Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 30;67(Pt 12):o3511. doi: 10.1107/S1600536811050756

Methyl (Z)-2-{[N-(2-formyl­phen­yl)-4-methyl­benzene­sulfonamido]­meth­yl}-3-phenyl­prop-2-enoate

R Madhanraj a, S Murugavel b,*, D Kannan c, M Bakthadoss c,
PMCID: PMC3239132  PMID: 22199980

Abstract

In the title compound, C25H23NO5S, the sulfonyl-bound benzene ring forms dihedral angles of 37.2 (1) and 67.0 (1)°, respectively, with the formyl­phenyl and phenyl rings. The mol­ecular conformation is stabilized by an intra­molecular C—H⋯π inter­action. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming a two-dimensional network in the (110) plane in which R 4 4(38) ring motifs are generated.

Related literature

For background to the pharmacological uses of sulfonamides, see: Korolkovas (1988); Mandell & Sande (1992). For related structures, see: Ranjith et al. (2009); Aziz-ur-Rehman et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the Thrope–Ingold effect, see: Bassindale (1984).graphic file with name e-67-o3511-scheme1.jpg

Experimental

Crystal data

  • C25H23NO5S

  • M r = 449.50

  • Monoclinic, Inline graphic

  • a = 9.7475 (5) Å

  • b = 21.7053 (12) Å

  • c = 11.2643 (6) Å

  • β = 109.987 (2)°

  • V = 2239.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 293 K

  • 0.23 × 0.21 × 0.16 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.959, T max = 0.971

  • 28975 measured reflections

  • 6991 independent reflections

  • 4593 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.153

  • S = 0.99

  • 6991 reflections

  • 291 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia (1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811050756/bt5721sup1.cif

e-67-o3511-sup1.cif (22.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811050756/bt5721Isup2.hkl

e-67-o3511-Isup2.hkl (335.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811050756/bt5721Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C18–C23 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯Cg 0.93 2.64 3.470 (2) 149
C25—H25B⋯O2i 0.96 2.56 3.342 (3) 139
C10—H10⋯O1ii 0.93 2.51 3.309 (3) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

supplementary crystallographic information

Comment

Sulfonamide drugs are widely used for the treatment of certain infections caused by Gram-positive and Gram-negative microorganisms, some fungi, and certain protozoa (Korolkovas, 1988, Mandell & Sande, 1992). In view of this biological importance, the crystal structure of the title compound has been determined and the results are presented here.

Fig. 1. shows a displacement ellipsoid plot of (I), with the atom numbering scheme. The S1 atom shows a distorted tetrahedral geometry, with O2—S1—O3 [119.6 (1)°] and N1—S1—C8 [107.5 (1)°] angles deviating from ideal tetrahedral values, are attributed to the Thrope-Ingold effect (Bassindale, 1984). The sum of bond angles around N1 (351.5°) indicates that N1 is in sp2 hybridization. The sulfonyl bound phenyl (C8–C13) ring forms dihedral angles of 37.2 (1)° and 67.0 (1)°, respectively, with the formyl phenyl (C1–C6) and phenyl (C18—C23) rings. The dihedral angle between formyl phenyl and phenyl rings is 45.9 (1)°. The geometric parameters of the title molecule agrees well with those reported for similar structures (Ranjith et al., 2009; Aziz-ur-Rehman et al., 2010).

The molecular structure is stabilized by intramolecular C-H···π interaction between a sulfonyl bound phenyl H9 atom and a phenyl (C18–C23) ring with a C9—H9···Cg seperation of 2.64 Å.(Fig. 1 and Table 1; Cg is the centroid of the C18–C23 phenyl ring). In the crystal four molecules are linked by intermolecular C—H···O hydrogen bonds (Fig. 2, Table 1; Symmetry codes as given in Fig. 2), generating R44(38) ring motifs (Bernstein et al., 1995) to form a two dimensional network along [110]] directions.

Experimental

A solution of N-(formylphenyl)(4-methylbenzene)sulfonamide (1 mmol, 0.28 g) and potassium carbonate (1.5 mmol, 0.21 g) in acetonitrile solvent was stirred for 15 minutes at room temperature. To this solution, (z)-methyl-2-(bromomethyl)-3-phenylprop-2-enoate (1.2 mmol, 0.30 g) was added dropwise till the addition is complete. After the completion of the reaction, as indicated by TLC, acetonitile was evaporated. ETOAc (15 ml) were added to the crude mass. The organic layer was dried over anhydrous sodium sulfate. Removal of solvent led to the crude product, which was purified through pad of silica gel (100-200 mesh) using ethylacetate and hexanes (1:9) as solvents. The pure title compound was obtained as a colourless solid (0.40 g, 88 % yield). Recrystallization was carried out using ethylacetate as solvent.

Refinement

All the H atoms were positioned geometrically, with C–H = 0.93–0.97 Å and constrained to ride on their parent atom, with Uiso(H) =1.5Ueq for methyl H atoms and 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with intramolecular C—H···π interactions shown as dashed lines. Displacement ellipsoids are drawn at the 30% probability levels. H atoms are presented as a small spheres of arbitrary radius. Cg is the centroid of the C18–C23 ring.

Fig. 2.

Fig. 2.

Part of the crystal structure showing C—H···O hydrogen bonds (dotted lines) , with R44(38) ring motifs. [Symmetry code: (i) -1+x, y, z; (ii) 3/2-x, 1/2+y, 1/2-z; (iii) 1/2-x, 1/2+y, 1/2-z].

Crystal data

C25H23NO5S F(000) = 944
Mr = 449.50 Dx = 1.333 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 7038 reflections
a = 9.7475 (5) Å θ = 2.1–30.8°
b = 21.7053 (12) Å µ = 0.18 mm1
c = 11.2643 (6) Å T = 293 K
β = 109.987 (2)° Block, colourless
V = 2239.7 (2) Å3 0.23 × 0.21 × 0.16 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 6991 independent reflections
Radiation source: fine-focus sealed tube 4593 reflections with I > 2σ(I)
graphite Rint = 0.028
Detector resolution: 10.0 pixels mm-1 θmax = 30.8°, θmin = 2.1°
ω scans h = −13→14
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −31→31
Tmin = 0.959, Tmax = 0.971 l = −16→15
28975 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153 H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0773P)2 + 0.5464P] where P = (Fo2 + 2Fc2)/3
6991 reflections (Δ/σ)max < 0.001
291 parameters Δρmax = 0.45 e Å3
0 restraints Δρmin = −0.31 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.59422 (16) 0.13486 (7) 0.03835 (16) 0.0388 (3)
C2 0.58668 (19) 0.14617 (9) −0.08453 (18) 0.0511 (4)
H2 0.5590 0.1848 −0.1206 0.061*
C3 0.6208 (2) 0.09931 (12) −0.1534 (2) 0.0703 (6)
H3 0.6153 0.1067 −0.2362 0.084*
C4 0.6628 (2) 0.04221 (12) −0.1010 (3) 0.0785 (8)
H4 0.6865 0.0113 −0.1478 0.094*
C5 0.6695 (2) 0.03105 (9) 0.0194 (3) 0.0689 (6)
H5 0.6980 −0.0077 0.0545 0.083*
C6 0.63450 (18) 0.07667 (8) 0.09133 (19) 0.0485 (4)
C7 0.6342 (2) 0.06179 (9) 0.2188 (2) 0.0643 (5)
H7 0.5862 0.0886 0.2558 0.077*
C8 0.76439 (16) 0.27383 (7) 0.14360 (16) 0.0407 (3)
C9 0.7236 (2) 0.33478 (8) 0.1488 (2) 0.0536 (4)
H9 0.6608 0.3452 0.1919 0.064*
C10 0.7762 (2) 0.37946 (9) 0.0900 (2) 0.0621 (5)
H10 0.7491 0.4203 0.0942 0.075*
C11 0.8691 (2) 0.36516 (9) 0.0245 (2) 0.0581 (5)
C12 0.9085 (2) 0.30403 (10) 0.0192 (2) 0.0580 (5)
H12 0.9704 0.2937 −0.0248 0.070*
C13 0.85695 (19) 0.25836 (8) 0.07857 (18) 0.0502 (4)
H13 0.8843 0.2176 0.0748 0.060*
C14 0.9305 (3) 0.41529 (12) −0.0355 (3) 0.0846 (8)
H14A 0.8850 0.4538 −0.0294 0.127*
H14B 0.9117 0.4055 −0.1227 0.127*
H14C 1.0339 0.4184 0.0076 0.127*
C15 0.42926 (16) 0.22099 (7) 0.05346 (15) 0.0384 (3)
H15A 0.3777 0.2057 −0.0310 0.046*
H15B 0.4598 0.2629 0.0459 0.046*
C16 0.32755 (16) 0.22105 (7) 0.12797 (16) 0.0403 (3)
C17 0.29963 (18) 0.27004 (8) 0.18717 (17) 0.0463 (4)
H17 0.2376 0.2639 0.2331 0.056*
C18 0.35677 (19) 0.33301 (8) 0.18761 (18) 0.0467 (4)
C19 0.4342 (2) 0.36162 (9) 0.3013 (2) 0.0568 (5)
H19 0.4488 0.3411 0.3771 0.068*
C20 0.4895 (2) 0.42009 (11) 0.3023 (3) 0.0698 (6)
H20 0.5435 0.4384 0.3786 0.084*
C21 0.4654 (3) 0.45140 (10) 0.1912 (3) 0.0723 (6)
H21 0.5030 0.4909 0.1923 0.087*
C22 0.3860 (3) 0.42452 (10) 0.0785 (3) 0.0717 (6)
H22 0.3679 0.4461 0.0034 0.086*
C23 0.3326 (2) 0.36523 (9) 0.0762 (2) 0.0581 (5)
H23 0.2801 0.3470 −0.0006 0.070*
C24 0.25669 (18) 0.16079 (8) 0.13063 (19) 0.0492 (4)
C25 0.0837 (3) 0.10598 (10) 0.1935 (3) 0.0819 (8)
H25A 0.0173 0.0964 0.1106 0.123*
H25B 0.0302 0.1106 0.2504 0.123*
H25C 0.1534 0.0732 0.2225 0.123*
N1 0.56062 (13) 0.18221 (6) 0.11335 (12) 0.0362 (3)
O1 0.6918 (3) 0.01735 (8) 0.2780 (2) 0.1093 (7)
O2 0.81113 (13) 0.17074 (6) 0.26567 (12) 0.0525 (3)
O3 0.64184 (13) 0.24539 (6) 0.30692 (11) 0.0509 (3)
O4 0.28273 (17) 0.11474 (6) 0.08321 (18) 0.0714 (4)
O5 0.15907 (17) 0.16258 (6) 0.18906 (17) 0.0694 (4)
S1 0.69945 (4) 0.216238 (18) 0.22055 (4) 0.04001 (12)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0321 (7) 0.0374 (7) 0.0488 (9) 0.0001 (5) 0.0164 (6) −0.0058 (6)
C2 0.0459 (9) 0.0582 (10) 0.0512 (10) −0.0033 (8) 0.0193 (8) −0.0072 (8)
C3 0.0544 (11) 0.0992 (18) 0.0651 (13) −0.0141 (11) 0.0303 (10) −0.0337 (12)
C4 0.0581 (12) 0.0746 (15) 0.110 (2) −0.0031 (11) 0.0379 (13) −0.0465 (15)
C5 0.0499 (11) 0.0440 (10) 0.111 (2) 0.0040 (8) 0.0246 (11) −0.0185 (11)
C6 0.0378 (8) 0.0379 (8) 0.0690 (12) 0.0009 (6) 0.0171 (8) −0.0013 (8)
C7 0.0626 (12) 0.0452 (10) 0.0788 (14) −0.0004 (9) 0.0162 (10) 0.0150 (9)
C8 0.0335 (7) 0.0407 (8) 0.0468 (9) −0.0019 (6) 0.0123 (6) −0.0067 (7)
C9 0.0521 (10) 0.0427 (9) 0.0728 (13) −0.0015 (7) 0.0303 (9) −0.0119 (8)
C10 0.0616 (12) 0.0396 (9) 0.0895 (16) −0.0035 (8) 0.0315 (11) −0.0069 (9)
C11 0.0521 (10) 0.0551 (11) 0.0669 (12) −0.0117 (8) 0.0202 (9) −0.0023 (9)
C12 0.0527 (10) 0.0645 (12) 0.0647 (12) −0.0048 (9) 0.0303 (9) −0.0067 (10)
C13 0.0466 (9) 0.0455 (9) 0.0621 (11) 0.0028 (7) 0.0232 (8) −0.0065 (8)
C14 0.0802 (16) 0.0734 (15) 0.108 (2) −0.0179 (13) 0.0418 (15) 0.0120 (14)
C15 0.0348 (7) 0.0372 (7) 0.0409 (8) 0.0073 (6) 0.0099 (6) 0.0012 (6)
C16 0.0320 (7) 0.0384 (8) 0.0479 (9) 0.0037 (6) 0.0106 (6) 0.0003 (6)
C17 0.0413 (8) 0.0454 (9) 0.0563 (10) 0.0028 (7) 0.0220 (7) −0.0032 (7)
C18 0.0441 (9) 0.0404 (8) 0.0592 (11) 0.0060 (6) 0.0224 (8) −0.0079 (7)
C19 0.0601 (11) 0.0573 (11) 0.0589 (11) −0.0005 (9) 0.0280 (9) −0.0122 (9)
C20 0.0659 (13) 0.0616 (13) 0.0867 (17) −0.0097 (10) 0.0322 (12) −0.0305 (12)
C21 0.0747 (14) 0.0401 (10) 0.112 (2) −0.0009 (9) 0.0454 (14) −0.0107 (12)
C22 0.0849 (16) 0.0465 (11) 0.0871 (16) 0.0119 (10) 0.0338 (13) 0.0097 (11)
C23 0.0604 (11) 0.0470 (10) 0.0646 (12) 0.0090 (8) 0.0186 (9) −0.0022 (9)
C24 0.0366 (8) 0.0423 (9) 0.0684 (12) 0.0030 (6) 0.0176 (8) 0.0034 (8)
C25 0.0644 (14) 0.0548 (12) 0.143 (2) −0.0024 (10) 0.0567 (15) 0.0158 (14)
N1 0.0321 (6) 0.0343 (6) 0.0406 (7) 0.0043 (5) 0.0102 (5) −0.0014 (5)
O1 0.1367 (18) 0.0598 (10) 0.1075 (15) 0.0136 (11) 0.0111 (13) 0.0356 (10)
O2 0.0400 (6) 0.0564 (7) 0.0532 (7) 0.0107 (5) 0.0056 (5) 0.0064 (6)
O3 0.0482 (7) 0.0638 (8) 0.0410 (6) −0.0001 (6) 0.0154 (5) −0.0111 (6)
O4 0.0677 (9) 0.0446 (7) 0.1143 (13) −0.0088 (6) 0.0471 (9) −0.0177 (8)
O5 0.0643 (9) 0.0469 (7) 0.1163 (13) 0.0025 (6) 0.0558 (9) 0.0068 (8)
S1 0.03449 (19) 0.0436 (2) 0.0391 (2) 0.00304 (14) 0.00894 (15) −0.00255 (15)

Geometric parameters (Å, °)

C1—C2 1.383 (3) C15—N1 1.4875 (18)
C1—C6 1.395 (2) C15—C16 1.502 (2)
C1—N1 1.4375 (19) C15—H15A 0.9700
C2—C3 1.387 (3) C15—H15B 0.9700
C2—H2 0.9300 C16—C17 1.332 (2)
C3—C4 1.374 (4) C16—C24 1.484 (2)
C3—H3 0.9300 C17—C18 1.475 (2)
C4—C5 1.357 (4) C17—H17 0.9300
C4—H4 0.9300 C18—C23 1.385 (3)
C5—C6 1.394 (3) C18—C19 1.391 (3)
C5—H5 0.9300 C19—C20 1.377 (3)
C6—C7 1.473 (3) C19—H19 0.9300
C7—O1 1.197 (2) C20—C21 1.372 (4)
C7—H7 0.9300 C20—H20 0.9300
C8—C13 1.384 (2) C21—C22 1.371 (4)
C8—C9 1.388 (2) C21—H21 0.9300
C8—S1 1.7577 (17) C22—C23 1.385 (3)
C9—C10 1.369 (3) C22—H22 0.9300
C9—H9 0.9300 C23—H23 0.9300
C10—C11 1.385 (3) C24—O4 1.201 (2)
C10—H10 0.9300 C24—O5 1.330 (2)
C11—C12 1.388 (3) C25—O5 1.441 (2)
C11—C14 1.508 (3) C25—H25A 0.9600
C12—C13 1.383 (3) C25—H25B 0.9600
C12—H12 0.9300 C25—H25C 0.9600
C13—H13 0.9300 N1—S1 1.6485 (13)
C14—H14A 0.9600 O2—S1 1.4284 (12)
C14—H14B 0.9600 O3—S1 1.4268 (12)
C14—H14C 0.9600
C2—C1—C6 119.99 (16) C16—C15—H15A 109.2
C2—C1—N1 121.11 (15) N1—C15—H15B 109.2
C6—C1—N1 118.90 (15) C16—C15—H15B 109.2
C1—C2—C3 119.3 (2) H15A—C15—H15B 107.9
C1—C2—H2 120.4 C17—C16—C24 121.16 (16)
C3—C2—H2 120.4 C17—C16—C15 124.56 (15)
C4—C3—C2 121.0 (2) C24—C16—C15 114.28 (14)
C4—C3—H3 119.5 C16—C17—C18 126.87 (16)
C2—C3—H3 119.5 C16—C17—H17 116.6
C5—C4—C3 119.7 (2) C18—C17—H17 116.6
C5—C4—H4 120.1 C23—C18—C19 118.66 (18)
C3—C4—H4 120.1 C23—C18—C17 121.18 (17)
C4—C5—C6 121.1 (2) C19—C18—C17 120.15 (18)
C4—C5—H5 119.5 C20—C19—C18 120.5 (2)
C6—C5—H5 119.5 C20—C19—H19 119.8
C5—C6—C1 118.9 (2) C18—C19—H19 119.8
C5—C6—C7 119.56 (19) C21—C20—C19 120.3 (2)
C1—C6—C7 121.45 (17) C21—C20—H20 119.9
O1—C7—C6 124.2 (2) C19—C20—H20 119.9
O1—C7—H7 117.9 C22—C21—C20 120.0 (2)
C6—C7—H7 117.9 C22—C21—H21 120.0
C13—C8—C9 120.10 (17) C20—C21—H21 120.0
C13—C8—S1 119.88 (13) C21—C22—C23 120.2 (2)
C9—C8—S1 120.02 (13) C21—C22—H22 119.9
C10—C9—C8 119.64 (17) C23—C22—H22 119.9
C10—C9—H9 120.2 C18—C23—C22 120.4 (2)
C8—C9—H9 120.2 C18—C23—H23 119.8
C9—C10—C11 121.36 (18) C22—C23—H23 119.8
C9—C10—H10 119.3 O4—C24—O5 122.70 (17)
C11—C10—H10 119.3 O4—C24—C16 123.65 (17)
C10—C11—C12 118.55 (19) O5—C24—C16 113.64 (15)
C10—C11—C14 120.6 (2) O5—C25—H25A 109.5
C12—C11—C14 120.8 (2) O5—C25—H25B 109.5
C13—C12—C11 120.84 (18) H25A—C25—H25B 109.5
C13—C12—H12 119.6 O5—C25—H25C 109.5
C11—C12—H12 119.6 H25A—C25—H25C 109.5
C12—C13—C8 119.51 (17) H25B—C25—H25C 109.5
C12—C13—H13 120.2 C1—N1—C15 118.14 (12)
C8—C13—H13 120.2 C1—N1—S1 117.12 (10)
C11—C14—H14A 109.5 C15—N1—S1 116.27 (10)
C11—C14—H14B 109.5 C24—O5—C25 116.87 (16)
H14A—C14—H14B 109.5 O3—S1—O2 119.58 (8)
C11—C14—H14C 109.5 O3—S1—N1 106.39 (7)
H14A—C14—H14C 109.5 O2—S1—N1 106.61 (7)
H14B—C14—H14C 109.5 O3—S1—C8 108.23 (8)
N1—C15—C16 112.16 (12) O2—S1—C8 107.94 (8)
N1—C15—H15A 109.2 N1—S1—C8 107.53 (7)
C6—C1—C2—C3 −0.6 (2) C18—C19—C20—C21 1.7 (3)
N1—C1—C2—C3 179.61 (15) C19—C20—C21—C22 0.0 (3)
C1—C2—C3—C4 −0.4 (3) C20—C21—C22—C23 −1.4 (4)
C2—C3—C4—C5 0.7 (3) C19—C18—C23—C22 0.6 (3)
C3—C4—C5—C6 0.0 (3) C17—C18—C23—C22 179.45 (18)
C4—C5—C6—C1 −1.0 (3) C21—C22—C23—C18 1.1 (3)
C4—C5—C6—C7 176.2 (2) C17—C16—C24—O4 −176.84 (19)
C2—C1—C6—C5 1.3 (2) C15—C16—C24—O4 3.6 (3)
N1—C1—C6—C5 −178.91 (15) C17—C16—C24—O5 4.2 (3)
C2—C1—C6—C7 −175.87 (17) C15—C16—C24—O5 −175.38 (15)
N1—C1—C6—C7 3.9 (2) C2—C1—N1—C15 44.2 (2)
C5—C6—C7—O1 17.0 (3) C6—C1—N1—C15 −135.57 (15)
C1—C6—C7—O1 −165.9 (2) C2—C1—N1—S1 −102.71 (15)
C13—C8—C9—C10 −0.5 (3) C6—C1—N1—S1 77.50 (16)
S1—C8—C9—C10 179.12 (16) C16—C15—N1—C1 125.78 (14)
C8—C9—C10—C11 0.4 (3) C16—C15—N1—S1 −87.01 (14)
C9—C10—C11—C12 0.0 (3) O4—C24—O5—C25 −0.1 (3)
C9—C10—C11—C14 −177.7 (2) C16—C24—O5—C25 178.93 (19)
C10—C11—C12—C13 −0.3 (3) C1—N1—S1—O3 −161.76 (11)
C14—C11—C12—C13 177.3 (2) C15—N1—S1—O3 50.69 (13)
C11—C12—C13—C8 0.3 (3) C1—N1—S1—O2 −33.10 (13)
C9—C8—C13—C12 0.1 (3) C15—N1—S1—O2 179.35 (11)
S1—C8—C13—C12 −179.45 (14) C1—N1—S1—C8 82.46 (12)
N1—C15—C16—C17 113.35 (17) C15—N1—S1—C8 −65.09 (12)
N1—C15—C16—C24 −67.10 (17) C13—C8—S1—O3 164.21 (13)
C24—C16—C17—C18 −177.05 (17) C9—C8—S1—O3 −15.39 (17)
C15—C16—C17—C18 2.5 (3) C13—C8—S1—O2 33.45 (16)
C16—C17—C18—C23 58.2 (3) C9—C8—S1—O2 −146.15 (15)
C16—C17—C18—C19 −123.0 (2) C13—C8—S1—N1 −81.23 (15)
C23—C18—C19—C20 −2.0 (3) C9—C8—S1—N1 99.17 (15)
C17—C18—C19—C20 179.14 (17)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C18–C23 ring.
D—H···A D—H H···A D···A D—H···A
C9—H9···Cg 0.93 2.64 3.470 (2) 149.
C25—H25B···O2i 0.96 2.56 3.342 (3) 139.
C10—H10···O1ii 0.93 2.51 3.309 (3) 145.

Symmetry codes: (i) x−1, y, z; (ii) −x+3/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5721).

References

  1. Aziz-ur-Rehman, Tanveer, W., Akkurt, M., Sattar, A., Abbasi, M. A. & Khan, I. U. (2010). Acta Cryst. E66, o2980. [DOI] [PMC free article] [PubMed]
  2. Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Bruker (2004). APEX2, SAINT and XPREP Bruker AXS Inc., Madison, Wisconsin, U. S. A.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Korolkovas, A. (1988). Essentials of Medicinal Chemistry, 2nd ed., pp. 699–716. New York: Wiley.
  7. Mandell, G. L. & Sande, M. A. (1992). In Goodman and Gilman, The Pharmacological Basis of Therapeutics 2, edited by A. Gilman, T. W. Rall, A. S. Nies & P. Taylor, 8th ed., pp. 1047–1057. Singapore: McGraw-Hill.
  8. Ranjith, S., Sugumar, P., Sureshbabu, R., Mohanakrishnan, A. K. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, o483. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811050756/bt5721sup1.cif

e-67-o3511-sup1.cif (22.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811050756/bt5721Isup2.hkl

e-67-o3511-Isup2.hkl (335.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811050756/bt5721Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES