Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 30;67(Pt 12):o3499–o3500. doi: 10.1107/S160053681105001X

(E)-1-[1-(2-Chloro­phen­yl)ethyl­idene]-2-(2,4-dinitro­phen­yl)hydrazine

Suchada Chantrapromma a,*,, Boonlerd Nilwanna a, Patcharaporn Jansrisewangwong a, Thawanrat Kobkeatthawin a, Hoong-Kun Fun b,§
PMCID: PMC3239123  PMID: 22199971

Abstract

The title mol­ecule, C14H11ClN4O4, is in an E configuration and is twisted with the dihedral angle between the two benzene rings being 38.48 (8)°. The ethyl­idenehydrazine plane makes dihedral angles of 6.03 (10) and 44.04 (11)°, respectively, with the dinitro- and chloro-substituted benzene rings. The two nitro groups are essentially coplanar with the bound benzene ring, making dihedral angles of 0.9 (2) and 1.65 (18)°. An intra­molecular N—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal, mol­ecules are linked by a weak C—H⋯O inter­action into a chain along the c axis. The chains are further stacked along the b axis by a π–π inter­action with a centroid–centroid distance of 3.6088 (10) Å.

Related literature

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Fun et al. (2010, 2011); Jansrisewangwong et al. (2010); Nilwanna et al. (2011). For background to and the biological activity of hydro­zones, see: Angelusiu et al. (2010); Bendre et al. (1998); Gokce et al. (2009); Li et al. (2008); Loncle et al. (2004).graphic file with name e-67-o3499-scheme1.jpg

Experimental

Crystal data

  • C14H11ClN4O4

  • M r = 334.72

  • Monoclinic, Inline graphic

  • a = 32.660 (3) Å

  • b = 7.1435 (7) Å

  • c = 13.4798 (13) Å

  • β = 112.215 (2)°

  • V = 2911.5 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 297 K

  • 0.36 × 0.26 × 0.15 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.904, T max = 0.957

  • 16146 measured reflections

  • 4458 independent reflections

  • 3036 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.127

  • S = 1.04

  • 4458 reflections

  • 213 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681105001X/is5008sup1.cif

e-67-o3499-sup1.cif (19.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681105001X/is5008Isup2.hkl

e-67-o3499-Isup2.hkl (218.5KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681105001X/is5008Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N1⋯O1 0.85 (2) 1.97 (2) 2.6081 (19) 131.2 (17)
C6—H6A⋯O3i 0.93 2.52 3.251 (2) 135

Symmetry code: (i) Inline graphic.

Acknowledgments

BN, PJ and TK thank the Crystal Materials Research Unit, Prince of Songkla University, for financial support. The authors also thank the Prince of Songkla University and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

supplementary crystallographic information

Comment

Hydrazones have been known to be responsible for various bioactivities such as antibacterial (Angelusiu et al., 2010), antioxidant (Li et al., 2008), antifungal (Loncle et al., 2004), anti-inflammatory (Gokce et al., 2009) and also tyrosinase inhibitory (Bendre et al., 1998) activities. With our on-going research on medicinal chemistry, we previously reported the syntheses and crystal structures of some hydrazone derivatives (Fun et al., 2010, 2011; Jansrisewangwong et al., 2010; Nilwanna et al., 2011). Herein we report the crystal structure of the title compound. It was screened for antioxidant and antibacterial activities and found to be inactive.

The title molecule (Fig. 1), C14H11ClN4O4, is twisted and exists in an E configuration with respect to the ethylidene C7═N1 double bond [1.2877 (17) Å] with the torsion angle N2–N1–C7–C8 = -176.69 (13)°. The dihedral angle between the benzene rings of the 2,4-dinitrophenyl and 2-chlorophenyl groups is 38.48 (8)°. The middle ethylidenehydrazine unit (C7/C14/N1/N2) is planar with an r.m.s deviation of 0.0040 (1) Å and the torsion angle of N2–N1–C7–C14 is -1.3 (2)°. This middle C/C/N/N plane makes the dihedral angles of 6.03 (10) and 44.04 (11)° with the 2,4-dinitrophenyl and 2-chlorophenyl rings, respectively. The two nitro groups of 2,4-dinitrophenyl are essentially co-planar with the bound benzene ring with an r.m.s. deviation of 0.0081 (1) Å for the twelve non H-atoms and the O–N–C–C angles are -0.3 (2), 0.2 (2), 0.1 (3) and -0.1 (3)°. An intramolecular N—H···O hydrogen bond between the hydrazone-NH and the ortho nitro group (Fig. 1 and Table 1) generates an S(6) ring motif (Bernstein et al., 1995). The bond distances are within the normal range (Allen et al., 1987) and are comparable with related structures (Fun et al., 2010, 2011; Jansrisewangwong et al., 2010; Nilwanna et al., 2011).

In the crystal structure (Fig. 2), the molecules are linked by weak C—H···O interactions (Table 1) into chains along the c axis in a head-to-head manner. These chains are further stacked along the b axis by a π–π interaction with Cg1···Cg2ii distance of 3.6088 (10) Å [symmetry code: (ii) x, 1 - y, 1/2 + z]; Cg1 and Cg2 are the centroids of C1–C6 and C8–C13 benzene rings, respectively.

Experimental

The title compound (I) was synthesized by dissolving 2,4-dinitrophenylhydrazine (0.40 g, 2 mmol) in ethanol (10.00 ml) and H2SO4 (conc.) (98%, 0.50 ml) was slowly added with stirring. 2-Chloroacetophenone (0.30 ml, 2 mmol) was then added to the solution with continuous stirring. The solution was refluxed for 1 h yielding a yellow solid, which was filtered off and washed with methanol. Yellow block-shaped single crystals of the title compound suitable for X-ray diffraction were recrystalized from ethanol by slow evaporation of the solvent at room temperature over several days (m.p. 478–479).

Refinement

Amide H atom was located in a difference map and refined isotropically [N—H = 0.85 (2) Å]. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å for aromatic and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen bond is shown as a dashed line.

Fig. 2.

Fig. 2.

A crystal packing diagram of the title compound viewed along the a axis, showing chains running along the c axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C14H11ClN4O4 F(000) = 1376
Mr = 334.72 Dx = 1.527 Mg m3
Monoclinic, C2/c Melting point = 478–479 K
Hall symbol: -C 2yc Mo Kα radiation, λ = 0.71073 Å
a = 32.660 (3) Å Cell parameters from 4458 reflections
b = 7.1435 (7) Å θ = 1.4–30.6°
c = 13.4798 (13) Å µ = 0.29 mm1
β = 112.215 (2)° T = 297 K
V = 2911.5 (5) Å3 Block, yellow
Z = 8 0.36 × 0.26 × 0.15 mm

Data collection

Bruker APEXII CCD area-detector diffractometer 4458 independent reflections
Radiation source: sealed tube 3036 reflections with I > 2σ(I)
graphite Rint = 0.028
φ and ω scans θmax = 30.6°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −46→46
Tmin = 0.904, Tmax = 0.957 k = −10→10
16146 measured reflections l = −19→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0537P)2 + 1.2234P] where P = (Fo2 + 2Fc2)/3
4458 reflections (Δ/σ)max = 0.001
213 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.015926 (14) 0.34149 (7) 0.42093 (4) 0.06172 (16)
O1 0.06808 (4) 0.2345 (2) 0.95156 (10) 0.0573 (3)
O2 0.09965 (5) 0.2876 (2) 1.12043 (10) 0.0700 (4)
O3 0.24764 (5) 0.5021 (3) 1.28114 (10) 0.0848 (5)
O4 0.28607 (4) 0.5486 (3) 1.18505 (11) 0.0805 (5)
N1 0.11688 (4) 0.28366 (18) 0.72895 (9) 0.0409 (3)
N2 0.10981 (4) 0.2894 (2) 0.82297 (10) 0.0419 (3)
H1N1 0.0863 (7) 0.249 (3) 0.8280 (15) 0.053 (5)*
N3 0.10020 (4) 0.2853 (2) 1.03026 (11) 0.0449 (3)
N4 0.25170 (5) 0.5037 (2) 1.19483 (11) 0.0556 (4)
C1 0.14355 (5) 0.3406 (2) 0.91423 (11) 0.0360 (3)
C2 0.14038 (4) 0.3427 (2) 1.01624 (11) 0.0367 (3)
C3 0.17560 (5) 0.3958 (2) 1.10769 (11) 0.0408 (3)
H3A 0.1729 0.3959 1.1739 0.049*
C4 0.21443 (5) 0.4482 (2) 1.09923 (11) 0.0421 (3)
C5 0.21904 (5) 0.4482 (2) 1.00072 (12) 0.0457 (4)
H5A 0.2457 0.4844 0.9964 0.055*
C6 0.18447 (5) 0.3951 (2) 0.91068 (11) 0.0433 (3)
H6A 0.1879 0.3947 0.8453 0.052*
C7 0.08535 (5) 0.2174 (2) 0.64630 (11) 0.0385 (3)
C8 0.09681 (5) 0.2063 (2) 0.54960 (11) 0.0388 (3)
C9 0.06866 (5) 0.2561 (2) 0.44575 (12) 0.0425 (3)
C10 0.08208 (6) 0.2441 (3) 0.35979 (13) 0.0516 (4)
H10A 0.0628 0.2781 0.2915 0.062*
C11 0.12381 (7) 0.1822 (3) 0.37579 (14) 0.0565 (4)
H11A 0.1329 0.1738 0.3183 0.068*
C12 0.15241 (6) 0.1321 (3) 0.47736 (15) 0.0539 (4)
H12A 0.1807 0.0900 0.4882 0.065*
C13 0.13910 (5) 0.1445 (2) 0.56248 (13) 0.0456 (3)
H13A 0.1588 0.1109 0.6304 0.055*
C14 0.04246 (5) 0.1437 (3) 0.64700 (14) 0.0546 (4)
H14A 0.0482 0.0642 0.7082 0.082*
H14B 0.0276 0.0732 0.5827 0.082*
H14C 0.0241 0.2465 0.6505 0.082*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0465 (2) 0.0735 (3) 0.0510 (2) 0.0134 (2) 0.00243 (17) 0.0014 (2)
O1 0.0378 (6) 0.0795 (9) 0.0541 (7) −0.0125 (6) 0.0168 (5) −0.0065 (6)
O2 0.0663 (8) 0.1052 (11) 0.0496 (7) −0.0225 (8) 0.0345 (6) −0.0097 (7)
O3 0.0585 (8) 0.1510 (16) 0.0417 (7) −0.0191 (9) 0.0154 (6) −0.0282 (8)
O4 0.0416 (7) 0.1350 (14) 0.0594 (8) −0.0233 (8) 0.0127 (6) −0.0197 (9)
N1 0.0388 (6) 0.0484 (7) 0.0323 (6) −0.0033 (5) 0.0097 (5) −0.0021 (5)
N2 0.0358 (6) 0.0539 (8) 0.0343 (6) −0.0052 (6) 0.0114 (5) −0.0027 (5)
N3 0.0421 (7) 0.0511 (8) 0.0458 (7) −0.0034 (6) 0.0214 (6) −0.0025 (6)
N4 0.0406 (7) 0.0801 (11) 0.0413 (7) −0.0039 (7) 0.0099 (6) −0.0137 (7)
C1 0.0336 (6) 0.0390 (7) 0.0335 (6) 0.0020 (5) 0.0106 (5) 0.0000 (5)
C2 0.0334 (6) 0.0403 (7) 0.0381 (7) 0.0004 (5) 0.0152 (5) −0.0013 (5)
C3 0.0409 (7) 0.0491 (8) 0.0338 (6) 0.0015 (6) 0.0156 (6) −0.0038 (6)
C4 0.0338 (7) 0.0522 (9) 0.0358 (7) 0.0005 (6) 0.0079 (5) −0.0063 (6)
C5 0.0331 (7) 0.0616 (10) 0.0427 (8) −0.0019 (7) 0.0147 (6) −0.0037 (7)
C6 0.0367 (7) 0.0597 (10) 0.0345 (7) −0.0025 (7) 0.0147 (6) −0.0016 (6)
C7 0.0343 (7) 0.0400 (7) 0.0359 (7) 0.0005 (6) 0.0072 (5) 0.0002 (6)
C8 0.0371 (7) 0.0383 (7) 0.0345 (6) −0.0045 (6) 0.0062 (5) −0.0045 (5)
C9 0.0408 (7) 0.0411 (8) 0.0366 (7) −0.0020 (6) 0.0046 (6) −0.0049 (6)
C10 0.0599 (10) 0.0528 (10) 0.0349 (7) −0.0056 (8) 0.0099 (7) −0.0042 (6)
C11 0.0673 (11) 0.0608 (11) 0.0454 (9) −0.0083 (9) 0.0257 (8) −0.0083 (8)
C12 0.0476 (9) 0.0564 (10) 0.0600 (10) −0.0022 (8) 0.0229 (8) −0.0086 (8)
C13 0.0394 (7) 0.0494 (9) 0.0415 (7) −0.0004 (6) 0.0080 (6) −0.0041 (6)
C14 0.0411 (8) 0.0684 (12) 0.0477 (9) −0.0113 (8) 0.0094 (7) 0.0021 (8)

Geometric parameters (Å, °)

Cl1—C9 1.7364 (16) C5—H5A 0.9300
O1—N3 1.2314 (17) C6—H6A 0.9300
O2—N3 1.2224 (17) C7—C8 1.488 (2)
O3—N4 1.2198 (19) C7—C14 1.500 (2)
O4—N4 1.2213 (19) C8—C13 1.397 (2)
N1—C7 1.2877 (17) C8—C9 1.399 (2)
N1—N2 1.3720 (17) C9—C10 1.388 (2)
N2—C1 1.3551 (18) C10—C11 1.370 (3)
N2—H1N1 0.85 (2) C10—H10A 0.9300
N3—C2 1.4537 (19) C11—C12 1.381 (3)
N4—C4 1.4537 (19) C11—H11A 0.9300
C1—C6 1.410 (2) C12—C13 1.375 (2)
C1—C2 1.4176 (19) C12—H12A 0.9300
C2—C3 1.384 (2) C13—H13A 0.9300
C3—C4 1.368 (2) C14—H14A 0.9600
C3—H3A 0.9300 C14—H14B 0.9600
C4—C5 1.392 (2) C14—H14C 0.9600
C5—C6 1.362 (2)
C7—N1—N2 116.82 (13) N1—C7—C8 113.18 (13)
C1—N2—N1 118.92 (13) N1—C7—C14 124.54 (14)
C1—N2—H1N1 118.0 (13) C8—C7—C14 122.11 (13)
N1—N2—H1N1 122.6 (13) C13—C8—C9 116.70 (14)
O2—N3—O1 122.17 (13) C13—C8—C7 118.19 (13)
O2—N3—C2 118.61 (13) C9—C8—C7 125.09 (14)
O1—N3—C2 119.21 (12) C10—C9—C8 121.61 (15)
O3—N4—O4 122.76 (14) C10—C9—Cl1 117.66 (12)
O3—N4—C4 119.10 (14) C8—C9—Cl1 120.71 (12)
O4—N4—C4 118.13 (14) C11—C10—C9 119.86 (15)
N2—C1—C6 119.97 (13) C11—C10—H10A 120.1
N2—C1—C2 123.43 (13) C9—C10—H10A 120.1
C6—C1—C2 116.60 (12) C10—C11—C12 119.94 (16)
C3—C2—C1 121.74 (13) C10—C11—H11A 120.0
C3—C2—N3 116.67 (12) C12—C11—H11A 120.0
C1—C2—N3 121.58 (12) C13—C12—C11 120.12 (16)
C4—C3—C2 119.05 (13) C13—C12—H12A 119.9
C4—C3—H3A 120.5 C11—C12—H12A 119.9
C2—C3—H3A 120.5 C12—C13—C8 121.76 (15)
C3—C4—C5 121.16 (13) C12—C13—H13A 119.1
C3—C4—N4 119.52 (13) C8—C13—H13A 119.1
C5—C4—N4 119.31 (14) C7—C14—H14A 109.5
C6—C5—C4 119.88 (14) C7—C14—H14B 109.5
C6—C5—H5A 120.1 H14A—C14—H14B 109.5
C4—C5—H5A 120.1 C7—C14—H14C 109.5
C5—C6—C1 121.56 (13) H14A—C14—H14C 109.5
C5—C6—H6A 119.2 H14B—C14—H14C 109.5
C1—C6—H6A 119.2
C7—N1—N2—C1 173.61 (14) C4—C5—C6—C1 0.4 (3)
N1—N2—C1—C6 2.9 (2) N2—C1—C6—C5 179.70 (15)
N1—N2—C1—C2 −176.94 (14) C2—C1—C6—C5 −0.5 (2)
N2—C1—C2—C3 179.97 (14) N2—N1—C7—C8 −176.69 (13)
C6—C1—C2—C3 0.1 (2) N2—N1—C7—C14 −1.3 (2)
N2—C1—C2—N3 1.3 (2) N1—C7—C8—C13 41.4 (2)
C6—C1—C2—N3 −178.56 (14) C14—C7—C8—C13 −134.06 (16)
O2—N3—C2—C3 0.2 (2) N1—C7—C8—C9 −137.42 (16)
O1—N3—C2—C3 −179.10 (15) C14—C7—C8—C9 47.1 (2)
O2—N3—C2—C1 179.01 (15) C13—C8—C9—C10 0.2 (2)
O1—N3—C2—C1 −0.3 (2) C7—C8—C9—C10 179.06 (15)
C1—C2—C3—C4 0.2 (2) C13—C8—C9—Cl1 −178.03 (12)
N3—C2—C3—C4 178.97 (14) C7—C8—C9—Cl1 0.8 (2)
C2—C3—C4—C5 −0.2 (3) C8—C9—C10—C11 0.0 (3)
C2—C3—C4—N4 −179.79 (15) Cl1—C9—C10—C11 178.32 (14)
O3—N4—C4—C3 0.1 (3) C9—C10—C11—C12 −0.1 (3)
O4—N4—C4—C3 179.51 (17) C10—C11—C12—C13 −0.1 (3)
O3—N4—C4—C5 −179.43 (18) C11—C12—C13—C8 0.3 (3)
O4—N4—C4—C5 −0.1 (3) C9—C8—C13—C12 −0.4 (2)
C3—C4—C5—C6 −0.1 (3) C7—C8—C13—C12 −179.31 (15)
N4—C4—C5—C6 179.48 (16)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H1N1···O1 0.85 (2) 1.97 (2) 2.6081 (19) 131.2 (17)
C6—H6A···O3i 0.93 2.52 3.251 (2) 135

Symmetry codes: (i) x, −y+1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5008).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Angelusiu, M.-V., Barbuceanu, S.-F., Draghici, C. & Almajan, G.-L. (2010). Eur. J. Med. Chem. 45, 2055–2062. [DOI] [PubMed]
  3. Bendre, R., Murugkar, A., Padhye, S., Kulkarni, P. & Karve, M. (1998). Met. Based Drugs, 5, 59–66. [DOI] [PMC free article] [PubMed]
  4. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  5. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Fun, H.-K., Jansrisewangwong, P. & Chantrapromma, S. (2010). Acta Cryst E66, o2401–o2402. [DOI] [PMC free article] [PubMed]
  7. Fun, H.-K., Nilwanna, B., Jansrisewangwong, P., Kobkeatthawin, T. & Chantrapromma, S. (2011). Acta Cryst E67, o3202–o3203. [DOI] [PMC free article] [PubMed]
  8. Gokce, M., Utku, S. & Kupeli, E. (2009). Eur. J. Med. Chem. 44, 3760–3764. [DOI] [PubMed]
  9. Jansrisewangwong, P., Chantrapromma, S. & Fun, H.-K. (2010). Acta Cryst. E66, o2170. [DOI] [PMC free article] [PubMed]
  10. Li, T.-R., Yang, Z.-Y., Wang, B.-D. & Qin, D.-D. (2008). Eur. J. Med. Chem. 43, 1688–1695. [DOI] [PubMed]
  11. Loncle, C., Brunel, J. M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004). Eur. J. Med. Chem. 39, 1067–1071. [DOI] [PubMed]
  12. Nilwanna, B., Chantrapromma, S., Jansrisewangwong, P. & Fun, H.-K. (2011). Acta Cryst. E67, o3084–o3085. [DOI] [PMC free article] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681105001X/is5008sup1.cif

e-67-o3499-sup1.cif (19.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681105001X/is5008Isup2.hkl

e-67-o3499-Isup2.hkl (218.5KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681105001X/is5008Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES