Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 30;67(Pt 12):o3492. doi: 10.1107/S160053681105046X

tert-Butyl 6-oxo-2,7-diaza­spiro[4.4]nonane-2-carboxyl­ate

Jie Yang a,*
PMCID: PMC3239116  PMID: 22199964

Abstract

In the title mol­ecule, C12H20N2O3, both five-membered rings are in envelope conformations. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into chains along [010].

Related literature

For applications of substituted pyrrolidines, see: Domagala et al. (1993); Pedder et al. (1976); Blanco & Sardina (1994); Husinec & Savic (2005). For standard bond lengths, see: Allen et al. (1987).graphic file with name e-67-o3492-scheme1.jpg

Experimental

Crystal data

  • C12H20N2O3

  • M r = 240.30

  • Monoclinic, Inline graphic

  • a = 10.495 (5) Å

  • b = 6.283 (3) Å

  • c = 19.247 (10) Å

  • β = 97.029 (8)°

  • V = 1259.7 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.21 × 0.15 × 0.06 mm

Data collection

  • Rigaku Saturn 724+ diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007) T min = 0.981, T max = 0.995

  • 3265 measured reflections

  • 1557 independent reflections

  • 1452 reflections with I > 2σ(I)

  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.105

  • S = 1.09

  • 1557 reflections

  • 157 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681105046X/lh5363sup1.cif

e-67-o3492-sup1.cif (17.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681105046X/lh5363Isup2.hkl

e-67-o3492-Isup2.hkl (76.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 1.97 2.848 (3) 175

Symmetry code: (i) Inline graphic.

Acknowledgments

The author would like to thank the Shandong Provincial Natural Science Foundation, China (Y2008B29) and the Weifang Technology Development Project (2010).

supplementary crystallographic information

Comment

Depending on the substitution pattern and functionalization, different substituted pyrrolidines have been shown to be effective antibacterials or fungicides agents and glycosidase inhibitors (Domagala et al., 1993; Pedder et al., 1976; Blanco et al., 1994); Husinec et al., 2005). The crystal structure of the title compound is reportede herein.

In the molecule (Fig. 1), all bond lengths and angles are within normal ranges (Allen et al., 1987). Both five-membered rings are in envelope conformations with C3 and C5 forming the flap. Atoms C6-C8/O2/O3/N2 are essentially planar, with a maximum deviation of 0.0082 (24) Å. In the crystal, N—H···O hydrogen bonds link molecules to form one dimensional chains along [010] (see Table 1).

Experimental

Tert-butyl 6-oxo-2,7-diazasiro[4.4]nonane-2-carboxylate was synthesized with methyl 1-tert-butyl 3-ethyl 3-(cyanomethyl)pyrrolidine-1,3-dicarboxylate (13.4g) and Raney Ni (3.4g) in methanol under H2(50 Psi) atmosphere at room temperature.

Single crystals of the compound suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature. In the absence of anomalous dispersion effects the Friedel pairs were merged.

Refinement

All H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances in the range 0.98–0.99 Å, and with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl). The N—H distance is 0.88 Å, with Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C12H20N2O3 F(000) = 520
Mr = 240.30 Dx = 1.267 Mg m3
Monoclinic, C2 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2y Cell parameters from 2422 reflections
a = 10.495 (5) Å θ = 1.1–27.5°
b = 6.283 (3) Å µ = 0.09 mm1
c = 19.247 (10) Å T = 173 K
β = 97.029 (8)° Platelet, colorless
V = 1259.7 (11) Å3 0.21 × 0.15 × 0.06 mm
Z = 4

Data collection

Rigaku Saturn 724+ diffractometer 1557 independent reflections
Radiation source: rotating anode 1452 reflections with I > 2σ(I)
Confocal Rint = 0.039
ω scans at fixed χ = 45° θmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan (CrystalClear; Rigaku, 2007) h = −13→7
Tmin = 0.981, Tmax = 0.995 k = −8→8
3265 measured reflections l = −23→25

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.032P)2 + 0.9713P] where P = (Fo2 + 2Fc2)/3
1557 reflections (Δ/σ)max < 0.001
157 parameters Δρmax = 0.23 e Å3
1 restraint Δρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.Absolute configuration is unknown, there being no firm chemical evidence for its assignment to hand and it having not been established by anomalous dispersion effects in diffraction measurements on the crystal. An arbitrary choice of enantiomer has been made.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.2715 (2) 0.4600 (3) 0.43850 (10) 0.0313 (5)
O2 0.33362 (17) 0.2042 (3) 0.18571 (9) 0.0289 (5)
O3 0.55006 (19) 0.1382 (4) 0.19625 (10) 0.0332 (5)
N1 0.3406 (2) 0.8081 (4) 0.44345 (11) 0.0255 (5)
H1 0.3028 0.8474 0.4798 0.031*
N2 0.4618 (2) 0.3546 (4) 0.27139 (12) 0.0275 (5)
C1 0.3315 (3) 0.6117 (5) 0.41741 (13) 0.0219 (6)
C2 0.4181 (3) 0.9527 (5) 0.40704 (14) 0.0279 (6)
H2B 0.5037 0.9751 0.4339 0.033*
H2A 0.3750 1.0920 0.3984 0.033*
C3 0.4286 (3) 0.8347 (5) 0.33812 (13) 0.0234 (6)
H3B 0.5134 0.8596 0.3220 0.028*
H3A 0.3605 0.8813 0.3011 0.028*
C4 0.4118 (3) 0.5993 (5) 0.35651 (13) 0.0209 (5)
C5 0.5419 (3) 0.4915 (5) 0.38093 (13) 0.0241 (6)
H5B 0.6051 0.5963 0.4027 0.029*
H5A 0.5317 0.3766 0.4150 0.029*
C6 0.5835 (3) 0.4018 (5) 0.31360 (15) 0.0303 (7)
H6B 0.6336 0.5078 0.2902 0.036*
H6A 0.6357 0.2714 0.3230 0.036*
C7 0.3515 (2) 0.4573 (5) 0.29695 (13) 0.0233 (6)
H7B 0.2936 0.3505 0.3143 0.028*
H7A 0.3024 0.5428 0.2596 0.028*
C8 0.4568 (2) 0.2247 (5) 0.21527 (13) 0.0244 (6)
C9 0.3028 (3) 0.0912 (5) 0.11865 (14) 0.0290 (7)
C10 0.3776 (3) 0.1875 (7) 0.06389 (15) 0.0461 (9)
H10A 0.3444 0.1321 0.0176 0.069*
H10C 0.4686 0.1501 0.0745 0.069*
H10B 0.3683 0.3427 0.0641 0.069*
C11 0.3283 (3) −0.1464 (6) 0.12960 (17) 0.0381 (8)
H11B 0.2717 −0.2031 0.1620 0.057*
H11C 0.4180 −0.1680 0.1492 0.057*
H11A 0.3117 −0.2205 0.0846 0.057*
C12 0.1607 (3) 0.1350 (7) 0.10196 (17) 0.0419 (8)
H12A 0.1281 0.0648 0.0579 0.063*
H12C 0.1466 0.2888 0.0974 0.063*
H12B 0.1154 0.0799 0.1398 0.063*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0348 (12) 0.0317 (11) 0.0293 (10) −0.0073 (10) 0.0115 (8) 0.0027 (10)
O2 0.0228 (10) 0.0378 (11) 0.0253 (9) 0.0021 (10) 0.0002 (7) −0.0106 (10)
O3 0.0261 (11) 0.0410 (13) 0.0335 (10) 0.0050 (10) 0.0074 (8) −0.0098 (10)
N1 0.0263 (12) 0.0276 (13) 0.0234 (11) 0.0030 (11) 0.0066 (9) −0.0023 (11)
N2 0.0190 (11) 0.0345 (13) 0.0284 (11) 0.0033 (11) 0.0004 (9) −0.0091 (11)
C1 0.0200 (13) 0.0256 (13) 0.0200 (11) −0.0001 (12) 0.0015 (10) 0.0016 (11)
C2 0.0280 (15) 0.0235 (13) 0.0322 (14) 0.0000 (13) 0.0033 (11) 0.0014 (13)
C3 0.0197 (13) 0.0265 (14) 0.0247 (12) 0.0022 (12) 0.0059 (10) 0.0037 (12)
C4 0.0193 (12) 0.0224 (13) 0.0211 (11) 0.0013 (12) 0.0025 (10) 0.0009 (11)
C5 0.0206 (13) 0.0249 (14) 0.0262 (13) −0.0010 (12) 0.0001 (10) −0.0014 (12)
C6 0.0183 (13) 0.0383 (18) 0.0336 (14) 0.0040 (13) 0.0001 (11) −0.0076 (13)
C7 0.0181 (13) 0.0271 (13) 0.0252 (12) 0.0021 (12) 0.0053 (10) −0.0021 (12)
C8 0.0219 (13) 0.0270 (14) 0.0248 (13) 0.0016 (12) 0.0048 (10) −0.0003 (12)
C9 0.0309 (15) 0.0351 (16) 0.0212 (13) −0.0022 (14) 0.0033 (11) −0.0045 (13)
C10 0.048 (2) 0.062 (3) 0.0283 (15) −0.009 (2) 0.0058 (14) 0.0031 (17)
C11 0.0388 (18) 0.0359 (17) 0.0394 (17) −0.0022 (16) 0.0030 (14) −0.0081 (15)
C12 0.0337 (18) 0.050 (2) 0.0395 (17) 0.0044 (17) −0.0073 (14) −0.0070 (17)

Geometric parameters (Å, °)

O1—C1 1.238 (3) C5—C6 1.525 (4)
O2—C8 1.353 (3) C5—H5B 0.9900
O2—C9 1.474 (3) C5—H5A 0.9900
O3—C8 1.214 (3) C6—H6B 0.9900
N1—C1 1.331 (4) C6—H6A 0.9900
N1—C2 1.454 (4) C7—H7B 0.9900
N1—H1 0.8800 C7—H7A 0.9900
N2—C8 1.350 (3) C9—C12 1.511 (4)
N2—C6 1.458 (4) C9—C10 1.516 (4)
N2—C7 1.462 (3) C9—C11 1.526 (5)
C1—C4 1.527 (4) C10—H10A 0.9800
C2—C3 1.535 (4) C10—H10C 0.9800
C2—H2B 0.9900 C10—H10B 0.9800
C2—H2A 0.9900 C11—H11B 0.9800
C3—C4 1.536 (4) C11—H11C 0.9800
C3—H3B 0.9900 C11—H11A 0.9800
C3—H3A 0.9900 C12—H12A 0.9800
C4—C7 1.527 (4) C12—H12C 0.9800
C4—C5 1.545 (4) C12—H12B 0.9800
C8—O2—C9 120.7 (2) N2—C6—H6A 111.1
C1—N1—C2 114.6 (2) C5—C6—H6A 111.1
C1—N1—H1 122.7 H6B—C6—H6A 109.1
C2—N1—H1 122.7 N2—C7—C4 103.8 (2)
C8—N2—C6 121.0 (2) N2—C7—H7B 111.0
C8—N2—C7 125.5 (2) C4—C7—H7B 111.0
C6—N2—C7 113.5 (2) N2—C7—H7A 111.0
O1—C1—N1 127.3 (3) C4—C7—H7A 111.0
O1—C1—C4 124.3 (3) H7B—C7—H7A 109.0
N1—C1—C4 108.4 (2) O3—C8—N2 123.9 (3)
N1—C2—C3 102.6 (2) O3—C8—O2 126.5 (3)
N1—C2—H2B 111.2 N2—C8—O2 109.6 (2)
C3—C2—H2B 111.2 O2—C9—C12 101.8 (2)
N1—C2—H2A 111.2 O2—C9—C10 109.8 (3)
C3—C2—H2A 111.2 C12—C9—C10 111.2 (3)
H2B—C2—H2A 109.2 O2—C9—C11 109.5 (2)
C2—C3—C4 104.1 (2) C12—C9—C11 111.1 (3)
C2—C3—H3B 110.9 C10—C9—C11 112.9 (3)
C4—C3—H3B 110.9 C9—C10—H10A 109.5
C2—C3—H3A 110.9 C9—C10—H10C 109.5
C4—C3—H3A 110.9 H10A—C10—H10C 109.5
H3B—C3—H3A 109.0 C9—C10—H10B 109.5
C1—C4—C7 112.9 (2) H10A—C10—H10B 109.5
C1—C4—C3 102.6 (2) H10C—C10—H10B 109.5
C7—C4—C3 116.0 (2) C9—C11—H11B 109.5
C1—C4—C5 109.8 (2) C9—C11—H11C 109.5
C7—C4—C5 104.0 (2) H11B—C11—H11C 109.5
C3—C4—C5 111.7 (2) C9—C11—H11A 109.5
C6—C5—C4 103.8 (2) H11B—C11—H11A 109.5
C6—C5—H5B 111.0 H11C—C11—H11A 109.5
C4—C5—H5B 111.0 C9—C12—H12A 109.5
C6—C5—H5A 111.0 C9—C12—H12C 109.5
C4—C5—H5A 111.0 H12A—C12—H12C 109.5
H5B—C5—H5A 109.0 C9—C12—H12B 109.5
N2—C6—C5 103.1 (2) H12A—C12—H12B 109.5
N2—C6—H6B 111.1 H12C—C12—H12B 109.5
C5—C6—H6B 111.1
C2—N1—C1—O1 −179.7 (3) C7—N2—C6—C5 15.7 (3)
C2—N1—C1—C4 1.7 (3) C4—C5—C6—N2 −30.5 (3)
C1—N1—C2—C3 15.7 (3) C8—N2—C7—C4 −175.1 (3)
N1—C2—C3—C4 −25.8 (3) C6—N2—C7—C4 5.9 (3)
O1—C1—C4—C7 37.5 (4) C1—C4—C7—N2 −143.8 (2)
N1—C1—C4—C7 −143.8 (2) C3—C4—C7—N2 98.2 (3)
O1—C1—C4—C3 163.1 (3) C5—C4—C7—N2 −24.9 (3)
N1—C1—C4—C3 −18.2 (3) C6—N2—C8—O3 0.5 (4)
O1—C1—C4—C5 −78.0 (3) C7—N2—C8—O3 −178.4 (3)
N1—C1—C4—C5 100.7 (3) C6—N2—C8—O2 179.2 (3)
C2—C3—C4—C1 26.7 (3) C7—N2—C8—O2 0.3 (4)
C2—C3—C4—C7 150.2 (2) C9—O2—C8—O3 −8.6 (4)
C2—C3—C4—C5 −90.8 (2) C9—O2—C8—N2 172.7 (2)
C1—C4—C5—C6 155.7 (2) C8—O2—C9—C12 −172.4 (3)
C7—C4—C5—C6 34.6 (3) C8—O2—C9—C10 −54.6 (4)
C3—C4—C5—C6 −91.2 (3) C8—O2—C9—C11 69.9 (3)
C8—N2—C6—C5 −163.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.88 1.97 2.848 (3) 175.

Symmetry codes: (i) −x+1/2, y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5363).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Blanco, M. J. & Sardina, F. J. (1994). Tetrahedron Lett., 35 , 8493–8396.
  3. Domagala, J. M., Hagan, S. E., Joannides, T., Kiely, J. S., Laborde, E., Schroeder, M. C., Sesnie, J. A., Shapiro, M. A., Suto, M. J. S. & Vanderroest, S. (1993). J. Med. Chem. 36, 871–882. [DOI] [PubMed]
  4. Husinec, S. & Savic, V. (2005). Tetrahedron Asymmetry, 16, 2047–2061.
  5. Pedder, D. J., Fales, H. M., Jaouni, T., Blum, M., MacConnell, J. & Crewe, R. M. (1976). Tetrahedron, 32, 2275–227.
  6. Rigaku (2007). CrystalClear Rigaku Corporation, Tokyo, Japan.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681105046X/lh5363sup1.cif

e-67-o3492-sup1.cif (17.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681105046X/lh5363Isup2.hkl

e-67-o3492-Isup2.hkl (76.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES