3) C2—C1—C8—C7 −177.55 (18)
C8—C1—C2—C3 177.80 (17) C6—C1—C8—C7 1.20 (18)
C1—C2—C3—C4 0.5 (3) O1—C7—C8—N2 −1.1 (3)
C1—C2—C3—C16 179.03 (17) N1—C7—C8—N2 179.90 (16)
C2—C3—C4—C5 0.2 (3) O1—C7—C8—C1 176.55 (16)
C16—C3—C4—C5 −178.40 (18) N1—C7—C8—C1 −2.43 (18)
C3—C4—C5—C6 −0.5 (3) C10—N4—C9—N3 −177.56 (16)
C4—C5—C6—C1 0.1 (3) C10—N4—C9—S1 2.6 (3)
C4—C5—C6—N1 −178.48 (17) N2—N3—C9—N4 7.3 (2)
C2—C1—C6—C5 0.5 (3) N2—N3—C9—S1 −172.89 (12)
C8—C1—C6—C5 −178.41 (16) C9—N4—C10—C11 −21.0 (3)
C2—C1—C6—N1 179.35 (15) C9—N4—C10—C15 161.84 (18)
C8—C1—C6—N1 0.42 (19) C15—C10—C11—C12 −0.4 (3)
C7—N1—C6—C5 176.62 (17) N4—C10—C11—C12 −177.43 (16)
C7—N1—C6—C1 −2.1 (2) C10—C11—C12—C13 0.6 (3)
C6—N1—C7—O1 −176.20 (16) C11—C12—C13—C14 −0.2 (3)
C6—N1—C7—C8 2.77 (18) C12—C13—C14—C15 −0.4 (3)
N3—N2—C8—C1 −177.47 (15) C13—C14—C15—C10 0.6 (3)
N3—N2—C8—C7 −0.2 (2) C11—C10—C15—C14 −0.2 (3)
C2—C1—C8—N2 0.2 (3) N4—C10—C15—C14 177.06 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N4—H1N4···N2 0.84 (2) 2.14 (2) 2.5947 (18) 114.1 (18)
N1—H1N1···O1i 0.89 (2) 1.96 (2) 2.848 (2) 173 (2)
N3—H1N3···O1 0.91 (2) 2.04 (2) 2.7595 (17) 135.8 (19)
C11—H11A···S1 0.95 2.63 3.2712 (18) 125

Symmetry codes: (i) −x+2, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2160).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bhandari, S. V., Bothara, K. G., Raut, M. K., Patil, A. A., Sarkate, A. P. & Mokale, V. J. (2008). Bioorg. Med. Chem. 16, 1822–1831. [DOI] [PubMed]
  4. Bhardwaj, S., Kumar, L., Verma, R. & Sing, U. K. (2010). J. Pharm. Res. 3, 2983–2985.
  5. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison,Wisconsin, USA.
  6. Ferrari, M. B., Pelizzi, C., Pelosi, G. & Rodriguez-Argűelles, M. C. (2002). Polyhedron, 21, 2593–2599.
  7. Pandeya, S. N., Sriram, D., Nath, G. & Clercq, E. De. (1999). Ind. J. Pharm. Sci. 61, 358–361.
  8. Pervez, H., Yaqub, M., Ramzan, M., Tahir, M. N. & Iqbal, M. S. (2010). Acta Cryst. E66, o1609. [DOI] [PMC free article] [PubMed]
  9. Qasem Ali, A., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2011). Acta Cryst. E67, o3141–o3142. [DOI] [PMC free article] [PubMed]
  10. Ramzan, M., Pervez, H., Yaqub, M. & Tahir, M. N. (2010). Acta Cryst. E66, o2387. [DOI] [PMC free article] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Sridhar, S. K., Pandeya, S. N., Stables, J. P. & Ramesh, A. (2002). Eur. J. Pharm. Sci. 16, 129–132. [DOI] [PubMed]
  14. Suryavanshi, J. P. & Pai, N. R. (2006). Ind. J. Chem. 45B, 1227–1230.
  15. Vine, K. L., Matesic, L., Locke, J. M., Ranson, M. & Skropeta, D. (2009). Anti-Cancer Agents Med. Chem. 9, 397–414. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811049154/zs2160sup1.cif

e-67-o3476-sup1.cif (19KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811049154/zs2160Isup2.hkl

e-67-o3476-Isup2.hkl (227.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811049154/zs2160Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES