Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 30;67(Pt 12):o3485. doi: 10.1107/S1600536811048781

3-(2-Eth­oxy­phen­yl)-1-(3-nitro­phen­yl)triaz-1-ene

Mohammad Reza Melardi a,*, Atefeh Ghannadan a, Mitra Peyman a, Giuseppe Bruno b, Hadi Amiri Rudbari b
PMCID: PMC3239109  PMID: 22199957

Abstract

The title compound, C14H14N4O3, exhibits a trans geometry about the N=N double bond in the triazene unit. The mol­ecule is approximately planar (r.m.s. deviation = 0.044 Å for all non-H atoms). An intra­molecular N—H⋯O hydrogen bond occurs. In the crystal, C—H⋯N hydrogen bonds lead to the formation of dimers which are, in turn, connected to each other by C—H⋯O hydrogen bonds, forming infinite chains of R 2 2(8) graph-set motif.

Related literature

For aryl triazenes, their structural properties and metal complexes see: Meldola & Streatfield (1888); Leman et al. (1993); Chen et al. (2002); Vrieze & Van Koten (1987). For a similar structure with cyano instead of eth­oxy groups, see: Melardi et al. (2008). For the synthesis and characterization of a similar structure with meth­oxy instead of eth­oxy groups, see: Rofouei et al. (2006). For the synthesis and crystal structures of mercury(II) and silver(I) complexes with 1,3-bis­(2-meth­oxy­phen­yl)triazene, see: Hematyar & Rofouei (2008) and Payehghadr et al. (2007), respectively. For hydrogen-bond patterns and related graph sets, see: Grell et al. (2002). graphic file with name e-67-o3485-scheme1.jpg

Experimental

Crystal data

  • C14H14N4O3

  • M r = 286.29

  • Triclinic, Inline graphic

  • a = 6.7754 (4) Å

  • b = 7.5482 (4) Å

  • c = 14.0467 (7) Å

  • α = 99.057 (3)°

  • β = 102.479 (2)°

  • γ = 90.192 (3)°

  • V = 692.14 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.55 × 0.33 × 0.26 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.688, T max = 0.746

  • 26097 measured reflections

  • 3178 independent reflections

  • 2693 reflections with I > 2σ(I)

  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.115

  • S = 1.06

  • 3178 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811048781/qm2042sup1.cif

e-67-o3485-sup1.cif (23.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811048781/qm2042Isup2.hkl

e-67-o3485-Isup2.hkl (152.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811048781/qm2042Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 2.26 2.6130 (12) 105
C7—H2A⋯O3i 0.97 2.55 3.4595 (18) 157
C10—H10⋯N3ii 0.93 2.65 3.543 (3) 161

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

Aryl triazenes have been studied for over 130 years for their interesting structural, anticancer, and reactivity properties. The first extensive investigation of the coordination chemistry of a triazene derivative (1,3 diphenyltriazene) was carried out in 1887 by Meldola (Meldola et al., 1888). In the intervening years, numerous transition metal triazenide compounds have been studied (Leman et al., 1993). Triazene compounds characterized by having a diazoamino group commonly adopt a trans configuration in the ground state (Chen et al., 2002). The study of transition metal complexes containing 1,3-diaryltriazenide [RN═N—NR]- ligands has increased greatly in the past few years, because of their potential reactivity in relation to their several coordination modes (Vrieze et al., 1987). We have recently reported the synthesis and characterization of the two molecules 1,3-bis(2-methoxyphenyl)triazene (Rofouei, et al., 2006) and 1,3-bis(2-cyanophenyl)triazene (Melardi, et al., 2008).

The title compound, C14H14N4O3, is a related triazene compound. It exhibits a trans stereo chemistry of the N═N double bond, and the C9—N3—N2—N1 and C1—N1—N2—N3 torsion angles are -179.23 (9) and 177.91 (10)°, respectively which indicates the molecule is planar. The N1—N2 and N2—N3 bond distances are 1.3295 (13) and 1.2550 (14) Å, respectively, which indicates the presence of distinct single and double bonds between the nitrogen atoms. These values are in good agreement with the reported data for N—N and N═N bond distances (Hematyar, et al., 2008; Payehghadr, et al. 2007). For example, in 1,3-bis(2-cyanophenyl)triazene, the N—N and N═N bond distances are 1.335 (5) and 1.289 (5) Å (Melardi, et al., 2008). Individual molecules are mostly planar with an r.m.s. deviation from planarity of 0.044 Å for all non-hydrogen atoms. Every molecule in the molecular structure (Fig. 1) is connected to other unit by two distinct C—H···N hydrogen bonds to form dimers. The resultant dimers are then connected to each other by C—H···O hydrogen bonds to form infinite chains with R22(8) graph-set motifs (Grell et al., 2002)) (Fig. 2). Unit cell diagram of the title compound is illustrated in Fig. 3.

Experimental

The compound was prepared by the following method: A 100 ml flask was charged with 10 g of ice and 15 ml of water and then cooled to 273 k in an ice-bath. To this was added 2 mmol (0.344 g) of 3-nitroaniline and 2 mmol of hydrochloric acid (36.5%) and 2 ml of water. To thissolution was then added a solution containing NaNO2 (2 mmol, 0.16 g) in 2 ml of water during a 15 min period. After mixing for 15 min, the obtained solution was added to a solution of 2 mmol (0.261 ml) of o-phenetidin and 2 ml of methanol and 2 ml of water.

After that a solution containing 36 mmol (2.95 g) of sodium acetate in 10 ml of water was added. After mixing for 24 h the orange product was filtered off and dissolved in DMSO. Recrystallization from DMSO afforded the product as an orange crystalline material. 1H NMR (300MHZ, DMSO): 1.37(6H, CH3), 4.12(4H, CH2), 6.98–8.07 (8H, aromatic), 12.93(1H, NH). IR (KBr): 3326, 1484, 1468, 1253, 1046, 816 cm-1

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound. Thermal ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

C—H···N and C—H···O hydrogen bonds connect the different units into chains with R22(8) graph-set motifs

Fig. 3.

Fig. 3.

Unit cell packing diagram of the title compound, hydrogen bonding are shown as dashed lines.

Crystal data

C14H14N4O3 Z = 2
Mr = 286.29 F(000) = 300
Triclinic, P1 Dx = 1.374 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.7754 (4) Å Cell parameters from 9946 reflections
b = 7.5482 (4) Å θ = 2.7–31.1°
c = 14.0467 (7) Å µ = 0.10 mm1
α = 99.057 (3)° T = 293 K
β = 102.479 (2)° Irregular, colourless
γ = 90.192 (3)° 0.55 × 0.33 × 0.26 mm
V = 692.14 (6) Å3

Data collection

Bruker APEXII CCD diffractometer 3178 independent reflections
Radiation source: fine-focus sealed tube 2693 reflections with I > 2σ(I)
graphite Rint = 0.019
φ and ω scans θmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −8→8
Tmin = 0.688, Tmax = 0.746 k = −9→9
26097 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0511P)2 + 0.145P] where P = (Fo2 + 2Fc2)/3
3178 reflections (Δ/σ)max < 0.001
191 parameters Δρmax = 0.19 e Å3
0 restraints Δρmin = −0.17 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.14363 (13) 0.78956 (13) 0.80767 (6) 0.0496 (2)
O2 −0.25541 (16) 0.75287 (19) 0.17852 (8) 0.0775 (4)
O3 −0.09609 (19) 0.67215 (19) 0.06405 (7) 0.0772 (4)
N1 0.08879 (15) 0.75248 (15) 0.61555 (7) 0.0463 (3)
H1 0.1969 0.7224 0.6532 0.056*
N2 0.07393 (15) 0.72890 (13) 0.51841 (7) 0.0405 (2)
N3 0.22616 (15) 0.65698 (14) 0.49393 (7) 0.0452 (2)
N4 −0.10788 (17) 0.69283 (16) 0.15046 (7) 0.0510 (3)
C8 0.3938 (2) 0.7498 (2) 0.94857 (10) 0.0657 (4)
H1A 0.3911 0.6227 0.9261 0.099*
H1B 0.4296 0.7732 1.0195 0.099*
H1C 0.4919 0.8082 0.9226 0.099*
C7 0.1898 (2) 0.8201 (2) 0.91353 (9) 0.0539 (3)
H2A 0.0890 0.7591 0.9376 0.065*
H2B 0.1895 0.9476 0.9383 0.065*
C2 −0.03776 (17) 0.84559 (16) 0.76042 (8) 0.0408 (3)
C1 −0.06778 (17) 0.82518 (15) 0.65747 (8) 0.0388 (2)
C9 0.21578 (17) 0.63226 (15) 0.39086 (8) 0.0383 (2)
C14 0.05175 (17) 0.67526 (15) 0.32130 (8) 0.0385 (2)
H6 −0.0627 0.7236 0.3402 0.046*
C13 0.06377 (18) 0.64406 (15) 0.22357 (8) 0.0404 (3)
C12 0.2299 (2) 0.57199 (18) 0.19153 (9) 0.0488 (3)
H8 0.2329 0.5523 0.1248 0.059*
C11 0.3909 (2) 0.53033 (18) 0.26185 (10) 0.0529 (3)
H9 0.5049 0.4818 0.2425 0.063*
C10 0.38486 (19) 0.55994 (17) 0.36067 (9) 0.0466 (3)
H10 0.4946 0.5313 0.4074 0.056*
C6 −0.24781 (19) 0.87423 (17) 0.60219 (10) 0.0483 (3)
H11 −0.2686 0.8599 0.5337 0.058*
C5 −0.3968 (2) 0.94460 (18) 0.64873 (11) 0.0551 (3)
H12 −0.5176 0.9778 0.6114 0.066*
C4 −0.3679 (2) 0.96581 (19) 0.74939 (12) 0.0565 (3)
H13 −0.4688 1.0137 0.7801 0.068*
C3 −0.1888 (2) 0.91623 (19) 0.80575 (10) 0.0514 (3)
H14 −0.1701 0.9304 0.8741 0.062*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0446 (5) 0.0738 (6) 0.0283 (4) 0.0085 (4) 0.0058 (3) 0.0050 (4)
O2 0.0549 (6) 0.1304 (11) 0.0483 (6) 0.0282 (6) 0.0088 (5) 0.0206 (6)
O3 0.0823 (8) 0.1176 (10) 0.0321 (5) 0.0152 (7) 0.0110 (5) 0.0155 (5)
N1 0.0432 (5) 0.0665 (7) 0.0277 (5) 0.0103 (5) 0.0052 (4) 0.0068 (4)
N2 0.0437 (5) 0.0473 (5) 0.0295 (5) 0.0021 (4) 0.0061 (4) 0.0060 (4)
N3 0.0461 (5) 0.0557 (6) 0.0329 (5) 0.0094 (4) 0.0074 (4) 0.0064 (4)
N4 0.0537 (6) 0.0657 (7) 0.0329 (5) 0.0009 (5) 0.0067 (4) 0.0096 (5)
C8 0.0646 (9) 0.0905 (11) 0.0386 (7) 0.0041 (8) 0.0004 (6) 0.0152 (7)
C7 0.0621 (8) 0.0705 (9) 0.0284 (6) 0.0037 (6) 0.0093 (5) 0.0069 (5)
C2 0.0415 (6) 0.0438 (6) 0.0360 (6) −0.0011 (5) 0.0081 (4) 0.0035 (5)
C1 0.0398 (6) 0.0399 (6) 0.0357 (6) 0.0002 (4) 0.0072 (4) 0.0047 (4)
C9 0.0437 (6) 0.0379 (6) 0.0334 (5) 0.0025 (4) 0.0091 (4) 0.0058 (4)
C14 0.0408 (6) 0.0418 (6) 0.0338 (5) 0.0020 (4) 0.0103 (4) 0.0054 (4)
C13 0.0457 (6) 0.0422 (6) 0.0334 (6) −0.0005 (5) 0.0083 (5) 0.0074 (4)
C12 0.0604 (7) 0.0534 (7) 0.0368 (6) 0.0060 (6) 0.0199 (5) 0.0068 (5)
C11 0.0557 (7) 0.0566 (8) 0.0524 (7) 0.0155 (6) 0.0247 (6) 0.0094 (6)
C10 0.0468 (6) 0.0493 (7) 0.0452 (6) 0.0114 (5) 0.0108 (5) 0.0109 (5)
C6 0.0466 (6) 0.0521 (7) 0.0434 (7) 0.0028 (5) 0.0024 (5) 0.0093 (5)
C5 0.0421 (6) 0.0523 (7) 0.0693 (9) 0.0062 (5) 0.0057 (6) 0.0137 (6)
C4 0.0476 (7) 0.0547 (8) 0.0704 (9) 0.0072 (6) 0.0228 (6) 0.0055 (6)
C3 0.0521 (7) 0.0577 (7) 0.0460 (7) 0.0018 (6) 0.0186 (6) 0.0019 (6)

Geometric parameters (Å, °)

O1—C2 1.3672 (14) C1—C6 1.3828 (16)
O1—C7 1.4327 (14) C9—C14 1.3886 (15)
O2—N4 1.2153 (15) C9—C10 1.3898 (16)
O3—N4 1.2192 (14) C14—C13 1.3760 (15)
N1—N2 1.3295 (13) C14—H6 0.9300
N1—C1 1.3948 (15) C13—C12 1.3824 (17)
N1—H1 0.8600 C12—C11 1.3782 (19)
N2—N3 1.2550 (14) C12—H8 0.9300
N3—C9 1.4165 (14) C11—C10 1.3803 (18)
N4—C13 1.4658 (16) C11—H9 0.9300
C8—C7 1.493 (2) C10—H10 0.9300
C8—H1A 0.9600 C6—C5 1.3813 (19)
C8—H1B 0.9600 C6—H11 0.9300
C8—H1C 0.9600 C5—C4 1.368 (2)
C7—H2A 0.9700 C5—H12 0.9300
C7—H2B 0.9700 C4—C3 1.386 (2)
C2—C3 1.3840 (17) C4—H13 0.9300
C2—C1 1.3996 (16) C3—H14 0.9300
C2—O1—C7 117.63 (9) C10—C9—N3 115.61 (10)
N2—N1—C1 121.19 (9) C13—C14—C9 117.92 (11)
N2—N1—H1 119.4 C13—C14—H6 121.0
C1—N1—H1 119.4 C9—C14—H6 121.0
N3—N2—N1 112.29 (9) C14—C13—C12 123.37 (11)
N2—N3—C9 113.57 (9) C14—C13—N4 117.84 (10)
O2—N4—O3 122.79 (12) C12—C13—N4 118.78 (10)
O2—N4—C13 118.69 (10) C11—C12—C13 117.71 (11)
O3—N4—C13 118.52 (11) C11—C12—H8 121.1
C7—C8—H1A 109.5 C13—C12—H8 121.1
C7—C8—H1B 109.5 C12—C11—C10 120.67 (11)
H1A—C8—H1B 109.5 C12—C11—H9 119.7
C7—C8—H1C 109.5 C10—C11—H9 119.7
H1A—C8—H1C 109.5 C11—C10—C9 120.44 (11)
H1B—C8—H1C 109.5 C11—C10—H10 119.8
O1—C7—C8 108.27 (11) C9—C10—H10 119.8
O1—C7—H2A 110.0 C5—C6—C1 119.94 (12)
C8—C7—H2A 110.0 C5—C6—H11 120.0
O1—C7—H2B 110.0 C1—C6—H11 120.0
C8—C7—H2B 110.0 C4—C5—C6 120.46 (12)
H2A—C7—H2B 108.4 C4—C5—H12 119.8
O1—C2—C3 125.54 (11) C6—C5—H12 119.8
O1—C2—C1 115.09 (10) C5—C4—C3 120.27 (12)
C3—C2—C1 119.37 (11) C5—C4—H13 119.9
C6—C1—N1 123.10 (11) C3—C4—H13 119.9
C6—C1—C2 119.87 (11) C2—C3—C4 120.09 (12)
N1—C1—C2 117.02 (10) C2—C3—H14 120.0
C14—C9—C10 119.88 (10) C4—C3—H14 120.0
C14—C9—N3 124.50 (10)
C1—N1—N2—N3 −177.91 (10) O2—N4—C13—C14 −2.37 (18)
N1—N2—N3—C9 −179.23 (9) O3—N4—C13—C14 177.30 (12)
C2—O1—C7—C8 −179.64 (12) O2—N4—C13—C12 178.57 (13)
C7—O1—C2—C3 −5.71 (19) O3—N4—C13—C12 −1.77 (18)
C7—O1—C2—C1 175.15 (11) C14—C13—C12—C11 −0.2 (2)
N2—N1—C1—C6 1.14 (18) N4—C13—C12—C11 178.81 (12)
N2—N1—C1—C2 −179.72 (10) C13—C12—C11—C10 0.1 (2)
O1—C2—C1—C6 178.70 (11) C12—C11—C10—C9 0.1 (2)
C3—C2—C1—C6 −0.50 (18) C14—C9—C10—C11 −0.06 (19)
O1—C2—C1—N1 −0.47 (16) N3—C9—C10—C11 −179.95 (11)
C3—C2—C1—N1 −179.67 (11) N1—C1—C6—C5 179.66 (12)
N2—N3—C9—C14 −2.50 (17) C2—C1—C6—C5 0.54 (19)
N2—N3—C9—C10 177.40 (11) C1—C6—C5—C4 −0.2 (2)
C10—C9—C14—C13 −0.07 (17) C6—C5—C4—C3 −0.2 (2)
N3—C9—C14—C13 179.82 (10) O1—C2—C3—C4 −179.01 (12)
C9—C14—C13—C12 0.20 (18) C1—C2—C3—C4 0.1 (2)
C9—C14—C13—N4 −178.82 (10) C5—C4—C3—C2 0.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1 0.86 2.26 2.6130 (12) 105.
C7—H2A···O3i 0.97 2.55 3.4595 (18) 157
C10—H10···N3ii 0.93 2.65 3.543 (3) 161

Symmetry codes: (i) x, y, z+1; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QM2042).

References

  1. Bruker (2005). SAINT-Plus and APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chen, N., Barra, M., Lee, I. & Chahal, N. (2002). J. Org. Chem. 67, 2271–2277. [DOI] [PubMed]
  3. Grell, J. J., Bernstein, J. & Tinhofer, G. (2002). Crystallogr. Rev. 8, 1–56.
  4. Hematyar, M. & Rofouei, M. K. (2008). Anal. Sci. 24, x117–x118.
  5. Leman, J. T., Wilking, J. B., Cooling, A. J. & Barron, A. R. (1993). Inorg. Chem. 32, 4324–4336.
  6. Melardi, M. R., Khalili, H. R., Barkhi, M. & Rofouei, M. K. (2008). Anal. Sci. 24, x281–x282.
  7. Meldola, R. & Streatfield, F. W. (1888). J. Chem. Soc. 61, 102–118.
  8. Payehghadr, M., Rofouei, M. K., Morsali, A. & Shamsipur, M. (2007). Inorg. Chim. Acta, 360, 1792–1798.
  9. Rofouei, M. K., Shamsipur, M. & Payehghadr, M. (2006). Anal. Sci. 22, x79–x80.
  10. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Vrieze, K. & Van Koten, G. (1987). In Comprehensive Coordination Chemistry Oxford: Pergamon Press.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811048781/qm2042sup1.cif

e-67-o3485-sup1.cif (23.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811048781/qm2042Isup2.hkl

e-67-o3485-Isup2.hkl (152.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811048781/qm2042Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES