Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 30;67(Pt 12):o3496. doi: 10.1107/S1600536811050732

N-(2,3-Dimethyl­phen­yl)-2-methyl­benzamide

Vinola Z Rodrigues a, B Thimme Gowda a,*, Július Sivý b, Viktor Vrábel c, Jozef Kožíšek c
PMCID: PMC3239120  PMID: 22199968

Abstract

In the title compound, C16H17NO, the two aromatic rings make a dihedral angle of 5.9 (2)°, while the central amide core –NH—C(=O)– is twisted by 44.0 (3) and 47.1 (3)° out of the planes of the 2,3-dimethyl­phenyl and 2-methyl­phenyl rings, respectively. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into infinite chains running along the b axis.

Related literature

For the preparation of the title compound, see: Gowda et al. (2003). For our studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Bowes et al. (2003); Gowda et al. (2000); Saeed et al. (2010) on N-(ar­yl)-methane­sulfonamides, see: Jayalakshmi & Gowda (2004), on N-(ar­yl)-aryl­sulfonamides, see: Shetty & Gowda (2005) and on N-chloro­aryl­amides, see: Gowda et al. (1996).graphic file with name e-67-o3496-scheme1.jpg

Experimental

Crystal data

  • C16H17NO

  • M r = 239.31

  • Monoclinic, Inline graphic

  • a = 5.8092 (4) Å

  • b = 4.9253 (2) Å

  • c = 23.1887 (12) Å

  • β = 94.229 (5)°

  • V = 661.67 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.50 × 0.30 × 0.10 mm

Data collection

  • Oxford Diffractio Xcalibur System diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.962, T max = 0.993

  • 9487 measured reflections

  • 1162 independent reflections

  • 1021 reflections with I > 2σ(I)

  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.068

  • wR(F 2) = 0.208

  • S = 1.10

  • 1162 reflections

  • 170 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2002) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811050732/bt5725sup1.cif

e-67-o3496-sup1.cif (17.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811050732/bt5725Isup2.hkl

e-67-o3496-Isup2.hkl (57.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811050732/bt5725Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 (1) 2.23 (5) 2.903 (6) 136 (6)

Symmetry code: (i) Inline graphic.

Acknowledgments

VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of an RFSMS research fellowship. JS, VV and JK thank the VEGA Grant Agency of the Slovak Ministry of Education (1/0679/11) and the Research and Development Agency of Slovakia (APVV-0202/10) for financial support and the Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer.

supplementary crystallographic information

Comment

The amide and sulfonamide moieties are the constituents of many biologically significant compounds. As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Bowes et al., 2003; Gowda et al., 2000; Saeed et al., 2010), N-(aryl)-methanesulfonamides (Jayalakshmi & Gowda, 2004), N-(aryl)-arylsulfonamides (Shetty & Gowda, 2005) and N-chloro-arylsulfonamides (Gowda et al., 1996), in the present work, the crystal structure of N-(2,3-dimethylphenyl)-2-methylbenzamide (I) has been determined (Fig. 1).

In (I), the two aromatic rings make the dihedral angle of 5.9 (2)°, while the central amide core –NH—C(=O)– is twisted by 44.0 (3) ° and 47.1 (3)° out of the planes of the 2,3-dimethylphenyl and 2-methylphenyl rings, respectively.

Further, the ortho-methyl group in the benzoyl ring is positioned syn to the C=O bond and so also the ortho- and meta- methyl groups in the anilino ring to the N—H bond, while the N—H and C=O bonds in the C—NH—C(O)—C segment are anti to each other.

In the crystal structure, intermolecular N—H···O hydrogen bonds link the molecules into infinite chains running along the b-axis. Part of the crystal structure is shown in Fig. 2.

Experimental

The title compound was prepared according to the method described by Gowda et al. (2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Plate like colourless single crystals of the title compound were obtained by slow evaporation of an ethanol solution of the compound (0.5 g in about 30 ml of ethanol) at room temperature.

Refinement

All hydrogen atoms except amide H atom were placed in calculated positions with C–H distances in the range 0.93–0.96 Å and constrained to ride on their parent atoms. The amide H atom was found in a difference map and was refined with the N—H distance restrained to 0.86 (3) Å. The Uĩso~(H) values were set at 1.2Ueq(C-aromatic, N) or 1.5Ueq(C-methyl). In the absence of significant anomalous scattering, the absolute structure could not be reliably determined and then the Friedel pairs were merged and any references to the Flack parameter were removed.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Packing view of the title compound. Molecular chains along b axis are generated by N–H···O hydrogen bonds which are shown by dashed lines. H atoms not involved in H-bonding have been omitted.

Crystal data

C16H17NO F(000) = 256
Mr = 239.31 Dx = 1.201 Mg m3
Monoclinic, Pc Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2yc Cell parameters from 6163 reflections
a = 5.8092 (4) Å θ = 3.5–25.0°
b = 4.9253 (2) Å µ = 0.08 mm1
c = 23.1887 (12) Å T = 295 K
β = 94.229 (5)° Plate, colourless
V = 661.67 (6) Å3 0.50 × 0.30 × 0.10 mm
Z = 2

Data collection

Oxford Diffractio Xcalibur System diffractometer 1162 independent reflections
Radiation source: fine-focus sealed tube 1021 reflections with I > 2σ(I)
graphite Rint = 0.043
Detector resolution: 0 pixels mm-1 θmax = 25.0°, θmin = 3.5°
\j scans, and ω scans with κ offsets h = −6→6
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) k = −5→5
Tmin = 0.962, Tmax = 0.993 l = −27→27
9487 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.208 H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.122P)2 + 0.430P] where P = (Fo2 + 2Fc2)/3
1162 reflections (Δ/σ)max < 0.001
170 parameters Δρmax = 0.29 e Å3
3 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.7345 (9) 0.2228 (10) 0.2068 (2) 0.0440 (13)
C2 0.9138 (11) 0.3524 (12) 0.1826 (3) 0.0507 (14)
C3 0.9528 (11) 0.3043 (14) 0.1241 (3) 0.0582 (16)
C4 0.8099 (14) 0.1135 (15) 0.0929 (3) 0.069 (2)
H4 0.8364 0.0739 0.0548 0.083*
C5 0.6384 (13) −0.0099 (15) 0.1175 (3) 0.0661 (19)
H5 0.5456 −0.1324 0.0959 0.079*
C6 0.5950 (12) 0.0403 (13) 0.1744 (3) 0.0582 (16)
H6 0.4740 −0.0471 0.1909 0.070*
C7 1.0716 (12) 0.5454 (14) 0.2186 (4) 0.069 (2)
H7A 1.2242 0.5380 0.2054 0.104*
H7B 1.0768 0.4924 0.2585 0.104*
H7C 1.0130 0.7272 0.2145 0.104*
C8 1.1354 (16) 0.4573 (18) 0.0958 (4) 0.081 (2)
H8A 1.1608 0.3746 0.0593 0.122*
H8B 1.2761 0.4538 0.1203 0.122*
H8C 1.0868 0.6420 0.0896 0.122*
C9 0.6479 (10) 0.0862 (11) 0.3048 (2) 0.0446 (13)
C10 0.6090 (11) 0.1940 (11) 0.3638 (2) 0.0485 (14)
C11 0.4282 (10) 0.1026 (12) 0.3934 (3) 0.0520 (15)
C12 0.4113 (16) 0.2012 (17) 0.4479 (3) 0.075 (2)
H12 0.2908 0.1411 0.4689 0.090*
C13 0.5661 (15) 0.3872 (16) 0.4731 (3) 0.072 (2)
H13 0.5472 0.4519 0.5102 0.086*
C14 0.7478 (14) 0.4764 (15) 0.4435 (3) 0.0680 (19)
H14 0.8540 0.5996 0.4603 0.082*
C15 0.7695 (10) 0.3809 (13) 0.3890 (3) 0.0528 (15)
H15 0.8913 0.4397 0.3683 0.063*
C16 0.2533 (14) −0.0985 (15) 0.3695 (4) 0.074 (2)
H16A 0.1224 −0.0972 0.3925 0.111*
H16B 0.3206 −0.2766 0.3703 0.111*
H16C 0.2046 −0.0508 0.3304 0.111*
N1 0.6911 (9) 0.2757 (9) 0.2654 (2) 0.0478 (12)
H1 0.756 (11) 0.427 (8) 0.276 (3) 0.06 (2)*
O1 0.6366 (11) −0.1558 (8) 0.2943 (2) 0.0708 (14)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.054 (3) 0.029 (2) 0.049 (3) 0.002 (2) 0.003 (2) −0.003 (2)
C2 0.059 (4) 0.029 (3) 0.063 (4) 0.005 (2) 0.000 (3) 0.001 (2)
C3 0.057 (4) 0.052 (4) 0.066 (4) 0.005 (3) 0.008 (3) 0.015 (3)
C4 0.098 (6) 0.065 (4) 0.044 (3) 0.012 (4) 0.007 (4) 0.003 (3)
C5 0.090 (5) 0.056 (4) 0.050 (4) −0.014 (4) −0.005 (3) −0.013 (3)
C6 0.072 (4) 0.047 (3) 0.055 (4) −0.010 (3) −0.001 (3) −0.006 (3)
C7 0.062 (4) 0.052 (4) 0.094 (5) −0.021 (3) 0.005 (3) −0.012 (4)
C8 0.094 (5) 0.077 (5) 0.076 (5) 0.006 (5) 0.025 (4) 0.023 (4)
C9 0.053 (3) 0.032 (3) 0.049 (3) 0.002 (2) 0.007 (2) 0.000 (2)
C10 0.068 (4) 0.031 (3) 0.046 (3) 0.008 (3) −0.002 (3) 0.002 (2)
C11 0.056 (4) 0.036 (3) 0.065 (4) 0.001 (3) 0.007 (3) 0.003 (3)
C12 0.091 (6) 0.070 (5) 0.064 (4) −0.002 (4) 0.015 (4) 0.009 (4)
C13 0.103 (6) 0.061 (4) 0.049 (4) −0.006 (4) −0.001 (4) −0.001 (3)
C14 0.086 (5) 0.059 (4) 0.058 (4) −0.008 (4) 0.001 (3) −0.010 (3)
C15 0.059 (4) 0.048 (3) 0.051 (3) −0.006 (3) −0.001 (3) 0.002 (3)
C16 0.072 (5) 0.048 (4) 0.104 (6) −0.012 (3) 0.011 (4) −0.008 (4)
N1 0.060 (3) 0.028 (2) 0.056 (3) −0.008 (2) 0.012 (2) −0.004 (2)
O1 0.120 (4) 0.028 (2) 0.066 (3) 0.003 (2) 0.019 (2) 0.001 (2)

Geometric parameters (Å, °)

C1—C2 1.376 (9) C9—O1 1.217 (7)
C1—C6 1.392 (8) C9—N1 1.342 (7)
C1—N1 1.424 (7) C9—C10 1.502 (8)
C2—C3 1.412 (9) C10—C11 1.373 (9)
C2—C7 1.526 (9) C10—C15 1.406 (9)
C3—C4 1.416 (10) C11—C12 1.362 (10)
C3—C8 1.491 (11) C11—C16 1.496 (9)
C4—C5 1.330 (11) C12—C13 1.383 (11)
C4—H4 0.9300 C12—H12 0.9300
C5—C6 1.385 (10) C13—C14 1.374 (11)
C5—H5 0.9300 C13—H13 0.9300
C6—H6 0.9300 C14—C15 1.363 (10)
C7—H7A 0.9600 C14—H14 0.9300
C7—H7B 0.9600 C15—H15 0.9300
C7—H7C 0.9600 C16—H16A 0.9600
C8—H8A 0.9600 C16—H16B 0.9600
C8—H8B 0.9600 C16—H16C 0.9600
C8—H8C 0.9600 N1—H1 0.860 (5)
C2—C1—C6 120.5 (5) O1—C9—N1 123.8 (6)
C2—C1—N1 119.8 (5) O1—C9—C10 121.2 (5)
C6—C1—N1 119.7 (5) N1—C9—C10 115.0 (5)
C1—C2—C3 119.6 (5) C11—C10—C15 121.0 (5)
C1—C2—C7 120.5 (6) C11—C10—C9 120.8 (5)
C3—C2—C7 119.9 (6) C15—C10—C9 118.0 (6)
C2—C3—C4 118.1 (6) C12—C11—C10 117.2 (6)
C2—C3—C8 120.5 (7) C12—C11—C16 119.1 (6)
C4—C3—C8 121.4 (7) C10—C11—C16 123.7 (6)
C5—C4—C3 121.0 (6) C11—C12—C13 122.6 (7)
C5—C4—H4 119.5 C11—C12—H12 118.7
C3—C4—H4 119.5 C13—C12—H12 118.7
C4—C5—C6 121.4 (6) C14—C13—C12 120.0 (7)
C4—C5—H5 119.3 C14—C13—H13 120.0
C6—C5—H5 119.3 C12—C13—H13 120.0
C5—C6—C1 119.3 (6) C15—C14—C13 118.7 (7)
C5—C6—H6 120.3 C15—C14—H14 120.6
C1—C6—H6 120.3 C13—C14—H14 120.6
C2—C7—H7A 109.5 C14—C15—C10 120.4 (6)
C2—C7—H7B 109.5 C14—C15—H15 119.8
H7A—C7—H7B 109.5 C10—C15—H15 119.8
C2—C7—H7C 109.5 C11—C16—H16A 109.5
H7A—C7—H7C 109.5 C11—C16—H16B 109.5
H7B—C7—H7C 109.5 H16A—C16—H16B 109.5
C3—C8—H8A 109.5 C11—C16—H16C 109.5
C3—C8—H8B 109.5 H16A—C16—H16C 109.5
H8A—C8—H8B 109.5 H16B—C16—H16C 109.5
C3—C8—H8C 109.5 C9—N1—C1 125.3 (5)
H8A—C8—H8C 109.5 C9—N1—H1 121 (5)
H8B—C8—H8C 109.5 C1—N1—H1 108 (5)
C6—C1—C2—C3 1.5 (8) N1—C9—C10—C15 −49.1 (7)
N1—C1—C2—C3 −178.5 (5) C15—C10—C11—C12 0.2 (9)
C6—C1—C2—C7 −178.0 (6) C9—C10—C11—C12 177.0 (6)
N1—C1—C2—C7 2.0 (8) C15—C10—C11—C16 −179.2 (6)
C1—C2—C3—C4 −2.6 (9) C9—C10—C11—C16 −2.4 (9)
C7—C2—C3—C4 176.9 (6) C10—C11—C12—C13 0.5 (11)
C1—C2—C3—C8 175.6 (6) C16—C11—C12—C13 179.9 (8)
C7—C2—C3—C8 −4.9 (9) C11—C12—C13—C14 −1.0 (13)
C2—C3—C4—C5 2.4 (10) C12—C13—C14—C15 0.8 (12)
C8—C3—C4—C5 −175.9 (7) C13—C14—C15—C10 −0.2 (11)
C3—C4—C5—C6 −0.9 (12) C11—C10—C15—C14 −0.3 (10)
C4—C5—C6—C1 −0.3 (11) C9—C10—C15—C14 −177.2 (6)
C2—C1—C6—C5 0.0 (9) O1—C9—N1—C1 −1.4 (10)
N1—C1—C6—C5 180.0 (6) C10—C9—N1—C1 179.7 (6)
O1—C9—C10—C11 −45.0 (9) C2—C1—N1—C9 −134.7 (6)
N1—C9—C10—C11 133.9 (6) C6—C1—N1—C9 45.3 (8)
O1—C9—C10—C15 132.0 (7)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.86 (1) 2.23 (5) 2.903 (6) 136 (6)

Symmetry codes: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5725).

References

  1. Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3. [DOI] [PubMed]
  2. Brandenburg, K. (2002). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Gowda, B. T., Dou, S. Q. & Weiss, A. (1996). Z. Naturforsch. Teil A, 51, 627–636.
  6. Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.
  7. Gowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 791–800.
  8. Jayalakshmi, K. L. & Gowda, B. T. (2004). Z. Naturforsch.Teil A, 59, 491–500.
  9. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  10. Saeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808–o2809. [DOI] [PMC free article] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Shetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113–120.
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811050732/bt5725sup1.cif

e-67-o3496-sup1.cif (17.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811050732/bt5725Isup2.hkl

e-67-o3496-Isup2.hkl (57.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811050732/bt5725Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES