Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 30;67(Pt 12):o3490. doi: 10.1107/S1600536811050410

2-Chloro-5-({[5-(4-meth­oxy­phen­yl)-1,3,4-oxadiazol-2-yl]­sulfanyl}­meth­yl)pyridine

Hao Ji a, Xu-Dong Xu a,*
PMCID: PMC3239114  PMID: 22199962

Abstract

In the title compound, C15H12ClN3O2S, the central oxadiazole ring forms dihedral angles of 7.72 (14) and 69.86 (12)° with the benzene and pyridine rings, respectively. The crystal packing is governed only by van der Waals inter­actions.

Related literature

For background to the biological activity of heterocyclic compounds, see: Mamolo et al. (2001); Liu et al. (2001); Demirbas et al. (2004). For the synthesis, see: Zareef et al. (2008); Wu et al. (2011). For standard bond lengths, see: Allen et al. (1987). graphic file with name e-67-o3490-scheme1.jpg

Experimental

Crystal data

  • C15H12ClN3O2S

  • M r = 333.80

  • Orthorhombic, Inline graphic

  • a = 12.311 (2) Å

  • b = 8.1229 (15) Å

  • c = 29.956 (6) Å

  • V = 2995.6 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.05 mm

Data collection

  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.886, T max = 0.980

  • 5300 measured reflections

  • 2730 independent reflections

  • 1514 reflections with I > 2σ(I)

  • R int = 0.089

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060

  • wR(F 2) = 0.147

  • S = 0.97

  • 2730 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811050410/rz2672sup1.cif

e-67-o3490-sup1.cif (17.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811050410/rz2672Isup2.hkl

e-67-o3490-Isup2.hkl (134.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811050410/rz2672Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Heterocyclic compounds have been of great interest since many years, in particular due to the important role these compouns play in the development of medicinal chemistry (Mamolo et al., 2001; Liu et al., 2001; Demirbas et al., 2004). As a contribution to the structural characterization of new heterocyclic compounds, we report here the structure of the title compound.

In the title compound (Fig. 1) all bond lengths are within normal ranges (Allen et al., 1987). The dihedral angle between the central oxadiazole ring (N1/N2/O2/C8/C9) and the benzene (C2–C7) and pyridine (N3/C11–C15) rings are of 7.72 (14) and 69.86 (12)°, respectively. In the crystal structure, no hydrogen bonds, π···π interactions or C—H···π short contacts are observed, the structure being stabilized only by van der Waals interactions.

Experimental

The title compound was synthesized according to the previously reported literature methods (Zareef et al., 2008; Wu et al., 2011). Single crystals suitable for X-ray diffraction analysis were obtained by evaporation of an ethanol solution.

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93–0.97 Å, and with with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing 30% probability displacement ellipsoids.

Crystal data

C15H12ClN3O2S F(000) = 1376
Mr = 333.80 Dx = 1.480 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 2256 reflections
a = 12.311 (2) Å θ = 4.2–26°
b = 8.1229 (15) Å µ = 0.40 mm1
c = 29.956 (6) Å T = 298 K
V = 2995.6 (10) Å3 Needle, yellow
Z = 8 0.30 × 0.20 × 0.05 mm

Data collection

Bruker SMART APEX area-detector diffractometer 2730 independent reflections
Radiation source: fine-focus sealed tube 1514 reflections with I > 2σ(I)
graphite Rint = 0.089
ω scans θmax = 25.3°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −14→14
Tmin = 0.886, Tmax = 0.980 k = −9→0
5300 measured reflections l = 0→35

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147 H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0512P)2] where P = (Fo2 + 2Fc2)/3
2730 reflections (Δ/σ)max < 0.001
201 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.5087 (4) −0.2986 (7) 0.24553 (18) 0.0714 (16)
H1A 0.5338 −0.1867 0.2461 0.107*
H1B 0.5102 −0.3387 0.2154 0.107*
H1C 0.5552 −0.3654 0.2638 0.107*
C2 0.3779 (4) −0.2211 (6) 0.29959 (14) 0.0472 (11)
C3 0.4536 (3) −0.1655 (5) 0.33013 (14) 0.0455 (11)
H3 0.5271 −0.1861 0.3256 0.055*
C4 0.4201 (3) −0.0794 (5) 0.36728 (13) 0.0420 (11)
H4 0.4715 −0.0414 0.3876 0.050*
C5 0.3108 (3) −0.0486 (5) 0.37482 (13) 0.0371 (10)
C6 0.2359 (3) −0.1103 (6) 0.34482 (14) 0.0507 (12)
H6 0.1621 −0.0936 0.3498 0.061*
C7 0.2693 (4) −0.1962 (6) 0.30773 (15) 0.0600 (14)
H7 0.2179 −0.2379 0.2880 0.072*
C8 0.2797 (3) 0.0489 (5) 0.41334 (13) 0.0364 (10)
C9 0.1752 (3) 0.1674 (5) 0.46014 (14) 0.0396 (11)
C10 0.1054 (4) 0.3455 (5) 0.52966 (12) 0.0442 (11)
H10A 0.1658 0.4113 0.5190 0.053*
H10B 0.0493 0.4206 0.5397 0.053*
C11 0.1431 (3) 0.2446 (5) 0.56864 (13) 0.0384 (10)
C12 0.2518 (3) 0.2350 (6) 0.57983 (14) 0.0473 (11)
H12 0.3018 0.2869 0.5613 0.057*
C13 0.2170 (4) 0.0810 (6) 0.64102 (14) 0.0454 (12)
C14 0.1079 (4) 0.0776 (6) 0.63222 (15) 0.0518 (12)
H14 0.0604 0.0206 0.6507 0.062*
C15 0.0706 (3) 0.1604 (6) 0.59533 (14) 0.0481 (12)
H15 −0.0030 0.1597 0.5884 0.058*
N1 0.3412 (3) 0.1276 (4) 0.44087 (11) 0.0436 (9)
N2 0.2721 (3) 0.2060 (5) 0.47184 (11) 0.0447 (9)
N3 0.2897 (3) 0.1545 (5) 0.61608 (12) 0.0501 (10)
O1 0.4021 (3) −0.3058 (5) 0.26198 (11) 0.0770 (12)
O2 0.1718 (2) 0.0681 (3) 0.42357 (9) 0.0415 (7)
S 0.05258 (9) 0.22470 (15) 0.48350 (4) 0.0480 (3)
Cl1 0.26557 (11) −0.01868 (18) 0.68838 (4) 0.0683 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.066 (3) 0.076 (4) 0.072 (4) 0.002 (3) 0.013 (3) −0.028 (3)
C2 0.049 (3) 0.043 (3) 0.049 (3) −0.003 (2) 0.002 (2) −0.007 (2)
C3 0.040 (2) 0.046 (3) 0.050 (3) −0.002 (2) 0.003 (2) 0.000 (2)
C4 0.043 (3) 0.041 (3) 0.041 (3) −0.003 (2) −0.008 (2) −0.002 (2)
C5 0.037 (2) 0.036 (2) 0.038 (2) −0.004 (2) −0.0005 (18) 0.008 (2)
C6 0.033 (2) 0.058 (3) 0.061 (3) 0.000 (2) 0.003 (2) −0.007 (3)
C7 0.044 (3) 0.068 (4) 0.068 (3) −0.007 (3) −0.005 (2) −0.021 (3)
C8 0.037 (2) 0.030 (2) 0.043 (2) 0.000 (2) −0.0009 (19) 0.003 (2)
C9 0.044 (3) 0.032 (2) 0.043 (3) 0.001 (2) 0.001 (2) 0.004 (2)
C10 0.051 (3) 0.036 (2) 0.045 (3) 0.009 (2) 0.010 (2) 0.001 (2)
C11 0.043 (2) 0.029 (2) 0.044 (2) 0.004 (2) 0.005 (2) −0.001 (2)
C12 0.046 (2) 0.046 (3) 0.049 (3) −0.008 (2) 0.008 (2) −0.001 (2)
C13 0.053 (3) 0.036 (3) 0.048 (3) 0.005 (2) −0.012 (2) 0.000 (2)
C14 0.045 (3) 0.047 (3) 0.063 (3) −0.009 (2) 0.005 (2) 0.020 (3)
C15 0.032 (2) 0.050 (3) 0.062 (3) 0.002 (2) 0.001 (2) 0.013 (2)
N1 0.039 (2) 0.043 (2) 0.049 (2) 0.0011 (19) 0.0011 (17) −0.0014 (19)
N2 0.036 (2) 0.049 (2) 0.049 (2) 0.0006 (18) 0.0023 (16) −0.0050 (19)
N3 0.042 (2) 0.054 (3) 0.054 (2) 0.000 (2) 0.0002 (19) 0.001 (2)
O1 0.061 (2) 0.098 (3) 0.072 (2) −0.015 (2) 0.0116 (19) −0.045 (2)
O2 0.0362 (16) 0.0386 (17) 0.0497 (19) −0.0011 (14) −0.0003 (13) 0.0021 (15)
S 0.0375 (6) 0.0510 (7) 0.0556 (7) 0.0047 (6) 0.0017 (5) 0.0007 (7)
Cl1 0.0728 (9) 0.0660 (9) 0.0661 (8) −0.0008 (7) −0.0169 (7) 0.0169 (7)

Geometric parameters (Å, °)

C1—O1 1.404 (6) C9—N2 1.282 (5)
C1—H1A 0.9600 C9—O2 1.361 (5)
C1—H1B 0.9600 C9—S 1.728 (4)
C1—H1C 0.9600 C10—C11 1.500 (5)
C2—O1 1.353 (5) C10—S 1.816 (4)
C2—C3 1.381 (6) C10—H10A 0.9700
C2—C7 1.375 (6) C10—H10B 0.9700
C3—C4 1.378 (5) C11—C15 1.379 (5)
C3—H3 0.9300 C11—C12 1.383 (6)
C4—C5 1.387 (5) C12—N3 1.350 (5)
C4—H4 0.9300 C12—H12 0.9300
C5—C6 1.382 (5) C13—N3 1.310 (5)
C5—C8 1.451 (5) C13—C14 1.368 (6)
C6—C7 1.375 (6) C13—Cl1 1.740 (4)
C6—H6 0.9300 C14—C15 1.373 (6)
C7—H7 0.9300 C14—H14 0.9300
C8—N1 1.289 (5) C15—H15 0.9300
C8—O2 1.372 (4) N1—N2 1.411 (4)
O1—C1—H1A 109.5 O2—C9—S 117.3 (3)
O1—C1—H1B 109.5 C11—C10—S 114.1 (3)
H1A—C1—H1B 109.5 C11—C10—H10A 108.7
O1—C1—H1C 109.5 S—C10—H10A 108.7
H1A—C1—H1C 109.5 C11—C10—H10B 108.7
H1B—C1—H1C 109.5 S—C10—H10B 108.7
O1—C2—C3 124.7 (4) H10A—C10—H10B 107.6
O1—C2—C7 115.9 (4) C15—C11—C12 117.2 (4)
C3—C2—C7 119.4 (4) C15—C11—C10 121.5 (4)
C4—C3—C2 120.0 (4) C12—C11—C10 121.3 (4)
C4—C3—H3 120.0 N3—C12—C11 123.9 (4)
C2—C3—H3 120.0 N3—C12—H12 118.1
C3—C4—C5 120.9 (4) C11—C12—H12 118.1
C3—C4—H4 119.6 N3—C13—C14 124.7 (4)
C5—C4—H4 119.6 N3—C13—Cl1 116.2 (3)
C6—C5—C4 118.4 (4) C14—C13—Cl1 119.0 (4)
C6—C5—C8 122.6 (4) C13—C14—C15 118.2 (4)
C4—C5—C8 119.0 (4) C13—C14—H14 120.9
C7—C6—C5 120.7 (4) C15—C14—H14 120.9
C7—C6—H6 119.7 C14—C15—C11 119.6 (4)
C5—C6—H6 119.7 C14—C15—H15 120.2
C6—C7—C2 120.6 (4) C11—C15—H15 120.2
C6—C7—H7 119.7 C8—N1—N2 106.8 (3)
C2—C7—H7 119.7 C9—N2—N1 105.7 (3)
N1—C8—O2 111.7 (4) C13—N3—C12 116.3 (4)
N1—C8—C5 128.6 (4) C2—O1—C1 118.4 (4)
O2—C8—C5 119.7 (4) C9—O2—C8 102.5 (3)
N2—C9—O2 113.2 (4) C9—S—C10 98.1 (2)
N2—C9—S 129.5 (4)
O1—C2—C3—C4 179.6 (4) C13—C14—C15—C11 −0.4 (7)
C7—C2—C3—C4 −3.0 (7) C12—C11—C15—C14 2.6 (7)
C2—C3—C4—C5 0.6 (7) C10—C11—C15—C14 −176.1 (4)
C3—C4—C5—C6 1.8 (6) O2—C8—N1—N2 −0.1 (5)
C3—C4—C5—C8 −177.3 (4) C5—C8—N1—N2 178.7 (4)
C4—C5—C6—C7 −1.8 (7) O2—C9—N2—N1 0.2 (5)
C8—C5—C6—C7 177.2 (4) S—C9—N2—N1 −179.1 (3)
C5—C6—C7—C2 −0.6 (7) C8—N1—N2—C9 0.0 (4)
O1—C2—C7—C6 −179.4 (4) C14—C13—N3—C12 1.6 (7)
C3—C2—C7—C6 3.0 (8) Cl1—C13—N3—C12 −178.6 (3)
C6—C5—C8—N1 −171.9 (4) C11—C12—N3—C13 0.9 (7)
C4—C5—C8—N1 7.2 (6) C3—C2—O1—C1 −19.0 (7)
C6—C5—C8—O2 6.8 (6) C7—C2—O1—C1 163.5 (5)
C4—C5—C8—O2 −174.1 (4) N2—C9—O2—C8 −0.2 (4)
S—C10—C11—C15 −69.6 (5) S—C9—O2—C8 179.1 (3)
S—C10—C11—C12 111.7 (4) N1—C8—O2—C9 0.2 (4)
C15—C11—C12—N3 −3.0 (7) C5—C8—O2—C9 −178.7 (3)
C10—C11—C12—N3 175.8 (4) N2—C9—S—C10 −2.2 (5)
N3—C13—C14—C15 −1.8 (8) O2—C9—S—C10 178.6 (3)
Cl1—C13—C14—C15 178.4 (4) C11—C10—S—C9 −79.9 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2672).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Winconsin, USA.
  3. Demirbas, N., Karaoglu, S. A., Demirbas, A. & Sancak, K. (2004). Eur. J. Med. Chem. 39, 793–804. [DOI] [PubMed]
  4. Liu, F., Luo, X. Q., Song, B. A., Bhadury, P. S., Yang, S., Jin, L. H., Xue, W. & Hu, D. Y. (2001). Bioorg. Med. Chem. 16, 3632–3640. [DOI] [PubMed]
  5. Mamolo, M. G., Falagiani, V., Zampieri, D., Vio, L. & Banfi, E. (2001). Farmaco, 56, 587–592. [DOI] [PubMed]
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Wu, X. L., Zhu, C. F., Lü, Z. D., Wei, C. S. & Liao, X. C. (2011). Chin. J. Org. Chem. 31, 824–831.
  9. Zareef, M., Iqbal, R., Mirza, B., Khan, K. M., Manan, A., Asim, F. & Khan, S. W. (2008). ARKIVOC, ii, 141–152.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811050410/rz2672sup1.cif

e-67-o3490-sup1.cif (17.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811050410/rz2672Isup2.hkl

e-67-o3490-Isup2.hkl (134.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811050410/rz2672Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES