Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 30;67(Pt 12):o3497. doi: 10.1107/S1600536811050641

1-Benzoyl-4-(4-methyl­phen­yl)phthal­azine

Karuppusamy Sakthivel a, Kannupal Srinivasan a, Sampath Natarajan b,*
PMCID: PMC3239121  PMID: 22199969

Abstract

In the title mol­ecule, C22H16N2O, the tolyl and benzoyl rings make dihedral angles 50.2 (5) and 56.4 (5)°, respectively, with the phthalazine ring system while the dihedral angle between the tolyl and benzoyl rings is 0.70 (4)°. The crystal structure is stabilized by inter­molecular C—H⋯O and C—H⋯N hydrogen bonds, as well as weak C—H⋯π inter­actions.

Related literature

For the biological activity of phthalazine derivatives, see: Grasso et al. (2000). For related structures, see: Dilek et al. (2004); Rajnikant et al. (2006).graphic file with name e-67-o3497-scheme1.jpg

Experimental

Crystal data

  • C22H16N2O

  • M r = 324.37

  • Monoclinic, Inline graphic

  • a = 12.4873 (2) Å

  • b = 8.8011 (1) Å

  • c = 15.4425 (2) Å

  • β = 92.458 (1)°

  • V = 1695.60 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.10 × 0.06 × 0.04 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • 30411 measured reflections

  • 3519 independent reflections

  • 2606 reflections with I > 2σ(I)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.130

  • S = 1.07

  • 3519 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811050641/pv2486sup1.cif

e-67-o3497-sup1.cif (19.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811050641/pv2486Isup2.hkl

e-67-o3497-Isup2.hkl (169.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811050641/pv2486Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C10–C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O1i 0.93 2.71 3.400 (3) 132
C13—H13⋯N2ii 0.93 2.73 3.654 (3) 170
C20—H20⋯N2iii 0.93 2.61 3.522 (2) 166
C6—H6⋯Cg1iv 0.93 2.76 3.549 (2) 143

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

KS thanks the Department of Science and Technology (DST) and the Council of Scientific and Industrial Research (CSIR), India, for financial support.

supplementary crystallographic information

Comment

Phthalazine (2,3 benzodiazine) is a well known heterocyclic system which is widely used in synthetic organic chemistry as an intermediate. Its derivatives possess remarkable biological activity, such as anticonvulsant antimicrobial, anti-inflammatory, antifungal, antibacterial, vasorelaxant and cardiotonic activity (Grasso et al., 2000).

In the title molecule (Fig. 1), the phthalazine moiety consists of a benzene and a pyridazine rings fused together and shows a planar conformation; the dihedral angle between these rings is 0.70 (4)°. A tolyl and a benzoyl rings are substituted on the pyridazine ring and dihedral angle of these rings with the pyridazine ring are 50.2 (5) and 56.4 (5)°, respectively. Though the molecules do not show any classical hydrogen bonds, these molecules are connected by C–H···O and C—H···N types of intermolecular hydrogen bonds. In addition to these, a C—H···π weak interaction also helps to consolidate the molecules in the unit cell crystal packing (Fig. 2 and Tab. 1). The molecular dimensions in the title compound are in excellent agreement with the corresponding molecular dimensions reported in closely related compounds (Dilek et al., 2004; Rajnikant et al., 2006).

Experimental

The title compound was synthesized in 70% yield by heating the compounds 1-[2-(4-methylbenzoyl)phenyl]-2-phenylethane-1,2-dione (50 mg, 0.15 mmol) with hydrazine hydrate (11 mg, 0.23 mmol) under reflux in acetonitrile (5 ml) for 6 hr. The crystals suitable for crystallographic study were grown from dichloromethane by slow evaporation at room temperature.

Refinement

H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å for aromatic H and 0.96 Å for methyl H atoms. The Uiso parameters for H atoms were constraned to be 1.5Ueq of the carrier atom for the methyl H atoms and 1.2Ueq of the carrier atom for the remaining H atoms.

Figures

Fig. 1.

Fig. 1.

ORTEP diagram of the title molecule with the atom numbering scheme. Displacement ellipsoid are drawn at 30% probability level. H-atoms were removed for clarity.

Fig. 2.

Fig. 2.

Packing diagram of the title compound viewed down the c axis. Dashed lines indicate the hydrogen bonds between the molecules.

Crystal data

C22H16N2O F(000) = 680
Mr = 324.37 Dx = 1.271 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3519 reflections
a = 12.4873 (2) Å θ = 1.6–26.6°
b = 8.8011 (1) Å µ = 0.08 mm1
c = 15.4425 (2) Å T = 296 K
β = 92.458 (1)° Needle, orange
V = 1695.60 (4) Å3 0.10 × 0.06 × 0.04 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer 2606 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.036
graphite θmax = 26.6°, θmin = 1.6°
ω scans h = −15→15
30411 measured reflections k = −11→11
3519 independent reflections l = −19→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0546P)2 + 0.4182P] where P = (Fo2 + 2Fc2)/3
3519 reflections (Δ/σ)max = 0.003
226 parameters Δρmax = 0.20 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.00887 (10) 0.14263 (15) −0.07710 (9) 0.0706 (4)
N1 0.21706 (11) 0.03719 (15) 0.05410 (9) 0.0506 (3)
N2 0.27574 (11) 0.07622 (15) 0.12807 (9) 0.0503 (3)
C8 0.17846 (12) 0.30203 (17) 0.02488 (10) 0.0429 (3)
C1 0.17027 (12) 0.14321 (17) 0.00642 (10) 0.0447 (4)
C2 0.28673 (12) 0.22046 (18) 0.15030 (10) 0.0449 (4)
C3 0.23980 (12) 0.34210 (17) 0.10025 (10) 0.0450 (4)
C4 0.24861 (16) 0.49746 (19) 0.12311 (12) 0.0611 (5)
H4 0.2868 0.5256 0.1736 0.073*
C5 0.20122 (17) 0.6061 (2) 0.07141 (13) 0.0660 (5)
H5 0.2077 0.7079 0.0868 0.079*
C6 0.14337 (15) 0.56618 (19) −0.00404 (12) 0.0607 (5)
H6 0.1127 0.6418 −0.0391 0.073*
C7 0.13101 (13) 0.41727 (19) −0.02740 (11) 0.0521 (4)
H7 0.0914 0.3919 −0.0777 0.063*
C9 0.09674 (14) 0.08398 (18) −0.06611 (10) 0.0503 (4)
C10 0.12936 (15) −0.04512 (18) −0.12021 (10) 0.0540 (4)
C11 0.04861 (19) −0.1217 (2) −0.16781 (12) 0.0716 (6)
H11 −0.0224 −0.0922 −0.1631 0.086*
C12 0.0726 (3) −0.2391 (3) −0.22112 (14) 0.0957 (8)
H12 0.0183 −0.2896 −0.2525 0.115*
C13 0.1773 (3) −0.2824 (3) −0.22833 (14) 0.1016 (10)
H13 0.1936 −0.3623 −0.2649 0.122*
C14 0.2591 (2) −0.2087 (3) −0.18174 (14) 0.0890 (8)
H14 0.3298 −0.2393 −0.1870 0.107*
C15 0.23530 (17) −0.0885 (2) −0.12707 (11) 0.0643 (5)
H15 0.2897 −0.0382 −0.0957 0.077*
C16 0.35062 (12) 0.24271 (18) 0.23300 (10) 0.0478 (4)
C17 0.32650 (14) 0.1561 (2) 0.30488 (11) 0.0541 (4)
H17 0.2690 0.0890 0.3010 0.065*
C18 0.38613 (14) 0.1678 (2) 0.38175 (11) 0.0596 (5)
H18 0.3686 0.1079 0.4287 0.071*
C19 0.47198 (14) 0.2676 (2) 0.39033 (12) 0.0605 (5)
C20 0.49709 (15) 0.3524 (2) 0.31882 (13) 0.0658 (5)
H20 0.5553 0.4183 0.3227 0.079*
C21 0.43727 (14) 0.3414 (2) 0.24106 (12) 0.0606 (5)
H21 0.4554 0.4007 0.1940 0.073*
C22 0.53529 (18) 0.2818 (3) 0.47533 (14) 0.0875 (7)
H22A 0.5060 0.2145 0.5171 0.131*
H22B 0.5314 0.3846 0.4958 0.131*
H22C 0.6088 0.2555 0.4671 0.131*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0648 (8) 0.0652 (8) 0.0797 (9) 0.0137 (7) −0.0217 (7) −0.0093 (7)
N1 0.0605 (8) 0.0396 (7) 0.0507 (8) 0.0036 (6) −0.0103 (6) −0.0013 (6)
N2 0.0585 (8) 0.0414 (7) 0.0500 (8) 0.0032 (6) −0.0097 (6) 0.0009 (6)
C8 0.0470 (8) 0.0402 (8) 0.0417 (8) 0.0035 (6) 0.0054 (6) 0.0015 (6)
C1 0.0503 (9) 0.0402 (8) 0.0433 (8) 0.0041 (7) −0.0009 (7) −0.0005 (6)
C2 0.0481 (8) 0.0434 (8) 0.0433 (8) −0.0008 (7) 0.0023 (6) −0.0004 (6)
C3 0.0521 (9) 0.0400 (8) 0.0431 (8) 0.0014 (7) 0.0043 (7) −0.0006 (6)
C4 0.0808 (12) 0.0418 (9) 0.0604 (11) 0.0007 (8) −0.0029 (9) −0.0081 (8)
C5 0.0881 (13) 0.0362 (9) 0.0740 (12) 0.0027 (9) 0.0056 (10) −0.0027 (8)
C6 0.0724 (11) 0.0434 (9) 0.0666 (11) 0.0116 (8) 0.0078 (9) 0.0124 (8)
C7 0.0581 (9) 0.0485 (9) 0.0497 (9) 0.0075 (8) 0.0015 (7) 0.0061 (7)
C9 0.0608 (10) 0.0430 (8) 0.0463 (9) 0.0040 (7) −0.0073 (7) 0.0026 (7)
C10 0.0795 (12) 0.0403 (8) 0.0413 (8) 0.0036 (8) −0.0072 (8) 0.0037 (7)
C11 0.1067 (16) 0.0528 (10) 0.0531 (10) −0.0058 (10) −0.0220 (10) −0.0002 (8)
C12 0.169 (3) 0.0557 (13) 0.0598 (13) 0.0008 (15) −0.0239 (15) −0.0070 (10)
C13 0.211 (3) 0.0494 (12) 0.0442 (11) 0.0230 (17) 0.0024 (16) −0.0069 (9)
C14 0.141 (2) 0.0679 (13) 0.0594 (12) 0.0400 (14) 0.0193 (13) 0.0068 (11)
C15 0.0881 (13) 0.0544 (10) 0.0504 (10) 0.0150 (10) 0.0040 (9) 0.0048 (8)
C16 0.0494 (9) 0.0478 (9) 0.0460 (9) 0.0001 (7) −0.0004 (7) −0.0040 (7)
C17 0.0560 (10) 0.0568 (10) 0.0495 (9) −0.0071 (8) −0.0001 (7) 0.0006 (8)
C18 0.0622 (11) 0.0684 (12) 0.0479 (9) −0.0002 (9) −0.0001 (8) 0.0006 (8)
C19 0.0551 (10) 0.0716 (12) 0.0541 (10) 0.0070 (9) −0.0069 (8) −0.0126 (9)
C20 0.0542 (10) 0.0733 (13) 0.0690 (12) −0.0138 (9) −0.0054 (9) −0.0104 (10)
C21 0.0603 (10) 0.0619 (11) 0.0596 (11) −0.0127 (8) 0.0030 (8) 0.0014 (9)
C22 0.0823 (15) 0.1086 (18) 0.0694 (14) 0.0066 (13) −0.0233 (11) −0.0172 (13)

Geometric parameters (Å, °)

O1—C9 1.2180 (19) C11—H11 0.9300
N1—C1 1.3105 (19) C12—C13 1.371 (4)
N1—N2 1.3740 (17) C12—H12 0.9300
N2—C2 1.321 (2) C13—C14 1.385 (4)
C8—C3 1.410 (2) C13—H13 0.9300
C8—C7 1.411 (2) C14—C15 1.393 (3)
C8—C1 1.429 (2) C14—H14 0.9300
C1—C9 1.510 (2) C15—H15 0.9300
C2—C3 1.431 (2) C16—C21 1.389 (2)
C2—C16 1.489 (2) C16—C17 1.390 (2)
C3—C4 1.415 (2) C17—C18 1.378 (2)
C4—C5 1.364 (3) C17—H17 0.9300
C4—H4 0.9300 C18—C19 1.388 (3)
C5—C6 1.389 (3) C18—H18 0.9300
C5—H5 0.9300 C19—C20 1.380 (3)
C6—C7 1.366 (2) C19—C22 1.508 (2)
C6—H6 0.9300 C20—C21 1.390 (2)
C7—H7 0.9300 C20—H20 0.9300
C9—C10 1.478 (2) C21—H21 0.9300
C10—C15 1.385 (3) C22—H22A 0.9600
C10—C11 1.396 (3) C22—H22B 0.9600
C11—C12 1.363 (3) C22—H22C 0.9600
C1—N1—N2 119.87 (13) C11—C12—H12 120.1
C2—N2—N1 120.15 (13) C13—C12—H12 120.1
C3—C8—C7 119.50 (14) C12—C13—C14 120.8 (2)
C3—C8—C1 116.16 (13) C12—C13—H13 119.6
C7—C8—C1 124.34 (15) C14—C13—H13 119.6
N1—C1—C8 123.91 (14) C13—C14—C15 119.9 (2)
N1—C1—C9 114.40 (13) C13—C14—H14 120.0
C8—C1—C9 121.43 (13) C15—C14—H14 120.0
N2—C2—C3 122.89 (14) C10—C15—C14 119.0 (2)
N2—C2—C16 113.28 (13) C10—C15—H15 120.5
C3—C2—C16 123.82 (14) C14—C15—H15 120.5
C8—C3—C4 118.76 (15) C21—C16—C17 117.78 (15)
C8—C3—C2 117.00 (14) C21—C16—C2 123.07 (15)
C4—C3—C2 124.21 (15) C17—C16—C2 119.08 (14)
C5—C4—C3 120.25 (17) C18—C17—C16 121.29 (16)
C5—C4—H4 119.9 C18—C17—H17 119.4
C3—C4—H4 119.9 C16—C17—H17 119.4
C4—C5—C6 120.71 (16) C17—C18—C19 121.09 (17)
C4—C5—H5 119.6 C17—C18—H18 119.5
C6—C5—H5 119.6 C19—C18—H18 119.5
C7—C6—C5 120.83 (16) C20—C19—C18 117.83 (16)
C7—C6—H6 119.6 C20—C19—C22 121.52 (19)
C5—C6—H6 119.6 C18—C19—C22 120.65 (19)
C6—C7—C8 119.90 (16) C19—C20—C21 121.44 (17)
C6—C7—H7 120.0 C19—C20—H20 119.3
C8—C7—H7 120.0 C21—C20—H20 119.3
O1—C9—C10 121.04 (15) C16—C21—C20 120.56 (17)
O1—C9—C1 118.19 (15) C16—C21—H21 119.7
C10—C9—C1 120.74 (14) C20—C21—H21 119.7
C15—C10—C11 119.84 (18) C19—C22—H22A 109.5
C15—C10—C9 122.84 (16) C19—C22—H22B 109.5
C11—C10—C9 117.29 (17) H22A—C22—H22B 109.5
C12—C11—C10 120.8 (2) C19—C22—H22C 109.5
C12—C11—H11 119.6 H22A—C22—H22C 109.5
C10—C11—H11 119.6 H22B—C22—H22C 109.5
C11—C12—C13 119.7 (2)
C1—N1—N2—C2 −1.3 (2) C8—C1—C9—C10 142.14 (16)
N2—N1—C1—C8 1.9 (2) O1—C9—C10—C15 161.87 (17)
N2—N1—C1—C9 −172.33 (14) C1—C9—C10—C15 −20.2 (2)
C3—C8—C1—N1 −1.1 (2) O1—C9—C10—C11 −16.1 (2)
C7—C8—C1—N1 178.05 (15) C1—C9—C10—C11 161.76 (15)
C3—C8—C1—C9 172.76 (14) C15—C10—C11—C12 0.0 (3)
C7—C8—C1—C9 −8.1 (2) C9—C10—C11—C12 178.10 (17)
N1—N2—C2—C3 −0.1 (2) C10—C11—C12—C13 −0.2 (3)
N1—N2—C2—C16 178.77 (13) C11—C12—C13—C14 0.3 (4)
C7—C8—C3—C4 2.4 (2) C12—C13—C14—C15 −0.3 (3)
C1—C8—C3—C4 −178.43 (15) C11—C10—C15—C14 0.0 (3)
C7—C8—C3—C2 −179.47 (14) C9—C10—C15—C14 −177.99 (16)
C1—C8—C3—C2 −0.3 (2) C13—C14—C15—C10 0.2 (3)
N2—C2—C3—C8 0.9 (2) N2—C2—C16—C21 128.64 (18)
C16—C2—C3—C8 −177.89 (14) C3—C2—C16—C21 −52.5 (2)
N2—C2—C3—C4 178.88 (16) N2—C2—C16—C17 −48.2 (2)
C16—C2—C3—C4 0.1 (3) C3—C2—C16—C17 130.66 (17)
C8—C3—C4—C5 −2.0 (3) C21—C16—C17—C18 0.2 (3)
C2—C3—C4—C5 179.96 (17) C2—C16—C17—C18 177.20 (16)
C3—C4—C5—C6 0.3 (3) C16—C17—C18—C19 0.5 (3)
C4—C5—C6—C7 1.2 (3) C17—C18—C19—C20 −1.3 (3)
C5—C6—C7—C8 −0.8 (3) C17—C18—C19—C22 178.72 (18)
C3—C8—C7—C6 −1.0 (2) C18—C19—C20—C21 1.4 (3)
C1—C8—C7—C6 179.88 (16) C22—C19—C20—C21 −178.63 (19)
N1—C1—C9—O1 134.47 (17) C17—C16—C21—C20 −0.1 (3)
C8—C1—C9—O1 −39.9 (2) C2—C16—C21—C20 −176.99 (16)
N1—C1—C9—C10 −43.5 (2) C19—C20—C21—C16 −0.7 (3)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C10–C15 ring.
D—H···A D—H H···A D···A D—H···A
C12—H12···O1i 0.93 2.71 3.400 (3) 132
C13—H13···N2ii 0.93 2.73 3.654 (3) 170
C20—H20···N2iii 0.93 2.61 3.522 (2) 166
C6—H6···Cg1iv 0.93 2.76 3.549 (2) 143

Symmetry codes: (i) −x, y−1/2, −z−1/2; (ii) x, −y−1/2, z−1/2; (iii) −x+1, y+1/2, −z+1/2; (iv) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2486).

References

  1. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Dilek, N., Gunes, B., Ide, S., Ozcan, Y. & Tezcan, H. (2004). Anal. Sci. 20, x157–x158.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Grasso, S., De Sarro, G., De Sarro, A., Micale, N., Zappalà, M., Puja, G., Baraldi, M. & De Micheli, C. (2000). J. Med. Chem. 43, 2851–2859. [DOI] [PubMed]
  5. Rajnikant, Dinesh, Kamni, & Deshmukh, M. B. (2006). Crystallogr. Rep. 51, 615–618.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811050641/pv2486sup1.cif

e-67-o3497-sup1.cif (19.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811050641/pv2486Isup2.hkl

e-67-o3497-Isup2.hkl (169.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811050641/pv2486Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES