Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 30;67(Pt 12):o3501–o3502. doi: 10.1107/S1600536811050033

5-(4-Meth­oxy­phen­yl)-3-(pyridin-2-yl)-4,5-dihydro-1H-pyrazole-1-carbothio­amide

Phonpawee Nonthason a, Thitipone Suwunwong a, Suchada Chantrapromma a,*,, Hoong-Kun Fun b,§
PMCID: PMC3239124  PMID: 22199972

Abstract

In the title compound, C16H16N4OS, the dihedral angle between the pyridine and benzene rings is 81.08 (6)°. The pyrazole ring makes dihedral angles of 12.36 (7) and 87.96 (6)°, respectively, with the pyridine and benzene rings. In the crystal, mol­ecules are linked by N—H⋯O and N—H⋯S hydrogen bonds and a weak C—H⋯S inter­action into a layer parallel to the ab plane. Weak C—H⋯π and π–π inter­actions [centroid–centroid distances = 3.7043 (9) and 3.8120 (7) Å] are also observed.

Related literature

For bond-length data, see: Allen et al. (1987). For a related structure, see: Fun et al. (2011). For background to and applications of pyrazoline derivatives, see: Amir et al. (2008); Bai et al. (2007); Gong et al. (2011); Husain et al. (2008); Ji & Shi (2006); Manna & Agrawal (2009); Shoman et al. (2009).graphic file with name e-67-o3501-scheme1.jpg

Experimental

Crystal data

  • C16H16N4OS

  • M r = 312.40

  • Triclinic, Inline graphic

  • a = 6.2434 (2) Å

  • b = 9.9348 (4) Å

  • c = 13.6564 (6) Å

  • α = 107.762 (1)°

  • β = 99.506 (1)°

  • γ = 94.331 (1)°

  • V = 788.43 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 297 K

  • 0.48 × 0.34 × 0.19 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.906, T max = 0.961

  • 19134 measured reflections

  • 4529 independent reflections

  • 3927 reflections with I > 2σ(I)

  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.122

  • S = 1.05

  • 4529 reflections

  • 208 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811050033/is5010sup1.cif

e-67-o3501-sup1.cif (19.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811050033/is5010Isup2.hkl

e-67-o3501-Isup2.hkl (221.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811050033/is5010Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg3 is the centroid of the C9–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H2N4⋯O1i 0.845 (19) 2.278 (19) 3.0238 (18) 147.4 (17)
N4—H1N4⋯S1ii 0.839 (19) 2.603 (19) 3.4090 (13) 161.6 (18)
C14—H14A⋯S1iii 0.93 2.82 3.7033 (14) 158
C1—H1ACg3iv 0.93 2.60 3.5005 (15) 162

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

PN thanks the Development and Promotion of Science and Technology Talents Project for a fellowship. The authors thank the Prince of Songkla University and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

supplementary crystallographic information

Comment

Pyrazoline derivatives which contain two N atoms in their 5-membered heterocyclic structures are ultilised in bioactivity studies for their antimicrobial (Manna & Agrawal, 2009), antiamoebic (Husain et al., 2008), anti-inflammatory (Amir et al., 2008; Shoman et al., 2009) and analgesic (Amir et al., 2008) properties as well as in optical studies involving fluorescence dyes (Ji & Shi, 2006; Bai et al., 2007) and fluorescent sensors (Gong et al., 2011). For our research on the biological properties of pyrazoline derivatives, the title compound (I) was synthesized from the cyclization reaction of the heteroaryl chalcone derivative and thiosemicarbazide. Crystals of (I) were grown in order to study the structural and activity relationship with another pyrazoline derivative (Fun et al., 2011).

In the title molecule (Fig. 1), C16H16N4OS, the dihedral angle between the pyridine and benzene ring is 81.08 (6)°, whereas the pyrazole ring makes dihedral angles of 12.36 (7) and 81.08 (6)° with the pyridine and benzene rings, respectively. The carbothioamide unit lies on the same plane with pyrazole ring with an r.m.s. of 0.0468 (1) Å for the eight non H atoms (C6, C7, C8, C15, N1, N2, N4 and S1). The methoxy group is co-planar with its attached benzene ring with a torsion angle C16–O1–C12–C13 = -0.5 (2)° and an r.m.s. of 0.0102 (1) Å for the eight non H atoms. Bond distances of (I) are in normal range (Allen et al., 1987).

In the crystal packing (Fig. 2), the molecules are linked by N—H···O, and N—H···S hydrogen bonds as well as with weak C—H···S interactions (Table 1) into a layer parallel to the ab plane. π–π interactions with the distances of Cg1···Cg2 (-1 + x, y, z) = 3.8120 (7) Å and Cg2···Cg2 (3 - x, -y, 1 - z) = 3.7043 (9) Å are also present. Cg1 and Cg2 are the centroids of N1/N2/C8/C7/C6 and N3/C1–C5 rings, respectively.

Experimental

The title compound was synthesized by the cyclization reaction of E-3-(4-methoxyphenyl)-1-(pyridin-2-yl)prop-2-en-1-one (0.24 g, 1 mmol) with excess thiosemicarbazide (0.18 g, 2 mmol) in a solution of KOH (0.11 g, 2 mmol) in ethanol (10 ml). The reaction mixture was vigorously stirred and refluxed for 3 h. The pale-yellow solid of the title compound obtained after cooling off the reaction was then filtered off under vacuum. Pale yellow block-shaped single crystals of the title compound suitable for X-ray structure determination were recrystallized from methanol/ethanol (1:2 v/v) by slow evaporation of the solvent at room temperature after several days (m.p. 468–469 K).

Refinement

Amide H atoms were located in a difference maps and refined freely [N—H = 0.847 (18) and 0.84 (2) Å]. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å for aromatic, 0.98 Å for CH, 0.97 Å for CH2 and 0.96 Å for CH3. The Uiso(H) values were constrained to be 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the remaining H atoms. A rotating group model was used for the methyl groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

A crystal packing diagram of the title compound viewed along the a axis. For the sake of clarity, only H atoms involved in the hydrogen bonds were shown. Hydrogen bonds were drawn as dashed lines.

Crystal data

C16H16N4OS Z = 2
Mr = 312.40 F(000) = 328
Triclinic, P1 Dx = 1.316 Mg m3
Hall symbol: -P 1 Melting point = 468–469 K
a = 6.2434 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.9348 (4) Å Cell parameters from 4529 reflections
c = 13.6564 (6) Å θ = 1.6–30.0°
α = 107.762 (1)° µ = 0.21 mm1
β = 99.506 (1)° T = 297 K
γ = 94.331 (1)° Block, yellow
V = 788.43 (5) Å3 0.48 × 0.34 × 0.19 mm

Data collection

Bruker SMART APEXII CCD diffractometer 4529 independent reflections
Radiation source: fine-focus sealed tube 3927 reflections with I > 2σ(I)
graphite Rint = 0.019
Detector resolution: 8.33 pixels mm-1 θmax = 30.0°, θmin = 1.6°
ω scans h = −8→8
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −13→13
Tmin = 0.906, Tmax = 0.961 l = −19→18
19134 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0685P)2 + 0.1373P] where P = (Fo2 + 2Fc2)/3
4529 reflections (Δ/σ)max = 0.001
208 parameters Δρmax = 0.31 e Å3
0 restraints Δρmin = −0.18 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.50444 (5) 0.19990 (4) 0.13335 (2) 0.04687 (11)
O1 1.0431 (2) 0.76342 (12) 0.12097 (10) 0.0645 (3)
N1 1.06459 (15) 0.13465 (10) 0.27835 (7) 0.03555 (19)
N2 0.88621 (16) 0.19975 (9) 0.25049 (8) 0.0376 (2)
N3 1.48004 (19) 0.27191 (11) 0.50833 (8) 0.0458 (2)
N4 0.7587 (2) −0.00487 (12) 0.11494 (10) 0.0497 (3)
H2N4 0.873 (3) −0.0389 (18) 0.1330 (13) 0.053 (4)*
H1N4 0.667 (3) −0.046 (2) 0.0593 (15) 0.063 (5)*
C1 1.6684 (2) 0.24072 (15) 0.55409 (11) 0.0537 (3)
H1A 1.7341 0.3000 0.6212 0.064*
C2 1.7700 (2) 0.12711 (17) 0.50832 (13) 0.0568 (3)
H2A 1.9003 0.1101 0.5437 0.068*
C3 1.6751 (2) 0.03853 (17) 0.40878 (12) 0.0562 (3)
H3A 1.7411 −0.0389 0.3754 0.067*
C4 1.4800 (2) 0.06681 (14) 0.35939 (10) 0.0453 (3)
H4A 1.4117 0.0084 0.2924 0.054*
C5 1.38864 (18) 0.18390 (11) 0.41175 (8) 0.0354 (2)
C6 1.18371 (18) 0.22122 (11) 0.36368 (8) 0.0347 (2)
C7 1.0938 (2) 0.35789 (12) 0.40702 (9) 0.0416 (2)
H7A 1.2014 0.4399 0.4191 0.050*
H7B 1.0466 0.3630 0.4721 0.050*
C8 0.89669 (19) 0.34932 (11) 0.31893 (9) 0.0364 (2)
H8A 0.7627 0.3622 0.3474 0.044*
C9 0.93345 (18) 0.45497 (11) 0.26179 (8) 0.0349 (2)
C10 0.8047 (2) 0.56443 (13) 0.26752 (10) 0.0426 (3)
H10A 0.6907 0.5700 0.3040 0.051*
C11 0.8453 (2) 0.66491 (14) 0.21933 (11) 0.0486 (3)
H11A 0.7586 0.7379 0.2239 0.058*
C12 1.0148 (2) 0.65770 (13) 0.16395 (10) 0.0439 (3)
C13 1.1430 (2) 0.54861 (14) 0.15695 (11) 0.0468 (3)
H13A 1.2560 0.5423 0.1197 0.056*
C14 1.1009 (2) 0.44869 (13) 0.20617 (10) 0.0434 (3)
H14A 1.1875 0.3757 0.2016 0.052*
C15 0.72789 (18) 0.12674 (12) 0.16632 (9) 0.0360 (2)
C16 1.2161 (3) 0.7646 (2) 0.06553 (15) 0.0706 (5)
H16A 1.2216 0.8478 0.0437 0.106*
H16B 1.1910 0.6806 0.0050 0.106*
H16C 1.3526 0.7662 0.1104 0.106*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.03741 (17) 0.05216 (19) 0.04509 (18) 0.01644 (13) 0.00125 (12) 0.00828 (13)
O1 0.0804 (8) 0.0561 (6) 0.0773 (7) 0.0238 (5) 0.0297 (6) 0.0404 (6)
N1 0.0342 (4) 0.0324 (4) 0.0385 (4) 0.0070 (3) 0.0025 (3) 0.0110 (3)
N2 0.0369 (4) 0.0315 (4) 0.0401 (5) 0.0093 (3) 0.0002 (4) 0.0083 (4)
N3 0.0493 (6) 0.0392 (5) 0.0412 (5) 0.0060 (4) −0.0046 (4) 0.0090 (4)
N4 0.0486 (6) 0.0380 (5) 0.0484 (6) 0.0120 (4) −0.0096 (5) 0.0021 (4)
C1 0.0516 (7) 0.0504 (7) 0.0480 (7) 0.0033 (6) −0.0122 (6) 0.0121 (5)
C2 0.0424 (7) 0.0624 (8) 0.0618 (8) 0.0117 (6) −0.0060 (6) 0.0222 (7)
C3 0.0487 (7) 0.0586 (8) 0.0590 (8) 0.0218 (6) 0.0059 (6) 0.0147 (6)
C4 0.0450 (6) 0.0469 (6) 0.0403 (6) 0.0131 (5) 0.0037 (5) 0.0095 (5)
C5 0.0356 (5) 0.0350 (5) 0.0356 (5) 0.0037 (4) 0.0030 (4) 0.0141 (4)
C6 0.0372 (5) 0.0325 (5) 0.0344 (5) 0.0062 (4) 0.0042 (4) 0.0119 (4)
C7 0.0509 (6) 0.0340 (5) 0.0358 (5) 0.0108 (4) 0.0008 (4) 0.0084 (4)
C8 0.0388 (5) 0.0323 (5) 0.0359 (5) 0.0096 (4) 0.0054 (4) 0.0076 (4)
C9 0.0363 (5) 0.0314 (5) 0.0345 (5) 0.0102 (4) 0.0039 (4) 0.0073 (4)
C10 0.0395 (6) 0.0425 (6) 0.0495 (6) 0.0170 (5) 0.0121 (5) 0.0160 (5)
C11 0.0509 (7) 0.0433 (6) 0.0590 (7) 0.0242 (5) 0.0132 (6) 0.0218 (6)
C12 0.0509 (7) 0.0394 (6) 0.0432 (6) 0.0109 (5) 0.0073 (5) 0.0157 (5)
C13 0.0510 (7) 0.0456 (6) 0.0492 (6) 0.0157 (5) 0.0188 (5) 0.0162 (5)
C14 0.0466 (6) 0.0399 (5) 0.0492 (6) 0.0204 (5) 0.0157 (5) 0.0157 (5)
C15 0.0347 (5) 0.0363 (5) 0.0363 (5) 0.0059 (4) 0.0045 (4) 0.0118 (4)
C16 0.0854 (12) 0.0663 (10) 0.0737 (11) 0.0083 (9) 0.0283 (9) 0.0361 (9)

Geometric parameters (Å, °)

S1—C15 1.6801 (11) C5—C6 1.4657 (15)
O1—C12 1.3644 (16) C6—C7 1.4978 (15)
O1—C16 1.419 (2) C7—C8 1.5498 (16)
N1—C6 1.2871 (14) C7—H7A 0.9700
N1—N2 1.3864 (12) C7—H7B 0.9700
N2—C15 1.3536 (14) C8—C9 1.5118 (15)
N2—C8 1.4844 (14) C8—H8A 0.9800
N3—C1 1.3414 (17) C9—C14 1.3846 (17)
N3—C5 1.3425 (14) C9—C10 1.3911 (15)
N4—C15 1.3273 (15) C10—C11 1.3825 (18)
N4—H2N4 0.847 (18) C10—H10A 0.9300
N4—H1N4 0.84 (2) C11—C12 1.3927 (19)
C1—C2 1.370 (2) C11—H11A 0.9300
C1—H1A 0.9300 C12—C13 1.3848 (17)
C2—C3 1.378 (2) C13—C14 1.3901 (18)
C2—H2A 0.9300 C13—H13A 0.9300
C3—C4 1.3834 (18) C14—H14A 0.9300
C3—H3A 0.9300 C16—H16A 0.9600
C4—C5 1.3847 (16) C16—H16B 0.9600
C4—H4A 0.9300 C16—H16C 0.9600
C12—O1—C16 118.84 (12) N2—C8—C9 112.03 (9)
C6—N1—N2 107.90 (9) N2—C8—C7 100.52 (8)
C15—N2—N1 119.54 (9) C9—C8—C7 113.07 (9)
C15—N2—C8 127.01 (9) N2—C8—H8A 110.3
N1—N2—C8 113.43 (8) C9—C8—H8A 110.3
C1—N3—C5 116.48 (12) C7—C8—H8A 110.3
C15—N4—H2N4 121.2 (11) C14—C9—C10 118.46 (11)
C15—N4—H1N4 115.2 (13) C14—C9—C8 120.98 (10)
H2N4—N4—H1N4 123.0 (17) C10—C9—C8 120.52 (10)
N3—C1—C2 124.18 (13) C11—C10—C9 120.44 (11)
N3—C1—H1A 117.9 C11—C10—H10A 119.8
C2—C1—H1A 117.9 C9—C10—H10A 119.8
C1—C2—C3 118.64 (12) C10—C11—C12 120.53 (11)
C1—C2—H2A 120.7 C10—C11—H11A 119.7
C3—C2—H2A 120.7 C12—C11—H11A 119.7
C2—C3—C4 118.81 (13) O1—C12—C13 124.58 (12)
C2—C3—H3A 120.6 O1—C12—C11 115.81 (11)
C4—C3—H3A 120.6 C13—C12—C11 119.60 (11)
C3—C4—C5 118.60 (12) C12—C13—C14 119.22 (12)
C3—C4—H4A 120.7 C12—C13—H13A 120.4
C5—C4—H4A 120.7 C14—C13—H13A 120.4
N3—C5—C4 123.29 (11) C9—C14—C13 121.75 (11)
N3—C5—C6 115.16 (10) C9—C14—H14A 119.1
C4—C5—C6 121.54 (10) C13—C14—H14A 119.1
N1—C6—C5 120.88 (10) N4—C15—N2 115.95 (10)
N1—C6—C7 114.44 (10) N4—C15—S1 123.24 (9)
C5—C6—C7 124.68 (10) N2—C15—S1 120.78 (8)
C6—C7—C8 102.65 (9) O1—C16—H16A 109.5
C6—C7—H7A 111.2 O1—C16—H16B 109.5
C8—C7—H7A 111.2 H16A—C16—H16B 109.5
C6—C7—H7B 111.2 O1—C16—H16C 109.5
C8—C7—H7B 111.2 H16A—C16—H16C 109.5
H7A—C7—H7B 109.2 H16B—C16—H16C 109.5
C6—N1—N2—C15 −175.98 (10) C6—C7—C8—N2 9.45 (11)
C6—N1—N2—C8 5.41 (13) C6—C7—C8—C9 −110.14 (10)
C5—N3—C1—C2 0.3 (2) N2—C8—C9—C14 −50.50 (14)
N3—C1—C2—C3 0.3 (2) C7—C8—C9—C14 62.24 (14)
C1—C2—C3—C4 −0.7 (2) N2—C8—C9—C10 132.10 (11)
C2—C3—C4—C5 0.5 (2) C7—C8—C9—C10 −115.16 (12)
C1—N3—C5—C4 −0.49 (19) C14—C9—C10—C11 −0.53 (19)
C1—N3—C5—C6 −179.71 (11) C8—C9—C10—C11 176.93 (11)
C3—C4—C5—N3 0.1 (2) C9—C10—C11—C12 0.3 (2)
C3—C4—C5—C6 179.25 (12) C16—O1—C12—C13 −0.5 (2)
N2—N1—C6—C5 −178.44 (9) C16—O1—C12—C11 178.55 (14)
N2—N1—C6—C7 1.85 (13) C10—C11—C12—O1 −178.90 (13)
N3—C5—C6—N1 −169.93 (11) C10—C11—C12—C13 0.2 (2)
C4—C5—C6—N1 10.83 (17) O1—C12—C13—C14 178.56 (13)
N3—C5—C6—C7 9.75 (16) C11—C12—C13—C14 −0.5 (2)
C4—C5—C6—C7 −169.49 (11) C10—C9—C14—C13 0.26 (19)
N1—C6—C7—C8 −7.69 (13) C8—C9—C14—C13 −177.19 (11)
C5—C6—C7—C8 172.61 (10) C12—C13—C14—C9 0.2 (2)
C15—N2—C8—C9 −67.76 (15) N1—N2—C15—N4 −0.80 (16)
N1—N2—C8—C9 110.73 (10) C8—N2—C15—N4 177.61 (11)
C15—N2—C8—C7 171.91 (11) N1—N2—C15—S1 177.43 (8)
N1—N2—C8—C7 −9.61 (12) C8—N2—C15—S1 −4.16 (17)

Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C9–C14 ring.
D—H···A D—H H···A D···A D—H···A
N4—H2N4···O1i 0.845 (19) 2.278 (19) 3.0238 (18) 147.4 (17)
N4—H1N4···S1ii 0.839 (19) 2.603 (19) 3.4090 (13) 161.6 (18)
C14—H14A···S1iii 0.93 2.82 3.7033 (14) 158
C1—H1A···Cg3iv 0.93 2.60 3.5005 (15) 162

Symmetry codes: (i) x, y−1, z; (ii) −x+1, −y, −z; (iii) x+1, y, z; (iv) −x+3, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5010).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Amir, M., Kumar, H. & Khan, S. A. (2008). Bioorg. Med. Chem. Lett. 18, 918–922. [DOI] [PubMed]
  3. Bai, G., Li, J., Li, D., Dong, C., Han, X. & Lin, P. (2007). Dyes Pigments, 75, 93–98.
  4. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Fun, H.-K., Suwunwong, T. & Chantrapromma, S. (2011). Acta Cryst. E67, o701–o702. [DOI] [PMC free article] [PubMed]
  6. Gong, Z.-L., Zhao, B.-X., Liu, W.-Y. & Lv, H.-S. (2011). J. Photochem. Photobiol. A, 218, 6–10.
  7. Husain, K., Abid, M. & Azam, A. (2008). Eur. J. Med. Chem. 43, 393–403. [DOI] [PubMed]
  8. Ji, S.-J. & Shi, H.-B. (2006). Dyes Pigments, 70, 246–250.
  9. Manna, K. & Agrawal, Y. K. (2009). Bioorg. Med. Chem. Lett. 19, 2688–2692. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Shoman, M. E., Abdel-Aziz, M., Aly, O. M., Farag, H. H. & Morsy, M. A. (2009). Eur. J. Med. Chem. 44, 3068–3076. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811050033/is5010sup1.cif

e-67-o3501-sup1.cif (19.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811050033/is5010Isup2.hkl

e-67-o3501-Isup2.hkl (221.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811050033/is5010Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES