Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 30;67(Pt 12):o3483. doi: 10.1107/S1600536811050148

2-Bromo-4-tert-butyl-6-[(pyridin-2-yl­imino)­meth­yl]phenol

V Balasubramani a, T Vinuchakkaravarthy b, Sreeraj Gopi a, S Narasimhan a, D Velmurugan b,*
PMCID: PMC3239107  PMID: 22199955

Abstract

In the title compound, C16H17BrN2O, the pyridine and benzene rings are almost coplanar [dihedral angle = 1.3 (2)°]. An intra­molecular O—H⋯Br inter­action forms an S(5) ring motif.

Related literature

For the anti-bacterial and anti-tumor activity of substituted salicyl­aldehyde derivatives, see: Jesmin et al. (2010); Pelttari et al. (2007) and for the biological activity of 2-amino­pryidine derivatives, see: Hagmann et al. (2000). For related structures, see: Puthilibai et al. (2008); Phurat et al. (2010); Wang et al.(2010). For the synthesis, see: Pannerselvam et al. (2005).graphic file with name e-67-o3483-scheme1.jpg

Experimental

Crystal data

  • C16H17BrN2O

  • M r = 333.23

  • Monoclinic, Inline graphic

  • a = 10.0241 (11) Å

  • b = 16.1355 (16) Å

  • c = 9.4308 (13) Å

  • β = 92.050 (6)°

  • V = 1524.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.69 mm−1

  • T = 293 K

  • 0.2 × 0.2 × 0.2 mm

Data collection

  • Bruker SMART APEXII area-detector diffractometer

  • 6913 measured reflections

  • 3051 independent reflections

  • 2564 reflections with I > 2σ(I)

  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.081

  • S = 0.98

  • 3051 reflections

  • 184 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.37 e Å−3

  • Absolute structure: Flack (1983), 1147 Friedel pairs

  • Flack parameter: 0.009 (9)

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811050148/im2341sup1.cif

e-67-o3483-sup1.cif (23.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811050148/im2341Isup2.hkl

e-67-o3483-Isup2.hkl (146.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811050148/im2341Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Br1 0.82 2.46 3.021 (3) 127

Acknowledgments

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection.

supplementary crystallographic information

Comment

The crystal structure determination of the title compound was undertaken as a part of the synthesis, structure and properties of new class of substituted salicylaldehyde derivatives.

In the crystal structure the pyridine ring and the substituted phenyl rings are essentially co-planar with a mean deviation of 0.0057Å and 0.0053Å, respectively, from the least square planes of the corresponding constituent ring atoms. Unlike the other structures, the N(1) atom of the pyridine ring aligns with the plane of the other atoms contributing the ring (C12—C13—C14—C15—C16). The dihedral angle between pyridine ring and the phenyl ring is 1.3 (2)°. The Br(1) atom is almost co-planar with the phenyl ring (C1 to C6) with a mean deviation of 0.025 (1)Å. An intramolecular O(1)—H···Br(1) hydrogen bond forms a S(5) ring motif. Intramolecular C(7)—H···N(2) weak interaction is also observed in the structure.

Experimental

The synthesis of the title compound follows the modified method of Schiff's base prepartion described by Pannerselvam et al. (2005). The microwave-assisted condensation of 3-bromo-5-tert-btuyl-2-hydroxybenzaldehyde and 2-amino pyridine was carried out in a domestic oven, Samsung SMH9151BE. Equimolar concentrations of 3-bromo-5-tert-butyl-2-hydroxy benzaldehyde and 2-amino pyridine (3mmol each) were dissolved in anhydrous methanol (5mL) at ambient temperature in an 25mL Erlenmeyer flask. The mixture was subjected to microwave irradiation for an optimized time (8 mins) on the M-High setting (800W). It was then cooled and diluted with ice-cold water. The product yield was found to be 72% and the purity was checked using TLC. The compound was re-crystallized from methanol/water mixture at room temperature to yield single crystals.

Refinement

Hydrogen atoms were placed in calculated positions with C—H = 0.93Å and refined using the riding model approximation with a fixed isotropic displacement parameter of Uiso(H) = 1.6 Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.

Crystal data

C16H17BrN2O F(000) = 680
Mr = 333.23 Dx = 1.452 Mg m3
Monoclinic, Cc Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2yc Cell parameters from 3053 reflections
a = 10.0241 (11) Å θ = 2.4–28.3°
b = 16.1355 (16) Å µ = 2.69 mm1
c = 9.4308 (13) Å T = 293 K
β = 92.050 (6)° Block, red
V = 1524.4 (3) Å3 0.2 × 0.2 × 0.2 mm
Z = 4

Data collection

Bruker SMART APEXII area-detector diffractometer 2564 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.035
graphite θmax = 28.3°, θmin = 2.4°
ω and φ scans h = −13→13
6913 measured reflections k = −21→21
3051 independent reflections l = −12→12

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033 H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0327P)2] where P = (Fo2 + 2Fc2)/3
S = 0.98 (Δ/σ)max = 0.001
3051 reflections Δρmax = 0.50 e Å3
184 parameters Δρmin = −0.37 e Å3
2 restraints Absolute structure: Flack (1983), 1147 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.009 (9)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.5566 (3) 0.96379 (15) 0.4642 (4) 0.0358 (6)
C2 0.6217 (3) 1.03392 (15) 0.5239 (3) 0.0349 (6)
C3 0.5803 (3) 1.11292 (14) 0.4782 (4) 0.0391 (7)
H3 0.6233 1.1589 0.5178 0.047*
C4 0.4795 (3) 1.12589 (15) 0.3781 (4) 0.0361 (6)
C5 0.4150 (3) 1.05601 (17) 0.3224 (4) 0.0379 (7)
H5 0.3454 1.0623 0.2554 0.045*
C6 0.4536 (3) 0.97694 (16) 0.3657 (4) 0.0388 (7)
C7 0.7280 (3) 1.02509 (19) 0.6298 (4) 0.0421 (8)
H7 0.7676 1.0725 0.6684 0.051*
C8 0.8724 (4) 0.94730 (17) 0.7759 (5) 0.0423 (7)
C9 0.9091 (3) 0.8682 (2) 0.8210 (5) 0.0531 (9)
H9 0.8653 0.8219 0.7837 0.064*
C10 1.0103 (4) 0.8595 (3) 0.9207 (5) 0.0653 (11)
H10 1.0367 0.8069 0.9510 0.078*
C11 1.0721 (4) 0.9279 (3) 0.9754 (5) 0.0698 (11)
H11 1.1401 0.9235 1.0447 0.084*
C12 1.0307 (4) 1.0042 (3) 0.9248 (5) 0.0695 (13)
H12 1.0734 1.0511 0.9615 0.083*
C13 0.4388 (3) 1.2146 (2) 0.3348 (4) 0.0436 (8)
C14 0.3815 (4) 1.2584 (2) 0.4631 (5) 0.0662 (10)
H14A 0.3569 1.3140 0.4375 0.099*
H14B 0.4475 1.2596 0.5394 0.099*
H14C 0.3041 1.2289 0.4929 0.099*
C15 0.5606 (3) 1.26226 (17) 0.2862 (5) 0.0564 (9)
H15A 0.5982 1.2340 0.2074 0.085*
H15B 0.6259 1.2656 0.3629 0.085*
H15C 0.5342 1.3171 0.2576 0.085*
C16 0.3336 (4) 1.2144 (3) 0.2134 (6) 0.0654 (12)
H16A 0.3703 1.1896 0.1309 0.098*
H16B 0.3071 1.2704 0.1921 0.098*
H16C 0.2573 1.1832 0.2410 0.098*
Br1 0.36263 (5) 0.884372 (16) 0.28725 (6) 0.06324 (14)
N1 0.7694 (2) 0.95411 (16) 0.6724 (3) 0.0412 (6)
N2 0.9331 (3) 1.01500 (19) 0.8263 (4) 0.0573 (8)
O1 0.5940 (2) 0.88708 (9) 0.5015 (3) 0.0519 (7)
H1 0.5462 0.8533 0.4592 0.078*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0336 (12) 0.0318 (11) 0.0417 (18) 0.0008 (10) −0.0011 (12) 0.0018 (12)
C2 0.0341 (12) 0.0318 (11) 0.0383 (18) 0.0021 (10) −0.0067 (12) 0.0026 (12)
C3 0.0421 (14) 0.0292 (12) 0.0452 (19) 0.0002 (10) −0.0085 (14) −0.0002 (12)
C4 0.0337 (12) 0.0357 (13) 0.0387 (18) 0.0014 (10) −0.0023 (13) 0.0025 (13)
C5 0.0330 (13) 0.0400 (14) 0.0401 (18) −0.0020 (10) −0.0077 (12) 0.0009 (13)
C6 0.0383 (14) 0.0352 (12) 0.0428 (19) −0.0049 (11) 0.0003 (13) −0.0021 (13)
C7 0.0447 (16) 0.0343 (13) 0.047 (2) 0.0019 (11) −0.0068 (15) −0.0023 (14)
C8 0.0405 (15) 0.0473 (13) 0.0388 (19) 0.0049 (15) −0.0022 (13) 0.0061 (18)
C9 0.0532 (19) 0.0542 (18) 0.052 (2) 0.0096 (13) −0.0039 (16) 0.0086 (16)
C10 0.060 (2) 0.076 (2) 0.059 (3) 0.0227 (19) −0.003 (2) 0.026 (2)
C11 0.0523 (19) 0.101 (3) 0.055 (2) 0.011 (2) −0.0214 (17) 0.015 (2)
C12 0.060 (2) 0.081 (3) 0.066 (3) −0.0077 (19) −0.024 (2) 0.010 (2)
C13 0.0484 (17) 0.0345 (15) 0.047 (2) 0.0037 (13) −0.0061 (16) 0.0045 (14)
C14 0.076 (2) 0.0498 (18) 0.074 (3) 0.0211 (16) 0.013 (2) 0.0060 (18)
C15 0.067 (2) 0.0377 (14) 0.064 (3) −0.0013 (13) −0.0035 (18) 0.0117 (15)
C16 0.067 (3) 0.051 (2) 0.077 (3) 0.0112 (17) −0.024 (2) 0.011 (2)
Br1 0.0703 (2) 0.04400 (16) 0.0735 (3) −0.01579 (16) −0.02473 (16) −0.0033 (2)
N1 0.0381 (12) 0.0418 (13) 0.0431 (17) 0.0045 (10) −0.0089 (11) 0.0036 (11)
N2 0.0525 (15) 0.0573 (16) 0.060 (2) −0.0037 (12) −0.0218 (14) 0.0070 (15)
O1 0.0612 (14) 0.0255 (9) 0.0679 (19) −0.0005 (8) −0.0146 (13) 0.0030 (9)

Geometric parameters (Å, °)

C1—O1 1.337 (3) C10—C11 1.359 (7)
C1—C6 1.380 (4) C10—H10 0.9300
C1—C2 1.413 (3) C11—C12 1.378 (6)
C2—C3 1.404 (3) C11—H11 0.9300
C2—C7 1.441 (5) C12—N2 1.336 (5)
C3—C4 1.373 (5) C12—H12 0.9300
C3—H3 0.9300 C13—C16 1.529 (5)
C4—C5 1.393 (4) C13—C15 1.527 (5)
C4—C13 1.540 (4) C13—C14 1.531 (6)
C5—C6 1.390 (4) C14—H14A 0.9600
C5—H5 0.9300 C14—H14B 0.9600
C6—Br1 1.887 (3) C14—H14C 0.9600
C7—N1 1.278 (4) C15—H15A 0.9600
C7—H7 0.9300 C15—H15B 0.9600
C8—N2 1.330 (5) C15—H15C 0.9600
C8—C9 1.390 (4) C16—H16A 0.9600
C8—N1 1.399 (5) C16—H16B 0.9600
C9—C10 1.366 (6) C16—H16C 0.9600
C9—H9 0.9300 O1—H1 0.8200
O1—C1—C6 121.0 (3) C12—C11—H11 121.1
O1—C1—C2 121.0 (3) N2—C12—C11 124.2 (4)
C6—C1—C2 117.9 (2) N2—C12—H12 117.9
C3—C2—C1 118.5 (3) C11—C12—H12 117.9
C3—C2—C7 120.4 (3) C16—C13—C15 108.3 (3)
C1—C2—C7 121.1 (2) C16—C13—C14 108.9 (4)
C4—C3—C2 123.5 (2) C15—C13—C14 109.4 (3)
C4—C3—H3 118.3 C16—C13—C4 111.5 (3)
C2—C3—H3 118.3 C15—C13—C4 110.0 (3)
C3—C4—C5 117.1 (2) C14—C13—C4 108.8 (3)
C3—C4—C13 120.4 (3) C13—C14—H14A 109.5
C5—C4—C13 122.5 (3) C13—C14—H14B 109.5
C6—C5—C4 120.8 (3) H14A—C14—H14B 109.5
C6—C5—H5 119.6 C13—C14—H14C 109.5
C4—C5—H5 119.6 H14A—C14—H14C 109.5
C1—C6—C5 122.2 (3) H14B—C14—H14C 109.5
C1—C6—Br1 118.8 (2) C13—C15—H15A 109.5
C5—C6—Br1 119.1 (2) C13—C15—H15B 109.5
N1—C7—C2 122.0 (3) H15A—C15—H15B 109.5
N1—C7—H7 119.0 C13—C15—H15C 109.5
C2—C7—H7 119.0 H15A—C15—H15C 109.5
N2—C8—C9 122.1 (4) H15B—C15—H15C 109.5
N2—C8—N1 120.1 (3) C13—C16—H16A 109.5
C9—C8—N1 117.8 (3) C13—C16—H16B 109.5
C10—C9—C8 119.2 (4) H16A—C16—H16B 109.5
C10—C9—H9 120.4 C13—C16—H16C 109.5
C8—C9—H9 120.4 H16A—C16—H16C 109.5
C9—C10—C11 119.6 (4) H16B—C16—H16C 109.5
C9—C10—H10 120.2 C7—N1—C8 120.9 (3)
C11—C10—H10 120.2 C8—N2—C12 117.1 (4)
C10—C11—C12 117.8 (4) C1—O1—H1 109.5
C10—C11—H11 121.1
O1—C1—C2—C3 178.5 (3) N2—C8—C9—C10 0.3 (6)
C6—C1—C2—C3 −1.2 (4) N1—C8—C9—C10 179.3 (3)
O1—C1—C2—C7 −1.8 (4) C8—C9—C10—C11 0.9 (6)
C6—C1—C2—C7 178.5 (3) C9—C10—C11—C12 −1.2 (6)
C1—C2—C3—C4 −0.1 (5) C10—C11—C12—N2 0.5 (7)
C7—C2—C3—C4 −179.8 (3) C3—C4—C13—C16 175.1 (4)
C2—C3—C4—C5 1.1 (5) C5—C4—C13—C16 −6.8 (5)
C2—C3—C4—C13 179.4 (3) C3—C4—C13—C15 55.0 (5)
C3—C4—C5—C6 −1.0 (5) C5—C4—C13—C15 −126.9 (3)
C13—C4—C5—C6 −179.1 (3) C3—C4—C13—C14 −64.8 (4)
O1—C1—C6—C5 −178.3 (3) C5—C4—C13—C14 113.3 (4)
C2—C1—C6—C5 1.4 (5) C2—C7—N1—C8 −179.8 (3)
O1—C1—C6—Br1 1.6 (4) N2—C8—N1—C7 −3.3 (5)
C2—C1—C6—Br1 −178.7 (2) C9—C8—N1—C7 177.7 (3)
C4—C5—C6—C1 −0.3 (5) C9—C8—N2—C12 −1.0 (6)
C4—C5—C6—Br1 179.8 (2) N1—C8—N2—C12 −180.0 (3)
C3—C2—C7—N1 −179.1 (3) C11—C12—N2—C8 0.6 (6)
C1—C2—C7—N1 1.3 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···Br1 0.82 2.46 3.021 (3) 127
C7—H7···N2 0.93 2.38 2.723 (5) 102

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2341).

References

  1. Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Hagmann, W. K., Caldwell, C. G., Chen, P., Durette, P. L., Esser, C. K., Lanza, T. J., Kopka, I. E., Guthikonda, R., Shah, S. K., MacCoss, M., Chabin, R. M., Fletcher, D., Grant, S. K., Green, B. G., Humes, J. L., Kelly, T. M., Luell, S., Meurer, R., Moore, V., Pacholok, S. G., Pavia, T., Williams, H. R. & Wong, K. K. (2000). Bioorg. Med. Chem. Lett. 10, 1975–1978. [DOI] [PubMed]
  5. Jesmin, M., Ali, M. M. & Khanam, J. A. (2010). Thai J. Pharm. Sci. 34, 20–31.
  6. Pannerselvam, P., Nair, R. R., Vijayalakshmi, G., Subramanian, E. H. & Sridhar, S. K. (2005). Eur. J. Med. Chem. 40, 225–229. [DOI] [PubMed]
  7. Pelttari, E., Karhumäki, E., Langshaw, J., Peräkylä, H. & Elo, H. (2007). Z. Naturforsch. Teil C, 62, 487–497. [DOI] [PubMed]
  8. Phurat, C., Teerawatananond, T. & Muangsin, N. (2010). Acta Cryst. E66, o2423. [DOI] [PMC free article] [PubMed]
  9. Puthilibai, G., Vasudhevan, S. & Rajagopal, G. (2008). Acta Cryst. E64, o1333. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Wang, Y., Qiu, Z. & Liang, H. (2010). Acta Cryst. E66, o2218. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811050148/im2341sup1.cif

e-67-o3483-sup1.cif (23.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811050148/im2341Isup2.hkl

e-67-o3483-Isup2.hkl (146.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811050148/im2341Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES