Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 30;67(Pt 12):o3484. doi: 10.1107/S160053681104997X

4-[(2-Hy­droxy­naphthalen-1-yl)(morpholin-4-yl)meth­yl]benzonitrile

Xin-Yuan Chen a,*, Min-Min Zhao a, Xu Qian a, Shao-Gang Hou a
PMCID: PMC3239108  PMID: 22199956

Abstract

The title compound, C22H20N2O2, was synthesized via a multicomponent reaction using naphthalen-2-ol, morpholine and 4-formyl­benzonitrile. The dihedral angle between the naphthalene ring system and the benzene ring is 81.25 (10)°. The morpholine ring adopts a chair conformation. The mol­ecular conformation is stabilized by intra­molecular O—H⋯N and C—H⋯O hydrogen bonds. In the crystal, inter­molecular C—H⋯N hydrogen bonds link mol­ecules into helical chains running parallel to the c axis.

Related literature

For background to multi-component reactions, see: Devi & Bhuyan (2004); Domling & Ugi (2000). Hulme & Gore (2003); Ugi (1962). For ring puckering parameters, see: Cremer & Pople (1975).graphic file with name e-67-o3484-scheme1.jpg

Experimental

Crystal data

  • C22H20N2O2

  • M r = 344.40

  • Trigonal, Inline graphic

  • a = 18.294 (3) Å

  • c = 28.738 (6) Å

  • V = 8329 (4) Å3

  • Z = 18

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.20 × 0.15 × 0.10 mm

Data collection

  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.910, T max = 1.000

  • 24077 measured reflections

  • 3326 independent reflections

  • 1786 reflections with I > 2σ(I)

  • R int = 0.138

Refinement

  • R[F 2 > 2σ(F 2)] = 0.081

  • wR(F 2) = 0.210

  • S = 1.03

  • 3326 reflections

  • 235 parameters

  • 7 restraints

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681104997X/rz2668sup1.cif

e-67-o3484-sup1.cif (25.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681104997X/rz2668Isup2.hkl

e-67-o3484-Isup2.hkl (163.5KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681104997X/rz2668Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.85 1.82 2.601 (4) 151
C21—H21A⋯O1 0.93 2.54 3.300 (4) 139
C7—H7A⋯N2i 0.93 2.44 3.327 (9) 160

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by a start-up grant from Anyang Institute of Technology, China.

supplementary crystallographic information

Comment

Multi-component reactions (MCRs) (Hulme & Gore, 2003; Ugi, 1962) involving at least three starting materials in a one-pot reaction have attracted considerable attention in terms of saving both energy and raw materials (Devi & Bhuyan, 2004). Compared to conventional multi-step organic syntheses, MCRs have advantages that include the simplicity of a one-pot procedure and the buildup of complex molecules (Domling & Ugi, 2000). We report here the synthesis and crystal structure of the title compound, 4-4-[(2-hydroxynaphthalen-1-yl)(morpholino)methyl]benzonitrile.

In the title compound (Fig. 1) bond lengths and angles have normal values. The dihedral angle between the naphthalene ring system and the benzene ring is 81.25 (10)°. The morpholine ring (N1/C12/C13/O2/C14/C15) assumes a boat conformation, with puckering parameters <i<Q, θ and φ (Cremer & Pople, 1975) of 0.559 (4) Å, 179.3 (4)° and -159 (4)°, respectively. The molecular conformation is stabilized by intramolecular O—H···N and C—H···O hydrogen bonds (Table 1). In the crystal structure, molecules are linked into helical chains parallel to the c axis by intermolecular C—H···N hydrogen bonds.

Experimental

A dry 100 ml flask was charged with 4-formylbenzonitrile (15 mmol), naphthalen-2-ol (15 mmol) and morpholine (15 mmol). The mixture was stirred at 373 K for 12 h, then ethanol (15 ml) was added. After heating under reflux for 1 h, the precipitate was filtrated out and washed with ethanol (10 ml × 3) to give the title compound. Colourless crystals were obtained by slow evaporation of a dichloromethane solution.

Refinement

All the H atoms attached to C atoms were situated into the idealized positions and treated as riding, with C–H = 0.93 Å (aromatic), 0.97 Å (methylene) and 0.98 Å (methine), and with Uiso(H) = 1.2Ueq(C). The hydroxyl H atom was located in a difference Fourier map and refined as riding, with O—H = 0.82 Å and with Uiso(H) = 1.5Ueq(O). Restraints (SIMU and DELU) were used for stabilizing the refinement of atoms C5 and C6. The quality of the crystal available was not optimal and it was weakly diffracting, with no significant data obtained beyond θ = 20°. Although recrystallization was attempted repeatedly, no better crystals could be obtained. This could account for the rather high Rint value (0.138) and for the poor precision of the analysis.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing displacement ellipsoids drawn at the 30% probability level.

Crystal data

C22H20N2O2 Dx = 1.236 Mg m3
Mr = 344.40 Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3 Cell parameters from 3326 reflections
Hall symbol: -R 3 θ = 3.1–25.2°
a = 18.294 (3) Å µ = 0.08 mm1
c = 28.738 (6) Å T = 298 K
V = 8329 (4) Å3 Block, colourless
Z = 18 0.20 × 0.15 × 0.10 mm
F(000) = 3276

Data collection

Rigaku Mercury2 diffractometer 3326 independent reflections
Radiation source: fine-focus sealed tube 1786 reflections with I > 2σ(I)
graphite Rint = 0.138
Detector resolution: 13.6612 pixels mm-1 θmax = 25.2°, θmin = 3.1°
CCD profile fitting scans h = −21→21
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) k = −21→21
Tmin = 0.910, Tmax = 1.000 l = −34→34
24077 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.081 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.210 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0825P)2 + 7.1283P] where P = (Fo2 + 2Fc2)/3
3326 reflections (Δ/σ)max < 0.001
235 parameters Δρmax = 0.22 e Å3
7 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.6590 (2) 0.9543 (2) −0.01901 (11) 0.0550 (9)
N1 0.58212 (15) 0.86806 (15) 0.04966 (8) 0.0455 (7)
O1 0.51037 (19) 0.90933 (18) −0.01526 (10) 0.0841 (9)
H1 0.5181 0.8920 0.0108 0.126*
C2 0.5846 (3) 0.9432 (2) −0.03881 (13) 0.0713 (12)
N2 0.7870 (3) 1.3181 (3) 0.14213 (18) 0.146 (2)
O2 0.48604 (18) 0.71036 (17) 0.09733 (11) 0.0913 (10)
C3 0.5833 (5) 0.9667 (3) −0.08470 (18) 0.110 (2)
H3A 0.5334 0.9598 −0.0972 0.132*
C4 0.6527 (7) 0.9991 (4) −0.11117 (19) 0.140 (3)
H4A 0.6504 1.0157 −0.1414 0.168*
C5 0.7294 (5) 1.0085 (3) −0.09428 (18) 0.119 (2)
C6 0.8038 (6) 1.0382 (4) −0.1215 (2) 0.145 (3)
H6A 0.8020 1.0527 −0.1524 0.174*
C7 0.8752 (5) 1.0465 (4) −0.1058 (3) 0.160 (4)
H7A 0.9223 1.0672 −0.1250 0.192*
C8 0.8794 (4) 1.0236 (3) −0.0596 (2) 0.131 (2)
H8A 0.9289 1.0275 −0.0484 0.158*
C9 0.8103 (3) 0.9956 (2) −0.03107 (17) 0.0894 (15)
H9A 0.8146 0.9826 −0.0003 0.107*
C10 0.7325 (3) 0.9858 (2) −0.04718 (13) 0.0728 (12)
C11 0.66336 (19) 0.93938 (19) 0.03258 (10) 0.0459 (8)
H11A 0.7076 0.9249 0.0374 0.055*
C12 0.5716 (2) 0.7879 (2) 0.03122 (13) 0.0606 (10)
H12A 0.6184 0.7811 0.0413 0.073*
H12B 0.5719 0.7894 −0.0025 0.073*
C13 0.4897 (3) 0.7141 (2) 0.04806 (16) 0.0834 (13)
H13A 0.4428 0.7192 0.0363 0.100*
H13B 0.4842 0.6621 0.0360 0.100*
C14 0.4948 (3) 0.7858 (2) 0.11521 (14) 0.0771 (12)
H14A 0.4925 0.7828 0.1489 0.092*
H14B 0.4480 0.7922 0.1045 0.092*
C15 0.5765 (2) 0.8617 (2) 0.10044 (12) 0.0584 (9)
H15A 0.5798 0.9124 0.1132 0.070*
H15B 0.6235 0.8572 0.1126 0.070*
C16 0.6885 (2) 1.0214 (2) 0.05850 (10) 0.0478 (8)
C17 0.7626 (2) 1.0606 (2) 0.08376 (12) 0.0621 (10)
H17A 0.7954 1.0350 0.0863 0.075*
C18 0.7886 (2) 1.1370 (3) 0.10521 (13) 0.0733 (12)
H18A 0.8395 1.1633 0.1214 0.088*
C19 0.7396 (3) 1.1747 (2) 0.10287 (12) 0.0651 (11)
C20 0.6641 (2) 1.1355 (2) 0.07818 (12) 0.0626 (10)
H20A 0.6302 1.1600 0.0767 0.075*
C21 0.6400 (2) 1.0603 (2) 0.05593 (11) 0.0554 (9)
H21A 0.5902 1.0349 0.0388 0.067*
C22 0.7657 (3) 1.2544 (3) 0.12509 (16) 0.0976 (16)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.086 (3) 0.047 (2) 0.036 (2) 0.036 (2) 0.0023 (19) −0.0008 (15)
N1 0.0493 (16) 0.0456 (16) 0.0418 (16) 0.0238 (13) 0.0012 (12) −0.0033 (12)
O1 0.090 (2) 0.090 (2) 0.084 (2) 0.0538 (18) −0.0321 (17) −0.0075 (16)
C2 0.118 (4) 0.054 (2) 0.045 (2) 0.045 (3) −0.022 (2) −0.0062 (18)
N2 0.126 (4) 0.096 (3) 0.153 (4) 0.008 (3) 0.030 (3) −0.067 (3)
O2 0.106 (2) 0.0635 (19) 0.092 (2) 0.0338 (17) 0.0362 (18) 0.0195 (16)
C3 0.189 (6) 0.092 (4) 0.060 (3) 0.077 (4) −0.045 (4) −0.004 (3)
C4 0.280 (10) 0.078 (4) 0.047 (4) 0.078 (5) −0.024 (5) 0.001 (3)
C5 0.231 (6) 0.043 (2) 0.049 (3) 0.043 (3) 0.054 (3) 0.005 (2)
C6 0.250 (6) 0.058 (3) 0.066 (3) 0.031 (4) 0.070 (4) −0.002 (2)
C7 0.193 (7) 0.068 (4) 0.144 (7) 0.008 (5) 0.123 (6) −0.008 (4)
C8 0.129 (5) 0.080 (3) 0.154 (6) 0.028 (3) 0.087 (4) −0.007 (3)
C9 0.099 (4) 0.064 (3) 0.095 (3) 0.034 (3) 0.051 (3) 0.004 (2)
C10 0.112 (4) 0.041 (2) 0.055 (3) 0.031 (2) 0.028 (2) −0.0009 (18)
C11 0.0470 (19) 0.049 (2) 0.044 (2) 0.0261 (17) 0.0012 (15) 0.0000 (15)
C12 0.068 (2) 0.052 (2) 0.063 (2) 0.0313 (19) 0.0085 (19) 0.0001 (17)
C13 0.086 (3) 0.048 (2) 0.098 (4) 0.021 (2) 0.013 (3) −0.004 (2)
C14 0.083 (3) 0.068 (3) 0.077 (3) 0.036 (2) 0.026 (2) 0.010 (2)
C15 0.063 (2) 0.063 (2) 0.049 (2) 0.032 (2) 0.0085 (17) 0.0072 (17)
C16 0.048 (2) 0.053 (2) 0.0362 (19) 0.0210 (17) 0.0011 (15) 0.0025 (15)
C17 0.051 (2) 0.073 (3) 0.055 (2) 0.025 (2) −0.0007 (17) −0.0086 (19)
C18 0.051 (2) 0.083 (3) 0.059 (3) 0.014 (2) 0.0010 (18) −0.020 (2)
C19 0.068 (3) 0.053 (2) 0.045 (2) 0.009 (2) 0.0174 (19) −0.0085 (17)
C20 0.074 (3) 0.054 (2) 0.059 (2) 0.032 (2) 0.002 (2) −0.0073 (18)
C21 0.065 (2) 0.049 (2) 0.052 (2) 0.0287 (19) −0.0093 (17) −0.0094 (17)
C22 0.081 (3) 0.073 (3) 0.088 (3) 0.000 (2) 0.024 (2) −0.033 (3)

Geometric parameters (Å, °)

C1—C2 1.392 (5) C9—H9A 0.9300
C1—C10 1.422 (5) C11—C16 1.526 (4)
C1—C11 1.517 (4) C11—H11A 0.9800
N1—C15 1.464 (4) C12—C13 1.511 (5)
N1—C12 1.478 (4) C12—H12A 0.9700
N1—C11 1.488 (4) C12—H12B 0.9700
O1—C2 1.359 (5) C13—H13A 0.9700
O1—H1 0.8517 C13—H13B 0.9700
C2—C3 1.391 (6) C14—C15 1.505 (5)
N2—C22 1.137 (5) C14—H14A 0.9700
O2—C14 1.405 (4) C14—H14B 0.9700
O2—C13 1.418 (5) C15—H15A 0.9700
C3—C4 1.337 (9) C15—H15B 0.9700
C3—H3A 0.9300 C16—C17 1.381 (4)
C4—C5 1.410 (9) C16—C21 1.389 (4)
C4—H4A 0.9300 C17—C18 1.377 (5)
C5—C6 1.423 (10) C17—H17A 0.9300
C5—C10 1.425 (7) C18—C19 1.379 (5)
C6—C7 1.317 (10) C18—H18A 0.9300
C6—H6A 0.9300 C19—C20 1.391 (5)
C7—C8 1.403 (10) C19—C22 1.437 (6)
C7—H7A 0.9300 C20—C21 1.374 (4)
C8—C9 1.373 (6) C20—H20A 0.9300
C8—H8A 0.9300 C21—H21A 0.9300
C9—C10 1.420 (6)
C2—C1—C10 118.9 (4) N1—C12—H12A 109.5
C2—C1—C11 120.6 (3) C13—C12—H12A 109.5
C10—C1—C11 120.3 (3) N1—C12—H12B 109.5
C15—N1—C12 108.1 (3) C13—C12—H12B 109.5
C15—N1—C11 113.5 (2) H12A—C12—H12B 108.1
C12—N1—C11 109.2 (2) O2—C13—C12 111.4 (3)
C2—O1—H1 107.0 O2—C13—H13A 109.4
O1—C2—C3 116.4 (5) C12—C13—H13A 109.4
O1—C2—C1 123.0 (3) O2—C13—H13B 109.4
C3—C2—C1 120.6 (5) C12—C13—H13B 109.4
C14—O2—C13 109.8 (3) H13A—C13—H13B 108.0
C4—C3—C2 121.1 (6) O2—C14—C15 112.1 (3)
C4—C3—H3A 119.4 O2—C14—H14A 109.2
C2—C3—H3A 119.4 C15—C14—H14A 109.2
C3—C4—C5 121.6 (5) O2—C14—H14B 109.2
C3—C4—H4A 119.2 C15—C14—H14B 109.2
C5—C4—H4A 119.2 H14A—C14—H14B 107.9
C4—C5—C6 124.1 (7) N1—C15—C14 110.6 (3)
C4—C5—C10 118.2 (6) N1—C15—H15A 109.5
C6—C5—C10 117.6 (8) C14—C15—H15A 109.5
C7—C6—C5 124.0 (8) N1—C15—H15B 109.5
C7—C6—H6A 118.0 C14—C15—H15B 109.5
C5—C6—H6A 118.0 H15A—C15—H15B 108.1
C6—C7—C8 119.3 (6) C17—C16—C21 118.4 (3)
C6—C7—H7A 120.3 C17—C16—C11 120.1 (3)
C8—C7—H7A 120.3 C21—C16—C11 121.5 (3)
C9—C8—C7 119.9 (7) C18—C17—C16 120.9 (4)
C9—C8—H8A 120.0 C18—C17—H17A 119.6
C7—C8—H8A 120.0 C16—C17—H17A 119.6
C8—C9—C10 121.9 (5) C17—C18—C19 120.3 (3)
C8—C9—H9A 119.0 C17—C18—H18A 119.8
C10—C9—H9A 119.0 C19—C18—H18A 119.8
C9—C10—C1 123.4 (4) C18—C19—C20 119.5 (3)
C9—C10—C5 117.2 (5) C18—C19—C22 121.1 (4)
C1—C10—C5 119.4 (5) C20—C19—C22 119.4 (4)
N1—C11—C1 111.2 (3) C21—C20—C19 119.5 (4)
N1—C11—C16 112.3 (2) C21—C20—H20A 120.2
C1—C11—C16 108.5 (2) C19—C20—H20A 120.2
N1—C11—H11A 108.3 C20—C21—C16 121.4 (3)
C1—C11—H11A 108.3 C20—C21—H21A 119.3
C16—C11—H11A 108.3 C16—C21—H21A 119.3
N1—C12—C13 110.6 (3) N2—C22—C19 179.0 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.85 1.82 2.601 (4) 151.
C21—H21A···O1 0.93 2.54 3.300 (4) 139
C7—H7A···N2i 0.93 2.44 3.327 (9) 160

Symmetry codes: (i) −y+7/3, xy+5/3, z−1/3.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2668).

References

  1. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  2. Devi, I. & Bhuyan, P. J. (2004). Tetrahedron Lett. 45, 8625–8627.
  3. Domling, A. & Ugi, I. (2000). Angew. Chem. Int. Ed. 39, 3168–3210. [DOI] [PubMed]
  4. Hulme, C. & Gore, V. (2003). Curr. Med. Chem. 10, 51–80. [DOI] [PubMed]
  5. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Ugi, I. (1962). Angew. Chem. Int. Ed. Engl. 1, 8–21.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681104997X/rz2668sup1.cif

e-67-o3484-sup1.cif (25.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681104997X/rz2668Isup2.hkl

e-67-o3484-Isup2.hkl (163.5KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681104997X/rz2668Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES